Green tea essential oil encapsulated chitosan nanoparticles-based radiopharmaceutical as a new trend for solid tumor theranosis

Author's Department

Chemistry Department

Find in your Library

All Authors

Nourihan S. Farrag; Amro Shetta; Wael Mamdouh

Document Type

Research Article

Publication Title

International journal of biological macromolecules

Publication Date





The existing study is embarked on investigating the antineoplastic activity of green tea essential oil (GTO) as a natural product. In this regard, GTO was encapsulated in cationic chitosan, nitrogenous-polysaccharide derived by partial deacetylation of chitin, nanoparticles (CS NPs) with entrapment efficiency (EE%) of 81.4 ± 5.7% and a mean particle-size of 30.7 ± 1.13 nm. Moreover, the cytotoxic effect of CS/GTO NPs was evaluated versus human liver (HepG-2), breast (MCF-7) and colon (HCT-116) cancer cell-lines and exhibited a positive impact when compared to bare CS NPs by 3, 2.3 and 1.7 fold for the three cell lines, respectively. More interestingly, CS/GTO NPs were complexed with technethium-99m (Tc) radionuclide. With a view to achieve a successful radiolabeling process, different parameters were optimized resulting in a radiolabeling efficiency (RE%) of 93.4 ± 1.2%. Radiopharmacokinetics of the radiolabeled NPs in healthy mice demonstrated a reticuloendothelial system (RES) evading and long blood circulation time up to 4 h. On the other hand, the biodistribution profile in solid tumor models showed 20.3 ± 2.1% localization and cancer cell targeting within just 30 min. On the whole, the reported results encourage the potential use of CS/GTO NPs as a side effect-free anticancer agent and its Tc-analogue as a novel CS/GTO NPs-based diagnostic-radiopharmaceutical for cancer.

First Page


Last Page


This document is currently not available here.