Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio
Author's Department
Mechanical Engineering Department
Find in your Library
https://doi.org/10.1016/j.solener.2014.02.025
Document Type
Research Article
Publication Title
Solar Energy
Publication Date
1-1-2014
doi
10.1016/j.solener.2014.02.025
Abstract
Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance of clear skies.The daylighting and energy performance of solar screens is affected by many parameters. These include screen perforation, depth, reflectivity and color, aspect ratio of openings, shape, tilt angle and rotation. Changing some of these parameters can improve the daylighting performance drastically. However, this can result in increased energy consumption. A balanced solution must be sought, where acceptable daylighting performance would be achieved at minimum energy consumption.This paper aims at defining solar screen designs that achieve visual comfort and at the same time minimum energy consumption in residential desert settings. The study focused on the effect of changing the solar screen axial rotation and the aspect ratio of its openings under the desert clear-sky. The individual and combined effects of changing these parameters were studied.Results of this study demonstrated that a non-rotated solar screen that has wide horizontal openings (aspect ratio of 18:1) proved to be successful in the north and south orientations. Its performance in the east/west orientations was also superior. In contrast, the screen that was rotated along its vertical axis while having small size openings (aspect ratio of 1:1) proved to be more successful in the east/west orientations. Its performance in the north orientation was also good. These solutions enhanced daylighting performance, while maintaining the energy consumption at a minimum.Moreover, it was observed that combining two screen parameters which proved useful in previous studies on daylighting or thermal performance does not add up to better solutions. The combined solutions that were tested in this study did not prove successful in satisfying daylighting and thermal performance criteria at the same time.This study confirmed the results of previous publications on the usefulness of using solar screens in desert environments. Solar screens could significantly enhance daylighting performance and visual comfort. They provided 66-97% "daylit" areas in the tested spaces. In addition, use of solar screens reduced energy consumption by up to 25% in comparison with a non-screened window. © 2014 Elsevier Ltd.
First Page
364
Last Page
377
Recommended Citation
APA Citation
Sabry, H.
Sherif, A.
Gadelhak, M.
&
Aly, M.
(2014). Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio. Solar Energy, 103, 364–377.
10.1016/j.solener.2014.02.025
https://fount.aucegypt.edu/faculty_journal_articles/1831
MLA Citation
Sabry, Hanan, et al.
"Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio." Solar Energy, vol. 103, 2014, pp. 364–377.
https://fount.aucegypt.edu/faculty_journal_articles/1831