Synthesis of sponge like Gd3+ doped vanadium oxide/2D MXene composites for improved degradation of industrial effluents and pathogens

Funding Number

RSP 2021/163

Funding Sponsor

Islamia University of Bahawalpur

Find in your Library


Document Type

Research Article

Publication Title

Ceramics International

Publication Date





Current report is based on the synthesis of Gd+3 doped V2O5 nanostructures (GVO) along with fabrication of GVO/MXene binary nanocomposite. As synthesized GVO and GVO/MXene were characterized by XRD (X-ray diffraction), FESEM (Field emission scanning electron microscopy), EDX (Energy dispersive X-ray), BET (Brunauer Emmett Teller technique) and UV–Visible spectroscopy. Diffraction and elemental analysis confirmed the substitution of Gd+3 ions in VO layers. Orthorhombic phase of VO was observed in both GVO and GVO/MXene samples with crystallite size range of 17.02–17.51 nm. FESEM analysis indicated asymmetrical VO particles and sheets distributed on MXene layers, giving out a sponge like appearance. Surface area of GVO and GVO/MXene was enhanced to 20.46 and 23.69 nm, respectively. Effect of Gd+3 contents was significant on optical properties, which reduced the band gap energy of VO to 2.33 eV. The photocatalytic performance of prepared samples was analysed by the degradation of Methylene blue (MB) under direct sunlight. Gd+3 ion doping was found useful to enhance degradation of MB up to ∼71%. Among all samples, GVO/MXene showed maximum degradation (∼92%) within 120 min. Meanwhile, GVO/MXene showed good recyclability for successive five cycles. In addition, GVO and GVO/MXene were effective antibacterial agents against Gram positive (S. aureus) and Gram negative (P. vulgaris) strains of bacteria. The results suggested that the GVO and GVO/MXene could serve as potential candidates for large scale treatment of organic pollutants and pathogens.

First Page


Last Page


This document is currently not available here.