Author

Ghada Afifi

Abstract

The purpose of this thesis is to study the performance of a WNCS based on utilizing IEEE 802.15.4 and IEEE 802.11 in meeting industrial requirements as well as the extent of improvement on the network level in terms of latency and interference tolerance when using the two different protocols, namely WiFi and ZigBee, in parallel. The study evaluates the optimum performance of WNCS that utilizes only IEEE 802.15.4 protocol (which ZigBee is based on) without modifications as an alternative that is low cost and low power compared to other wireless technologies. The study also evaluates the optimum performance of WNCS that utilizes only the IEEE 802.11 protocol (WiFi) without modifications as a high bit network. OMNeT++ simulations are used to measure the end-to-end delay and packet loss from the sensors to the controller and from the controller to the actuators. It is demonstrated that the measured delay of the proposed WNCS including all types of transmission, encapsulation, de-capsulation, queuing and propagation, meet real-time control network requirements while guaranteeing correct packet reception with no packet loss. Moreover, it is shown that the demonstrated performance of the proposed WNCS operating redundantly on both networks in parallel is significantly superior to a WNCS operating on either a totally wireless ZigBee or WiFi network individually in terms of measured delay and interference tolerance. This proposed WNCS demonstrates the combined advantages of both the IEEE 802.15.4 protocol (which ZigBee is based on) without modifications being low cost and low power compared to other wireless technologies as well the advantages of the IEEE 802.11 protocol (WiFi) being increased bit rate and higher immunity to interference. All results presented in this study were based on a 95% confidence analysis.

Department

Electronics & Communications Engineering Department

Degree Name

MS in Electronics & Communication Engineering

Date of Award

2-1-2016

Online Submission Date

July 2016

First Advisor

Hassanein, Amer

Committee Member 1

Ramez, Daoud

Document Type

Thesis

Extent

66 p.

Rights

The author retains all rights with regard to copyright. The author certifies that written permission from the owner(s) of third-party copyrighted matter included in the thesis, dissertation, paper, or record of study has been obtained. The author further certifies that IRB approval has been obtained for this thesis, or that IRB approval is not necessary for this thesis. Insofar as this thesis, dissertation, paper, or record of study is an educational record as defined in the Family Educational Rights and Privacy Act (FERPA) (20 USC 1232g), the author has granted consent to disclosure of it to anyone who requests a copy.

IRB

Approval has been obtained for this item

Share

COinS