Power adaptive high-resolution neural data compression algorithm (PANDCA)
Author's Department
Electronics & Communications Engineering Department
Find in your Library
http://www.worldcat.org/oclc/8531175543
Document Type
Research Article
Publication Title
Microelectronics Journal
Publication Date
1-1-2018
doi
10.1016/j.mejo.2018.01.025
Abstract
Nowadays, brain scientific research progress depends on signal compression at the implantable site to conform with the low-rate transmission through wireless connection to the outside world despite of high spatial and temporal resolution of neural data. Without data compression, these data rates conflict the neurophysiologic restrictions in terms of energy consumption and silicon area. The main goal of any implantable compression device is to get the smallest data size to be transmitted to the outside world with lowest distortion and data loss at receiver side. In this work, the neural compression algorithm is adapted according to the available harvested power budget. Therefore, the maximum signal to noise and distortion ratio (SNDR) is achieved based on the available harvested power budget without any data loss.
First Page
154
Last Page
163
Recommended Citation
APA Citation
Ismail, Y.
(2018). Power adaptive high-resolution neural data compression algorithm (PANDCA). Microelectronics Journal, 88, 154–163.
10.1016/j.mejo.2018.01.025
https://fount.aucegypt.edu/faculty_journal_articles/363
MLA Citation
Ismail, Yehea
"Power adaptive high-resolution neural data compression algorithm (PANDCA)." Microelectronics Journal, vol. 88, 2018, pp. 154–163.
https://fount.aucegypt.edu/faculty_journal_articles/363