Photocatalytic Nanocomposite Based on Titanate Nanotubes Decorated with Plasmonic Nanoparticles for Enhanced Broad-Spectrum Antibacterial Activity

Author's Department

Chemistry Department

Second Author's Department

Chemistry Department

Fifth Author's Department

Chemistry Department

Find in your Library

https://doi.org/10.1021/acsabm.4c00877

All Authors

Mostafa Fytory, Shaimaa A. Khalid, Ayman H. Zaki, Wolfgang Fritzsche, Hassan M.E. Azzazy

Document Type

Research Article

Publication Title

ACS Applied Bio Materials

Publication Date

10-21-2024

doi

10.1021/acsabm.4c00877

Abstract

Infections resulting from microorganisms pose an ongoing global public health challenge, necessitating the constant development of novel antimicrobial approaches. Utilizing photocatalytic materials to generate reactive oxygen species (ROS) presents an appealing strategy for combating microbial threats. In alignment with this perspective, sodium titanate nanotubes were prepared by scalable hydrothermal method using TiO2 and NaOH. Ag, Au, and Ag/Au-modified titanate nanotubes (TNTs) were prepared by a cost-effective and simple ion-exchange method. All samples were characterized by XRD, FT-IR, HRTEM, and DLS techniques. HRTEM images indicated that the tubular structure was preserved in all TNTs even after the replacement of Na+ with Ag+ and/or Au3+ ions. The antibacterial activity in dark and sunlight conditions was evaluated using different bacterial strains, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results showed that while a low bacterial count (∼log 5 cells per well) was used for inoculation, the TNTs exhibited no antibacterial activity against the three bacterial strains, regardless of whether they were tested under light or dark conditions. However, the plasmonic nanoparticle-decorated TNTs showed remarkable activity in the dark. Additionally, Ag/Au-TNTs demonstrated significantly higher activity in the dark compared with either Ag-TNTs or Au-TNTs alone. Notably, under dark conditions, the Au/Ag-TNTs achieved log reductions of up to 4.5 for P. aeruginosa, 5 for S. aureus, and 3.7 for E. coli. However, when exposed to sunlight, Au/Ag-TNTs resulted in a complete reduction (log reduction ∼9) for P. aeruginosa and E. coli. The combination of two plasmonic nanoparticles (Ag/Au) decorated on the surface of TNTs showed synergetic bactericidal activity under both dark and light conditions. Ag/Au-TNTs could be explored to design surfaces that are responsive to visible light and exhibit antimicrobial properties.

First Page

6720

Last Page

6729

Comments

Article. Record derived from SCOPUS.

Share

COinS