Electrochemical nano-patterning of brass for stable and visible light-induced photoelectrochemical water splitting

Author's Department

Physics Department

Second Author's Department

Physics Department

Third Author's Department

Physics Department

Find in your Library


All Authors

Dina S. Eissa; Shimaa S. El-Hagar; Elsayed A. Ashour; Nageh K. Allam

Document Type

Research Article

Publication Title

International Journal of Hydrogen Energy

Publication Date





A novel propitious nano-patterned brass oxide nanowires were fabricated via controlled anodization of α-brass in aqueous electrolytes at room temperature. X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS)techniques were used to investigate the morphology, structure, and composition of the fabricated materials. The morphology of the resulted structures was found to depend on the concentration of the sodium bicarbonate used for anodization as well as the post treatment. The XRD analysis confirmed the existence of both ZnO and CuO. The XPS results suggest the formation of CuZnO nanowires. The fabricated nanowires showed exceptional optical activity with an absorption wavelength extending to 800 nm, corresponding to a bandgap energy of 1.7 eV. This bandgap energy was also confirmed via DFT calculations. The fabricated nanostructures were used to split water photoelectrochemically under AM 1.5 illumination. They showed very promising results towards visible light water splitting with a photocurrent of 1.88 mA/cm2 at −0.5 V versus Ag/AgCl, an incident photon-to-current efficiency (IPCE)of ∼15% at 400 nm, and a production of ∼875 μmol of H2 gas upon illumination for 5 h. The obtained photocurrent is at least five times higher than that reported for ZnO and TiO2. The transient photocurrent measurements showed the fabricated electrode to be photostable under the operating conditions.

First Page


Last Page


This document is currently not available here.