Nanostructured V2O5 and its nanohybrid with MXene as an efficient electrode material for electrochemical capacitor applications
Funding Number
RSP 2021/399
Funding Sponsor
Islamia University of Bahawalpur
Author's Department
Chemistry Department
Second Author's Department
Chemistry Department
Find in your Library
https://doi.org/10.1016/j.ceramint.2021.10.014
Document Type
Research Article
Publication Title
Ceramics International
Publication Date
1-15-2022
doi
10.1016/j.ceramint.2021.10.014
Abstract
Vanadium pentoxide (V2O5) is an excellent electrode material for electrochemical capacitor (ECCs) applications, but its lower electrical conductivity is the primary obstacle that restricts its practical applications. This obstacle can be eliminated by forming its nanohybrid (NCs) with a highly capacitive and conductive matrix such as MXene. MXene is a new two-dimensional (2D) material with good electronic conductivity and a larger specific surface area, making it a very suitable substrate for composite formation. Unfortunately, the two-dimensional MXene sheets stacked quickly, limiting their specific surface area and charge/mass transport properties. Here we used the hydrothermal approach to fabricate V2O5 nanowires (NWs) and form their nanohybrid with MXene via the ultrasound route. To assess electrochemical suitability, the fabricated samples were loaded onto a carbon cloth (CC) and used as a working electrode in the half-cell configuration. The nanohybrid (V2O5/MXene) sample showed a good specific capacity (Csp) of 768 F/g (at 1 A/g) because of its greater surface area, hybrid composition, excellent electrical conductivity, and passive nanostructure. It also showed superior cyclic, electrochemical and mechanical capability and maintained a specific capacity of 93.3%, even after completion of 6000 GCD tests. In addition, the nanohybrid sample electrode also exhibits superb rate performance and lost only 14.4% of its initial specific capacity on increasing the applied current density from 1 to 5 A/g. There is no doubt that V2O5 NWs inter-stack between MXene nanosheets to develop effective interface interaction and suppress their stacking.
First Page
2345
Last Page
2354
Recommended Citation
APA Citation
Mahmood, M.
Zulfiqar, S.
Warsi, M.
Aadil, M.
...
(2022). Nanostructured V2O5 and its nanohybrid with MXene as an efficient electrode material for electrochemical capacitor applications. Ceramics International, 48(2), 2345–2354.
10.1016/j.ceramint.2021.10.014
https://fount.aucegypt.edu/faculty_journal_articles/2668
MLA Citation
Mahmood, Majid, et al.
"Nanostructured V2O5 and its nanohybrid with MXene as an efficient electrode material for electrochemical capacitor applications." Ceramics International, vol. 48,no. 2, 2022, pp. 2345–2354.
https://fount.aucegypt.edu/faculty_journal_articles/2668