Fabrication of reduced Graphene Oxide supported Gd3+ doped V2O5 nanorod arrays for superior photocatalytic and antibacterial activities
Funding Number
RSP 2021/163
Funding Sponsor
Islamia University of Bahawalpur
Third Author's Department
Chemistry Department
Find in your Library
https://doi.org/10.1016/j.ceramint.2021.08.146
Document Type
Research Article
Publication Title
Ceramics International
Publication Date
12-1-2021
doi
10.1016/j.ceramint.2021.08.146
Abstract
In the current report, pure V2O5, a series of Gd doped V2O5 (1 wt%, 3 wt%, 5 wt% and 10 wt%) and graphene integrated Gd–V2O5 photocatalysts have been prepared using a facile wet chemical approach. The effect of Gd+3 ions substitution and RGO support on V2O5 was studied by the different analytical techniques. X-ray diffraction (XRD) results showed the orthorhombic crystal structure of synthesized samples with crystallize size in range of 22–35 nm. Morphological analysis showed nanorods and nanorod arrays like appearance of V2O5, Gd–V2O5 and GdV-2O5/RGO, respectively. Gd–V2O5 and Gd–V2O5/RGO exhibited enhanced optical response in the visible region along with decrease in the band gap values for Gd doped V2O5 samples. BET surface area of Gd–V2O5 and Gd- V2O5/RGO was calculated as 12.39 g/m2 and 15.35 g/m2 that was found to be higher than pristine V2O5. To study the photocatalytic activity of synthesized photocatalysts, methylene blue (MB) was chosen as model pollutant. Among the Gd doped V2O5 samples, highest photocatalytic activity (45.62%) was achieved by optimal concentration of 5 wt% Gd–V2O5 that is accredited to effective separation of electron-hole pairs. While Gd–V2O5/RGO showed 2.1 times higher dye removal (97.12%) than unsupported Gd–V2O5, under the visible light irradiation. The significantly high photocatalytic activity of Gd–V2O5/RGO is due to the synergistic effect aroused by combined action of Gd+3 ions doping and advantageous properties of highly conductive and large surfaced graphene. Recycling experiments for V2O5 derivatives showed good stability and recyclability of photocatalysts. Additionally, Gd–V2O5/RGO was found to be more potential anti-bacterial agent than V2O5 and Gd–V2O5.
First Page
32521
Last Page
32533
Recommended Citation
APA Citation
Chaudhary, H.
Chaudhary, K.
Zulfiqar, S.
Saif, M.
...
(2021). Fabrication of reduced Graphene Oxide supported Gd3+ doped V2O5 nanorod arrays for superior photocatalytic and antibacterial activities. Ceramics International, 47(23), 32521–32533.
10.1016/j.ceramint.2021.08.146
https://fount.aucegypt.edu/faculty_journal_articles/2494
MLA Citation
Chaudhary, Haidar, et al.
"Fabrication of reduced Graphene Oxide supported Gd3+ doped V2O5 nanorod arrays for superior photocatalytic and antibacterial activities." Ceramics International, vol. 47,no. 23, 2021, pp. 32521–32533.
https://fount.aucegypt.edu/faculty_journal_articles/2494