Flexural behavior of high strength concrete shallow wide beams reinforced by hybrid longitudinal reinforcement
Third Author's Department
Construction Engineering Department
Fourth Author's Department
Construction Engineering Department
Find in your Library
https://doi.org/10.1080/16874048.2024.2309818
Document Type
Research Article
Publication Title
HBRC Journal
Publication Date
1-1-2024
doi
10.1080/16874048.2024.2309818
Abstract
One of the most common statistical systems used in structures especially for wide span slabs are ribbed slabs with shallow wide beams (SWB). This experimental study aimed to investigate and enhance the flexural behavior of high-strength concrete SWB using hybrid longitudinal reinforcement from steel and advanced composite materials as a tensile main reinforcement in SWB. Longitudinal advanced composite bars locally manufactured from ribbed glass fiber reinforced polymer (GFRP) and the second type was ribbed basalt fiber reinforced polymer (BFRP). A group of six half scale SWB were examined in structures laboratory of American University in Cairo with dimensions 2.1 × 0.6 × 0.25 m for length (L), width (B) and depth (d) respectively with constant size effect (d/B). The first three specimens were completely reinforced at tension side with Steel, GFRP or BFRP ribbed bars to be considered a control specimen. Use of GFRP and BFRP bars enhanced the flexural capacity of SWB with 41% and 43% respectively compared to specimen completely reinforced with steel. But on the other hand, the crack propagation of specimens completely reinforced with GFRP and BFRP developed more quickly and had larger crack width compared to specimen completely reinforced with steel. Hybrid reinforcement from Steel with GFRP, Steel with BFRP and Steel with GFRP and BFRP specimens are used to enhance the crack pattern and mode of failure without a significant loss in flexural capacity of SWB. The flexural capacity of these three specimens was enhanced with 26%, 30% and 41% with a significant enhancement in crack pattern and ductility.
First Page
205
Last Page
230
Recommended Citation
APA Citation
Badawy, M.
Anan, A.
Elkadi, O.
&
Sayed-Ahmed, E.
(2024). Flexural behavior of high strength concrete shallow wide beams reinforced by hybrid longitudinal reinforcement. HBRC Journal, 20(1), 205–230.
https://doi.org/10.1080/16874048.2024.2309818
MLA Citation
Badawy, Mohamed M., et al.
"Flexural behavior of high strength concrete shallow wide beams reinforced by hybrid longitudinal reinforcement." HBRC Journal, vol. 20, no. 1, 2024, pp. 205–230.
https://doi.org/10.1080/16874048.2024.2309818

Comments
Article. Record derived from SCOPUS.