On Chip optical Modulator using epsilon-Near-Zero Hybrid plasmonic platform

Author's Department

Physics Department

Second Author's Department

Physics Department

Find in your Library

https://www.nature.com/articles/s41598-019-42675-z

All Authors

Mohamed A. Swillam; Aya O. Zaki; Khaled Kirah; Lamees A. Shahada

Document Type

Research Article

Publication Title

Scientific reports

Publication Date

4-30-2019

doi

10.1038/s41598-019-42675-z

Abstract

In this work, we propose a micro-scale modulator architecture with compact size, low insertion loss, high extinction ratio, and low energy/bit while being compatible with the silicon-on-insulator (SOI) platform. This is achieved through the utilization of epsilon-near-zero (ENZ) effect of indium-tin-oxide (ITO) to maximize the attainable change in the effective index of the optical mode. It also exploits the ITO layer in a hybrid plasmonic ring resonator which further intensifies the effect of the changes in both the real and imaginary parts of the effective index. By electrically inducing carriers in the indium tin oxide (ITO), to reach the ENZ state, the resonance condition shifts, and the losses of the hybrid plasmonic ring resonator increases significantly. This mechanism is optimized to maximize the extinction ratio and minimize the insertion loss. The proposed structure is designed to maximize the coupling to and from standard SOI waveguide, used as access ports. In addition, the operational region is reconfigurable by changing the bias voltage.

First Page

1

Last Page

9

This document is currently not available here.

Share

COinS