Potential health risks due to in-car aerosol exposure across ten global cities
Author's Department
Construction Engineering Department
Find in your Library
https://doi.org/10.1016/j.envint.2021.106688
Document Type
Research Article
Publication Title
Environment international
Publication Date
6-18-2021
doi
10.1016/j.envint.2021.106688
Abstract
Car microenvironments significantly contribute to the daily pollution exposure of commuters, yet health and socioeconomic studies focused on in-car exposure are rare. This study aims to assess the relationship between air pollution levels and socioeconomic indicators (fuel prices, city-specific GDP, road density, the value of statistical life (VSL), health burden and economic losses resulting from exposure to fine particulate matter ≤2.5 µm; PM) during car journeys in ten cities: Dhaka (Bangladesh); Chennai (India); Guangzhou (China); Medellín (Colombia); São Paulo (Brazil); Cairo (Egypt); Sulaymaniyah (Iraq); Addis Ababa (Ethiopia); Blantyre (Malawi); and Dar-es-Salaam (Tanzania). Data collected by portable laser particle counters were used to develop a proxy of car-user exposure profiles. Hotspots on all city routes displayed higher PM concentrations and disproportionately high inhaled doses. For instance, the time spent at the hotspots in Guangzhou and Addis Ababa was 26% and 28% of total trip time, but corresponded to 54% and 56%, respectively, of the total PM inhaled dose. With the exception of Guangzhou, all the cities showed a decrease in per cent length of hotspots with an increase in GDP and VSL. Exposure levels were independent of fuel prices in most cities. The largest health burden related to in-car PM exposure was estimated for Dar-es-Salam (81.6 ± 39.3 μg m), Blantyre (82.9 ± 44.0) and Dhaka (62.3 ± 32.0) with deaths per 100,000 of the car commuting population per year of 2.46 (2.28-2.63), 1.11 (0.97-1.26) and 1.10 (1.05-1.15), respectively. However, the modest health burden of 0.07 (0.06-0.08), 0.10 (0.09-0.12) and 0.02 (0.02-0.03) deaths per 100,000 of the car commuting population per year were estimated for Medellin (23 ± 13.7 μg m), São Paulo (25.6 ± 11.7) and Sulaymaniyah (22.4 ± 15.0), respectively. Lower GDP was found to be associated with higher economic losses due to health burdens caused by air pollution in most cities, indicating a socioeconomic discrepancy. This assessment of health and socioeconomic parameters associated with in-car PM exposure highlights the importance of implementing plausible solutions to make a positive impact on peoples' lives in these cities.
First Page
106688
Last Page
106688
Recommended Citation
APA Citation
El-Gendy, A.
Kumar, P.
Hama, S.
&
Abbass, R. A.
(2021). Potential health risks due to in-car aerosol exposure across ten global cities. Environment international, 155([not provided]), 106688–106688.
10.1016/j.envint.2021.106688
https://fount.aucegypt.edu/faculty_journal_articles/2298
MLA Citation
El-Gendy, Ahmed, et al.
"Potential health risks due to in-car aerosol exposure across ten global cities." Environment international, vol. 155,no. [not provided], 2021, pp. 106688–106688.
https://fount.aucegypt.edu/faculty_journal_articles/2298