Anti-inflammatory potential of aspergillus unguis SP51-EGY: TLR4-dependent effects & chemical diversity via Q-TOF LC-HRMS

Funding Number

A2-12-15

Funding Sponsor

Academy of Scientific Research and Technology

Author's Department

Biology Department

Second Author's Department

Institute of Global Health & Human Ecology

Find in your Library

https://doi.org/10.1186/s12896-024-00890-1

All Authors

Soad Nasr, Abdelhameed S. Dawood, Amal Mosad Ibrahim, Mohamed S. Abdel-Aziz, Walid Fayad, Anwar Abdelnaser, Faten K.Abd EL-Hady

Document Type

Research Article

Publication Title

BMC Biotechnology

Publication Date

12-1-2024

doi

10.1186/s12896-024-00890-1

Abstract

Inflammation serves as an intricate defense mechanism for tissue repair. However, overactivation of TLR4-mediated inflammation by lipopolysaccharide (LPS) can lead to detrimental outcomes such as sepsis, acute lung injury, and chronic inflammation, often associated with cancer and autoimmune diseases. This study delves into the anti-inflammatory properties of “Aspergillus unguis isolate SP51-EGY” on LPS-stimulated RAW 264.7 macrophages. Through real-time qPCR, we assessed the expression levels of pivotal inflammatory genes, including iNOS, COX-2, TNF-α, and IL-6. Remarkably, our fungal extracts significantly diminished NO production and showed noteworthy reductions in the mRNA expression levels of the aforementioned genes. Furthermore, while Nrf2 is typically associated with modulating inflammatory responses, our findings indicate that the anti-inflammatory effects of our extracts are not Nrf2-dependent. Moreover, the chemical diversity of the potent extract (B Sh F) was elucidated using Q-TOF LC-HRMS, identifying 54 compounds, some of which played vital roles in suppressing inflammation. Most notably, compounds like granisetron, fenofibrate, and umbelliprenin were found to downregulate TNF-α, IL-1β, and IL-6 through the NF-κB signaling pathway. In conclusion, “Aspergillus unguis isolate SP51-EGY”, isolated from the Red Sea, Egypt, has been unveiled as a promising TLR4 inhibitor with significant anti-inflammatory potentials, presenting novel insights for their potential therapeutic use in inflammation.

Comments

Article. Record derived from SCOPUS.

Share

COinS