Abstract

Analog circuits can be generally classified into two broad categories: The first one includes analog circuits operating in the voltage mode, while the second category includes those operating in the current mode. Voltage mode analog circuit’s bandwidth is highly dependent on the gain via the gain bandwidth product (GBP). To solve this problem, many current mode circuits are developed such as the second generation Current Conveyor (CCII) and the Operational Floating Conveyor (OFC). A novel concept of the Fully Differential Operational Floating Conveyor (FD-OFC) is presented for the first time, to the best of the author’s knowledge. A CMOS design for the proposed FD-OFC is introduced as an 8 (4x4) port general purpose analog building block. The FD-OFC design is implemented using two different realizations. The proposed design has the advantage of low power consumption as it operates under biasing conditions of only 1.2 V while its wide bandwidth reaches 600 MHz. These operating conditions recommend the proposed device to be integrated to a wide range of low power-wide high speed applications. The terminal behavior of the proposed device is mathematically modeled and its operation is simulated using the UMC 130 nm technology kit in Cadence environment. Differential voltage amplifier, current mode instrumentation amplifier (CMIA) and Fully Differential second generation Current Conveyor (FDCCII) are examples of the presented applications based on the proposed FD-OFC.

Department

Electronics & Communications Engineering Department

Degree Name

MS in Electronics & Communication Engineering

Date of Award

2-1-2018

Online Submission Date

September 2017

First Advisor

Ismail, Yehea

Committee Member 1

Seddik, Karim

Committee Member 2

Anis, Mohab

Document Type

Thesis

Extent

82 p.

Rights

The author retains all rights with regard to copyright. The author certifies that written permission from the owner(s) of third-party copyrighted matter included in the thesis, dissertation, paper, or record of study has been obtained. The author further certifies that IRB approval has been obtained for this thesis, or that IRB approval is not necessary for this thesis. Insofar as this thesis, dissertation, paper, or record of study is an educational record as defined in the Family Educational Rights and Privacy Act (FERPA) (20 USC 1232g), the author has granted consent to disclosure of it to anyone who requests a copy.

IRB

Not necessary for this item

Share

COinS