Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization
Funding Sponsor
American University in Cairo
Author's Department
Chemistry Department
Third Author's Department
Physics Department
Find in your Library
https://doi.org/10.1016/j.seppur.2021.118597
Document Type
Research Article
Publication Title
Separation and Purification Technology
Publication Date
7-1-2021
doi
10.1016/j.seppur.2021.118597
Abstract
Herein, a promising rationally-designed, high surface area multi-walled vanadium oxide nanotubes (VOx NTs) with a large interlayer spacing (6.5 Å) has been demonstrated as a cathodic dopant for efficient hybrid capacitive deionization (c-HCDI). The VOx NTs enhanced the surface charge of the 3D microporous graphene-like carbon, derived from natural palm tree (CNPT), as verified by Raman profiles and potential of zero charge measurements. The CDI batch-fashion testing has been performed using large surface area electrodes (6 × 7 cm2) and 135 ml of saline NaCl electrolyte. Interestingly, the used c-HCDI showed high salt adsorption capacity (SAC) of 25.0 mg/g for 6 mM NaCl at 1.6 V compared to the symmetric capacitive deionization configuration (s-CDI) that is only sustaining 16.0 mg/g. Besides, the cell demonstrates efficient stable SAC regardless of the initial feed concentration (1.6–25 mM) of NaCl. The charge efficiency of the c-HCDI markedly raised by around 25% over s-CDI for 5 mM NaCl, indicating the improved permselective manner of sodium ion diffusion/intercalation at the VOx NTs/CNPT cathode. Most importantly, the c-HCDI demonstrates a superior salt adsorption retention of 94.7% after 50 successive charge/discharge cycles compared to s-CDI that showed a decline of 7% after only 15 cycles. The Improved surface charge and wettability together with the pseudocapacitive storage manner of the cathode composite illustrate the synergism obtained via the hybrid configuration.
Recommended Citation
APA Citation
Sayed, D.
El-Deab, M.
&
Allam, N.
(2021). Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization. Separation and Purification Technology, 266,
10.1016/j.seppur.2021.118597
https://fount.aucegypt.edu/faculty_journal_articles/2768
MLA Citation
Sayed, Doha M., et al.
"Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization." Separation and Purification Technology, vol. 266, 2021,
https://fount.aucegypt.edu/faculty_journal_articles/2768