Review and comparison of treatment effect estimators using propensity and prognostic scores

Second Author's Department

Economics Department

Document Type

Research Article

Publication Title

The international journal of biostatistics

Publication Date

11-1-2022

doi

10.1515/ijb-2021-0005

Abstract

In finding effects of a binary treatment, practitioners use mostly either propensity score matching (PSM) or inverse probability weighting (IPW). However, many new treatment effect estimators are available now using propensity score and "prognostic score", and some of these estimators are much better than PSM and IPW in several aspects. In this paper, we review those recent treatment effect estimators to show how they are related to one another, and why they are better than PSM and IPW. We compare 26 estimators in total through extensive simulation and empirical studies. Based on these, we recommend recent treatment effect estimators using "overlap weight", and "targeted MLE" using statistical/machine learning, as well as a simple regression imputation/adjustment estimator using linear prognostic score models.

First Page

357

Last Page

380

Share

COinS