The world wide research interest in Bismuth Telluride thin films is due to the fact that they are the most commonly efficient thermoelectric materials at temperatures as low as room temperature, which is typically suitable for implementing such thin films through the fabrication of miniaturized thermoelectric generators and human body energy scavengers. This work aims to characterize various Bismuth Telluride -based thin films deposited by Pulsed Laser Deposition technique in order to optimize their thermoelectric performance represented in their thermoelectric figures of merit. This has been achieved by investigating the electrical and thermoelectric properties of the deposited thin films as well as studying the structural properties of such thin films that is necessary for future micromachining and fabrication of energy scavengers; the results of this effort are really promising. The first chapter is an introductory overview concerning thermoelectric effects and thermoelectric generators. The second chapter deals with the different deposition techniques and the reasoning behind the employment of PLD to deposit Bismuth Telluride thin films. The third chapter includes some of Bismuth Telluride chemical and physical properties in addition to a literature survey of what other groups have already achieved concerning this material. The fourth chapter covers all the experiments and includes the results of this work. Finally, the fifth chapter includes the summary, conclusion and recommendation for future progress in this topic.


Physics Department

Degree Name

MS in Physics

Date of Award


Online Submission Date

December 2012

First Advisor

Sedky, Sherif

Committee Member 1

Sedky, Sherif

Document Type



118 p.


The author retains all rights with regard to copyright. The author certifies that written permission from the owner(s) of third-party copyrighted matter included in the thesis, dissertation, paper, or record of study has been obtained. The author further certifies that IRB approval has been obtained for this thesis, or that IRB approval is not necessary for this thesis. Insofar as this thesis, dissertation, paper, or record of study is an educational record as defined in the Family Educational Rights and Privacy Act (FERPA) (20 USC 1232g), the author has granted consent to disclosure of it to anyone who requests a copy. The author has granted the American University in Cairo or its agents a non-exclusive license to archive this thesis, dissertation, paper, or record of study, and to make it accessible, in whole or in part, in all forms of media, now or hereafter known.


Not necessary for this item