Unveiling the Optimal Interfacial Synergy of Plasma‐Modulated Trimetallic Mn‐Ni‐Co Phosphides: Tailoring Deposition Ratio for Complementary Water Splitting
Author's Department
Physics Department
Find in your Library
https://doi.org/10.1002/eem2.12324
Document Type
Research Article
Publication Title
Energy & Environmental Materials
Publication Date
3-7-2021
doi
10.1002/eem2.12324
Abstract
Designing highly active, durable, and nonprecious metal-based bifunctional electrocatalysts for overall water electrolysis is of urgent scientific importance to realize the sustainable hydrogen production, which remains a grand challenge. Herein, an innovative approach is demonstrated to synthesize flower-like 3D homogenous trimetallic Mn, Ni, Co phosphide catalysts directly on nickel foam via electrodeposition followed by plasma phosphidation. The electrochemical activity of the catalysts with varying Mn:Ni:Co ratios is assessed to identify the optimal composition, demonstrating that the equimolar trimetallic phosphide yields an outstanding HER catalytic performance with a current density of 10 mA cm−2 at an ultra-low overpotential of ~14 mV, outperforming the best reported electrocatalysts. This is asserted by the DFT calculations, revealing strong interaction of the metals and the P atom, resulting in enhanced water activation and optimized GH* values for the HER process. Moreover, this optimal composition appreciably catalyzes the OER by exposing more intrinsic active species in-situ formed on the catalyst surface during the OER. Therefore, the Mn1-Ni1-Co1-P-(O)/NF catalyst exhibits a decreased overpotential of ~289 mV at 10 mA cm−2. More importantly, the electrocatalyst sustains perfect durability up to 48 h at a current density of 10 mA cm−2 and continued 5000 cycling stability for both HER and OER. Meanwhile, the assembled MNC-P/NF||MNC-P/NF full water electrolyzer system attains an extremely low cell voltage of 1.48 V at 10 mA cm−2. Significantly, the robust stability of the overall system results in a remarkable current retention of ~96% after a continuous 50-h run. Therefore, this study provides a facile design and a scalable construction of superb bifunctional ternary MNC-phosphide electrocatalysts for efficient electrochemical energy production systems.
First Page
1
Last Page
13
Recommended Citation
APA Citation
Allam, N.
Salem, K.
Saleh, A.
&
Khedr, G.
(2021). Unveiling the Optimal Interfacial Synergy of Plasma‐Modulated Trimetallic Mn‐Ni‐Co Phosphides: Tailoring Deposition Ratio for Complementary Water Splitting. Energy & Environmental Materials, 6(2), 1–13.
10.1002/eem2.12324
https://fount.aucegypt.edu/faculty_journal_articles/4787
MLA Citation
Allam, Nageh K., et al.
"Unveiling the Optimal Interfacial Synergy of Plasma‐Modulated Trimetallic Mn‐Ni‐Co Phosphides: Tailoring Deposition Ratio for Complementary Water Splitting." Energy & Environmental Materials, vol. 6,no. 2, 2021, pp. 1–13.
https://fount.aucegypt.edu/faculty_journal_articles/4787