Transfer learning-based and originally-designed CNNs for robotic pick and place operation
Second Author's Department
Mechanical Engineering Department
Find in your Library
https://doi.org/10.1504/IJMA.2021.118430
Document Type
Research Article
Publication Title
International Journal of Mechatronics and Automation
Publication Date
1-1-2021
doi
10.1504/IJMA.2021.118430
Abstract
The authors have developed a CNN and SVM design and training application for defect detection, and the effectiveness and the usefulness have been proved through several design, training and classification experiments. In this paper, the application further enables to facilitate the design of transfer learning-based CNNs. After introducing the application, a pick and place robot system based on DOBOT is proposed while implementing a visual feedback controller and a transfer learning-based CNN. The visual feedback controller is applied to avoiding the complicated calibration task between image and robot coordinate systems, also the transfer learning-based CNN allows to detect the orientation of target objects for dexterous picking operation. The effectiveness of the proposed system is demonstrated through pick and place tests using gripper type and suction cup type tools. Finally, an originally designed CNN with shallower layers is compared with the AlexNet's transfer learning-based CNN in terms of classification scores.
First Page
142
Last Page
150
Recommended Citation
APA Citation
Nagata, F.
Habib, M.
&
Watanabe, K.
(2021). Transfer learning-based and originally-designed CNNs for robotic pick and place operation. International Journal of Mechatronics and Automation, 8(3), 142–150.
10.1504/IJMA.2021.118430
https://fount.aucegypt.edu/faculty_journal_articles/2711
MLA Citation
Nagata, Fusaomi, et al.
"Transfer learning-based and originally-designed CNNs for robotic pick and place operation." International Journal of Mechatronics and Automation, vol. 8,no. 3, 2021, pp. 142–150.
https://fount.aucegypt.edu/faculty_journal_articles/2711