Unravelling the beehive air volatiles profile as analysed via solid-phase microextraction (SPME) and chemometrics
Funding Number
2016-05908
Funding Sponsor
Alexander von Humboldt-Stiftung
Find in your Library
https://doi.org/10.1016/j.jksus.2021.101449
Document Type
Research Article
Publication Title
Journal of King Saud University - Science
Publication Date
7-1-2021
doi
10.1016/j.jksus.2021.101449
Abstract
Objective: Beehive air therapy is recognized as a potential remedy for treating asthma, bronchitis, lung fibrosis, and respiratory tract infections. Developed countries in which beehive air therapy is currently authorized include Germany, Hungary, Slovenia, and Austria. However, scientific proof of its efficacy is lacking which warrants further chemical and biological analyses as a proof of concept. In this study, beehive air volatile profile was determined for the first time along with its individual components (bees, venom, honey, and beeswax). Methods: Volatile compounds were collected from beehive air using solid phase micro-extraction (SPME) coupled to gas chromatography-mass spectrometry (GC–MS). Antimicrobial assay of the air released from 4 beehive products was further performed against Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and multi drug-resistant Staphylococcus aureus (MRSA) using the in vitro agar-well diffusion and microtiter plate assays. Results and conclusions: A total of 56 volatile compounds were identified from beehive air, venom, bee insect and wax air including 6 fatty acids, 6 alcohols, 10 aldehydes, 5 esters, 1 ether, 9 hydrocarbons, 1 phenol, 7 ketones, 1 nitrogenous compound and 10 terpenes. The most abundant constituents were short-chain fatty acids (26.32%) while the lowest were the nitrogenous compounds (0.82%). The principal component analysis (PCA) scores plot of the UPLC/MS dataset showed the similarity of the beehive air to the insect bee's aroma profile. With regards to antimicrobial assay, beehive air and venom exerted the strongest antimicrobial activity among the examined bee products against S. aureus, K. pneumoniae, A. baumannii, and MRSA in agar-well diffusion assay but failing to exert an effect using microtiter plate assay as in case of bee venom against the aforementioned bacteria.
Recommended Citation
APA Citation
Abd El-Wahed, A.
Farag, M.
Eraqi, W.
Mersal, G.
...
(2021). Unravelling the beehive air volatiles profile as analysed via solid-phase microextraction (SPME) and chemometrics. Journal of King Saud University - Science, 33(5),
10.1016/j.jksus.2021.101449
https://fount.aucegypt.edu/faculty_journal_articles/2362
MLA Citation
Abd El-Wahed, Aida A., et al.
"Unravelling the beehive air volatiles profile as analysed via solid-phase microextraction (SPME) and chemometrics." Journal of King Saud University - Science, vol. 33,no. 5, 2021,
https://fount.aucegypt.edu/faculty_journal_articles/2362