Abstract

Periodontal regeneration, especially guided tissue regeneration (GTR), is one of the expanding applications in the field of tissue engineering. GTR barriers serve an exceptional function in healing various periodontal diseases such as gingivitis, periodontitis and loss of alveolar bone. Healing of periodontal pockets is somehow challenging as epithelial cells originated from the gingiva fill the site of defect and no regeneration takes place. Complete cell occlusion is a critical characteristic in case of pockets healing to obstruct gingival tissue growth, which performed via GTR membrane. Various materials were investigated for the synthesis of GTR membranes with collagen being the desired one among other bioresorbable polymers. Although collagen is renowned for its exquisite properties in mimicking the extracellular matrix (ECM), its high cost recalls for a substitute. In an attempt to introduce a new composite for GTR membrane, cost effective gelatin was mixed with calcium carbonate at different concentrations and electrospun using a benign solvent. Different concentrations of gelatin solutions were first investigated to obtain smooth fibers using diluted acetic acid, where 40% of gelatin solution was successively electrospun into smooth fibers with diameters ranging from 140-260nm. Experiments were carried out by adding calcium carbonate (CaCO3) at different concentrations. While smooth fibers were successfully obtained at lower concentrations of CaCO3, beaded broken fibers were obtained at higher concentrations. The diameter of the smooth nanofibers was found to increase with increasing the concentration of CaCO3. As gelatin is well known for its poor mechanical properties and stability, crosslinking using gluteraldhyde (GTA) vapors was considered to be a mandatory step. Different crosslinking time intervals were investigated for better stability, with the 20 h crosslinked mats showed enhanced water resistance and increased viability. Although the stability of nanofibers is elevated with prolonged crosslinking time, the pore size distribution among different mats was found to be almost the same (up to 250 nm) with the majority of the pores up to 50 nm. Crosslinked mats showed distinguished mass increase during both swelling and biodegradability tests, especially with the decrease of calcium concentration among the mats. The presence of calcium within the mats acts as a nucleation site for the growth of Ca-P structures, leading to mineralization of the mats. Not only calcified did gelatin mats show promising results in MTT assay but also overall improved functional and structural properties. In summary, calcified gelatin mats proved to be a good candidate for guided tissue regeneration.

Department

Biotechnology Program

Degree Name

MS in Biotechnology

Graduation Date

2-1-2016

Submission Date

November 2016

First Advisor

Allam, Nageh

Committee Member 1

Zada, Suher

Committee Member 2

Abdel-Latif, Ahmed

Extent

134 p.

Document Type

Master's Thesis

Rights

The author retains all rights with regard to copyright. The author certifies that written permission from the owner(s) of third-party copyrighted matter included in the thesis, dissertation, paper, or record of study has been obtained. The author further certifies that IRB approval has been obtained for this thesis, or that IRB approval is not necessary for this thesis. Insofar as this thesis, dissertation, paper, or record of study is an educational record as defined in the Family Educational Rights and Privacy Act (FERPA) (20 USC 1232g), the author has granted consent to disclosure of it to anyone who requests a copy.

Institutional Review Board (IRB) Approval

Not necessary for this item

Comments

I would like to express my sincere gratitude for my mentor, Advisor and my elder brother: Dr. Nageh Allam for his continuous support and inspirational presence throughout my thesis. He has been a leading model with his unconditional dedication to research, strong passion for science and exceptional deeds. I would like to express my deep appreciation to Prof. Suher Zada for providing me the opportunity to join her tissue culture team and supporting me with all the tools together with the guidance to learn tissue culture technique. I want to extend my thanks to Al-Alfi Foundation for funding my master courses through the entire two years and the American University in Cairo for graduate grants. Special thanks to Dr. Andreas Kakarougkas for supplying us with hTERT fibroblast cell line. I would like to thank my team members for their continuous help; it has been an honor being a member of the EML team. Special thanks goes to the musketeers; Mohamed Salama, Ahmed Shehata, Ahmed Khalifa and to my special friend and companion Aya Adel who made my worst days easier. Thank you: Ahmed Mohey, Amer and Ali for your help with my chemicals. In addition, I would like to thank Nashaat for his help with XRD and FTIR samples. Menna Samir, Mona Bakr, Dr. Mona, Dr. Ayat, Basamat, Icell, Mohamed Soliman, Ahmed Biby and Ibrahim, I could not make it without your continuous support. I would like to thank Dr. Ahmed Moustafa, Amgad Ouf, Noha Nagdy, Sarah Sonbol, Mona Radi, Laila Ziko, Wessam, Eman El-zeniny, Nancy, Mr. Zein, and Mr. Mohamed for their continuous help. In addition, I would like to thank Dr. Nahed for her help with the BJH measurements and all colleagues at Youssef Jameel Science and Technology Research Center (YJSTRC) especially Saqr, Eng. Ehab and Eng. Beltagy. Thanks extended to Ahmed Omia and Mr. Mahmoud at the Chemistry department. Last but not least, all the love goes to my family, supporting friends and work colleagues who provided everything to help me; especially Jana and Abdullah, You are my cheerleading team and strong motivation. Thank you: Rahab, Mariam Azmy, Bothaina, Olla, Mohamed Badawy and Ahmed Mazen.

Share

COinS