Unraveling Reservoir Quality: How Mineralogy Shapes Pore Attributes in Sandstone Lithofacies

Author's Department

Petroleum & Energy Engineering Department

Fourth Author's Department

Petroleum & Energy Engineering Department

Find in your Library

https://doi.org/10.3390/min15111203

All Authors

Antoine W. Guirguis Abdelmoktader A. El Sayed Ashraf R. Baghdady Abdelaziz L. Khlaifat Ahmed A. Sharaf-Eldin Ahmed Gad

Document Type

Research Article

Publication Title

Minerals

Publication Date

11-1-2025

doi

10.3390/min15111203

Abstract

The Cenomanian Bahariya Formation exposed at Gebel El Dist in the Western Desert of Egypt provides valuable surface analogues for evaluating the reservoir quality of subsurface Bahariya sandstones. The formation was analyzed using 27 oriented samples and 91 core plugs from quartz arenite (QA) and quartz wacke (QW) facies. Analyses included XRD, petrography, SEM, helium porosity–permeability, and capillary tests, as well as measurements of pore-throat radii (R) at 35% and 36% mercury saturation. X-ray diffraction analyses reveal a heterogeneous mineral composition dominated by quartz, feldspars, dolomite, pyrite, siderite, goethite, hematite, clay minerals, glauconite, and gypsum. QA displays higher porosity and permeability than QW, along with larger pore radii, and lower specific surface area per unit pore volume (Spv) and per unit grain volume (Sgv). Multivariate regression equations, specific to each facies, were developed to convert standardized XRD mineral percentages directly into pore-system and flow attributes (ϕ, k, r, Spv, Sgv, R35, R36), quantifying capillary-based recovery contrasts between facies. Across both facies, regressions linking mineralogy to ϕ, k, r, Spv, Sgv, R35, and R36 are strong (R2 = 0.78–1.00). The established predictive equations provide a low-cost method to estimate reservoir quality from mineralogy alone, enabling rapid screening of Cenomanian Bahariya analogues and similar clastic reservoirs where core data are limited.

Share

COinS