The production of plastics has reached about 300 million tons globally each year. The use of energy resources, the health problem and the impacts on the environment from its disposal phase trigger overriding concerns on plastic recycling which can both save energy consumption in production phase and achieve green end-of-life approach for plastics. Polystyrene is hardly biodegradable. It takes at least 500 years to decompose. It is estimated that by volume, it takes as much as thirty percent of landfills worldwide. It is also flammable subject to risk of accidental ignition and cause of huge fires. Polystyrene is not recycled because it is usually not cost effective. The problems with recycling polystyrene are economical and technical. The start-up costs for a polystyrene recycling plant are enormous and the pay-off, as of now, is not cost effective. The main objective of the thesis is to develop a new recycling technology in order to produce a cost effective product entirely out of waste. Polystyrene waste is reinforced with fibers whether natural or synthetic to improve its mechanical properties and hence could be used for different useful applications. The new products will reduce the detrimental problem of solid waste to the environment as well as save energy, natural resources and cost. Finally, an innovative, environment friendly, cheap and effective yet simple technology is developed to determine the suitability of polystyrene foam waste fiber reinforced composites techniques Mechanical properties of plastic composites using polystyrene foam waste reinforced with synthetic fibers such as fiber glass waste, or natural fibers such as rice straw have been investigated in this study. The fiber waste (synthetic, or natural) was mixed with the polystyrene waste at four weight ratios of 20,30,40, and 50% for the experiments. Samples were prepared using indirect heating and hydraulic press then mechanical properties were evaluated including tensile, flexural, compression and abrasion. The obtained results indicated that the mechanical properties of the synthetic fiber composites were higher than the natural fiber reinforced composites. The best synthetic fiber content was 30 wt.%. The tensile strength was increased by 102 % , the flexural by 54 % , the compression strength by 19 % and abrasion wear better than the properties of the polystyrene waste without reinforcement.


Mechanical Engineering Department

Degree Name

MS in Environmental Engineering

Graduation Date


Submission Date

January 2014

First Advisor

El Haggar, Salah

Committee Member 1

Abou Zeid, Mohamed gib

Committee Member 2

El Sheltawy, Shakiz


75 p.

Document Type

Master's Thesis

Library of Congress Subject Heading 1


Library of Congress Subject Heading 2

Plastics -- Recycling.


The author retains all rights with regard to copyright. The author certifies that written permission from the owner(s) of third-party copyrighted matter included in the thesis, dissertation, paper, or record of study has been obtained. The author further certifies that IRB approval has been obtained for this thesis, or that IRB approval is not necessary for this thesis. Insofar as this thesis, dissertation, paper, or record of study is an educational record as defined in the Family Educational Rights and Privacy Act (FERPA) (20 USC 1232g), the author has granted consent to disclosure of it to anyone who requests a copy.

Institutional Review Board (IRB) Approval

Approval has been obtained for this item