Waste nanomaterial-modified asphalt for economic and sustainable pavement construction

Author's Department

Construction Engineering Department

Find in your Library


All Authors

Ali Y. Aboelmagd, Safwan Khedr, Ghada S. Moussa, el-Sayed M. Abdalla , Mahmoud Enieb

Document Type

Research Article

Publication Title

Innovative Infrastructure Solutions

Publication Date





This paper aims to evaluate the possibility of using nanosilica fume as an economic and a viable alternative to high-cost nanomaterials as a prelude to the large-scale use of nanomaterials in the pavement. Therefore, nanosilica fume (NSF), as an industrial waste material, was employed at low contents (2, 4, 6, and 8%) and high contents (20, 30, 40, and 50%) by asphalt weight as modifying additives to asphalt binder. The chemically prepared nanosilica (NS), as a high-cost nanomaterial, was employed at the contents of 2, 4, and 6% by asphalt weight for comparison purposes. Transmission electronic microscopy was used for scanning the nanostructure particles, and scanning electron microscopy was utilized to assess the homogeneity of modified binders. Changes in the chemical bonds of the modified asphalts were investigated using Fourier transform infrared spectroscopy. The modified binder's physical–rheological properties, temperature susceptibility, aging effect, and economic benefit were investigated. Prediction models were utilized to estimate the rutting parameter (G*/sinδ) for the modified asphalts. The results revealed that significant improvements in physical–rheological properties, temperature susceptibility, and rutting resistance of the modified asphalt with high contents of NSF were attained. It was found that the NSF additive significantly decreased the short aging acceleration compared to NS. Predictive equations with high correlation have been inferred to correlate NSF content with both the rutting parameter and the rotational viscosity of the modified asphalt, thus enabling the designer to select the appropriate NSF content to achieve specified binder characteristics in the mix to serve pavement performance conditions.

First Page


Last Page


This document is currently not available here.