Abstract
It is not easy to control a quadrotor due to its highly nonlinear dynamics, variable coupling and model uncertainties. The underactuation property of the quadrotor also poses another degree of complexity to the model due to the limited availability of control techniques that can be applied to underactuated systems. This thesis presents the development of mathematical modeling, control techniques, simulation and real-time testing on a developed quadrotor as an unmanned aerial vehicle. Modeling of the dynamic system of a quadrotor including the motor dynamics is carried out using Newton-Euler mechanics and state space representation is obtained. Using this model a second-order Sliding Mode Control (SMC) is developed as a nonlinear robust control technique. For the SMC development, quadrotor system is divided into two subsystems, one represents the fully actuated degrees of freedom and the other one represents the underactuated degrees of freedom. The aim of the proposed ight controller is to achieve asymptotic position and attitude tracking of the two subsystems by driving the tracking errors to zero to achieve the required tracking performance. Tackling of chattering problem associated with SMC is introduced. Using the developed mathematical model and the developed two control techniques as linear and nonlinear approaches: the Proportional plus Derivative (PD), and SMC, simulation testing is conducted with and without the presence of external disturbances representing weight variation. Multiple simulations testing are performed to ensure the adequacy of the proposed control techniques using MATLAB and Simulink. Detailed discussion on the results of each control technique and comparison are presented with elaborate consideration of the robustness against weight variation. The simulation results demonstrate the ability of the SMC to drive the vehicle to stability and achieve the desired performance characteristics. . Finally, hardware design of a quadrotor has been developed and implemented with considerations on the hardware challenges are presented. Results of real-time ght tests using the two developed control techniques are presented and compared with that of the simulation results and it shows reliable performance of the nonlinear robust SMC controller. Flight tests results came consistent with the simulation results in terms of tracking performance, robustness and actuators e orts. Hardships in the implementation are mentioned and recommendations and future work are proposed. .
Department
Robotics, Control & Smart Systems Program
Degree Name
MS in Robotics, Control and Smart Systems
Graduation Date
6-1-2018
Submission Date
May 2018
First Advisor
Habib, Maki
Committee Member 1
Ali, Wahied
Committee Member 2
Arafa, Mustafa
Extent
132 p.
Document Type
Master's Thesis
Rights
The author retains all rights with regard to copyright. The author certifies that written permission from the owner(s) of third-party copyrighted matter included in the thesis, dissertation, paper, or record of study has been obtained. The author further certifies that IRB approval has been obtained for this thesis, or that IRB approval is not necessary for this thesis. Insofar as this thesis, dissertation, paper, or record of study is an educational record as defined in the Family Educational Rights and Privacy Act (FERPA) (20 USC 1232g), the author has granted consent to disclosure of it to anyone who requests a copy.
Institutional Review Board (IRB) Approval
Not necessary for this item
Recommended Citation
APA Citation
Elhennawy, A.
(2018).Dynamic modeling and robust nonlinear control of unmanned quadrotor vehicle [Master's Thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/498
MLA Citation
Elhennawy, Amr. Dynamic modeling and robust nonlinear control of unmanned quadrotor vehicle. 2018. American University in Cairo, Master's Thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/498