Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies

Author's Department

Chemistry Department

Find in your Library

https://doi.org/10.1016/j.ijbiomac.2021.06.014

All Authors

Omar Helmi; Fatma Elshishiny; Wael Mamdouh

Document Type

Research Article

Publication Title

International journal of biological macromolecules

Publication Date

6-14-2021

doi

10.1016/j.ijbiomac.2021.06.014

Abstract

Breast cancer has been one of the top chronic and life-threatening diseases worldwide. Nano-drug therapeutic systems have proved their efficacy as a selective treatment compared to the traditional ones that are associated with serious adverse effects. Here, biodegradable chitosan nanoparticles (CSNPs) were synthesized to provide selective and sustained release of doxorubicin (DOX) within the breast tumor microenvironment. CSNPs surface was modified using Polyethylene glycol (PEG) to enhance their blood circulation timing. To provide high drug selectivity, CSNPs functionalized with two different types of breast cancer-specific monoclonal antibodies (mAb); anti-human mammaglobin (Anti-hMAM) and anti-human epidermal growth factor (Anti-HER2). Anti-hMAM PEGylated DOX loaded CSNPs and Anti-HER2 PEGylated DOX loaded CSNPs nano-formulations were the most cytotoxic against MCF-7 cancer cells than L-929 normal cells compared to free DOX. Finally, we believe that dose-dependent system toxicity of freely ingested DOX can be managed with such targeted nano-formulated drug delivery platforms.

First Page

325

Last Page

338

This document is currently not available here.

Share

COinS