Student Status

Undergraduate

Abstract

This thesis explores the capabilities of a quantum computer to simulate quantum systems. We give an introduction to the basics of quantum computing with the Bernstein-Vazirani algorithm as a demonstration. Four quantum systems are then simulated using IBM's QASM simulator using 6 qubits: the free particle, eigenstate of an infinite-well, particle in a step potential, and quantum tunneling. Because of the high number of gates, a 6-qubit simulation will not be feasible on current quantum computers. The number of qubits was, thus, reduced to 4 qubits, and was simulated on IBM's 5 qubit quantum computers (ibmq 5 vigo). We conclude that quantum simulations on quantum computers are theoretically achievable, as shown by the QASM simulator; however, no useful information can be extracted using the real quantum computers, due to high noise and high errors.

Department

Physics Department

First Advisor

Tarek Elsayed

Extent

42 p.

Institutional Review Board (IRB) Approval

Not necessary for this item

Publication Date

Winter 12-30-2020

Share

COinS