Title

Recent advances on zeolitic imidazolate -67 metal-organic framework-derived electrode materials for electrochemical supercapacitors

Third Author's Department

Physics Department

Find in your Library

https://doi.org/10.1016/j.est.2020.102195

Document Type

Research Article

Publication Title

Journal of Energy Storage

Publication Date

2-1-2021

doi

10.1016/j.est.2020.102195

Abstract

Strategies to overcome the intrinsic limitations of zeolitic imidazolate frameworks ZIF-67 for use as catalytically active electrode materials for electrochemical supercapacitor devices have been reviewed and discussed. Despite the achieved enhancements so far, there are still various challenges that need to be tackled, including the limited rate capability and charging voltage window of the ZIF-67 material. In this regard, a wide range of ZIF-67-derived materials have been reviewed and discussed, including: 1) Porous carbons, metal/non-metal-doped porous carbons, and carbon-carbon composites. 2) Cobalt oxide nanostructures, cobalt oxide-based composites, bimetallic ternary metal oxides, and iron and manganese oxides. 3) Cobalt sulfide nanostructures, bimetallic ternary metal sulfides, and metal sulfide composites. 4) Cobalt sulfide, and cobalt phosphides. Moreover, defect engineering and doping strategies were discussed as possible strategies to improve the electrochemical performance of ZIF-67-derived metal oxides. Further, ZIF-67-derived layer double hydroxides (LDHs) and selenides were discussed. Finally, the remaining challenges and future perspectives have been highlighted.

This document is currently not available here.

Share

COinS