Facile synthesis of binary metal substituted copper oxide as a solar light driven photocatalyst and antibacterial substitute

Funding Number


Funding Sponsor

Islamia University of Bahawalpur

Third Author's Department

Chemistry Department

Find in your Library


Document Type

Research Article

Publication Title

Advanced Powder Technology

Publication Date





This work presents the synthesis of Cu0.95Mn0.05O (CMO), Cu0.95Ag0.05O (CAO), and Cu0.9Mn0.05Ag0.05O (CMAO) samples via wet chemical route for photocatalytic and antibacterial applications. The phase, morphology, chemical composition, and absorption range of the transition metal substituted CuO samples were investigated using various techniques such as PXRD, FESEM, EDX, and UV/Visible spectroscopy. The photocatalytic and antibacterial aptitude of all the synthesized samples was tested using methylene blue (MB) and bacterial strains. The results of application studies showed that the CMAO sample has a greater potential for dye degradation and bacterial strain destruction because of its long-lived photo-generated reactive species. More precisely, among all the synthesized samples, the CMAO sample showed excellent photocatalytic activity and degraded 83.9% dye at a higher rate constant value (0.0127 min−1). Moreover, the CMAO sample also showed better bactericidal activity against Gram-positive (S. aureus) and Gram-negative bacterial strains (E. coli). Actually, components of the bacterial cell membrane are also organic like organic dyes, so they are likely to degrade by photo-generated species. The results revealed that binary metal substituted CuO (CMAO) has an excellent ability to kill bacteria and eliminate toxic dyes from industrial effluents.

First Page


Last Page


This document is currently not available here.