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Abstract: Data mining applications are growing with the availability of large data; sometimes,
handling large data is also a typical task. Segregation of the data for extracting useful information is
inevitable for designing modern technologies. Considering this fact, the work proposes a chaos embed
marine predator algorithm (CMPA) for feature selection. The optimization routine is designed with
the aim of maximizing the classification accuracy with the optimal number of features selected. The
well-known benchmark data sets have been chosen for validating the performance of the proposed
algorithm. A comparative analysis of the performance with some well-known algorithms advocates
the applicability of the proposed algorithm. Further, the analysis has been extended to some of the
well-known chaotic algorithms; first, the binary versions of these algorithms are developed and
then the comparative analysis of the performance has been conducted on the basis of mean features
selected, classification accuracy obtained and fitness function values. Statistical significance tests
have also been conducted to establish the significance of the proposed algorithm.

Keywords: metaheuristics; feature selection; classification

MSC: 68T01; 68T05; 68T07; 68T09; 68T20; 68T30

1. Introduction

In recent years, the application of optimization in the field of data-mining has been
reported in many published approaches. Feature selection (FS) from a large data set is also
one of the optimization problems. The FS problem has many industrial and healthcare-
related applications. An effective FS technique can enhance the classification accuracy
of the classifier and reduce the complexity of the system. The complexity of the system
substantially enhanced with the dimension of the data. In other words, it speeds up
the learning rate and improves the ability of a machine to anticipate the information
pertaining to the data. The recent application of the FS technique in the field of healthcare
is reported in [1], where an ensemble-based hybrid feature selection has been employed
for the diagnosis of the brain tumor. The authors claimed that the proposed method is
able to handle the imbalanced data. A network intrusion detection scheme based on the
Least Square Support Vector Machine has been proposed by the authors [2]. The authors
validated the approach on intrusion data sets. The problem of the high dimensionality of
feature space pertaining to text characterization has been addressed in reference [3]. In
this work, the authors proposed a novel Gini index for the classification and reduction of
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the features. Feature selection for the Brain Computer Interface (BCI) has been conducted
with the help of information gain ranking, correlation-based feature selection, ReliefF,
consistency-based feature selection and 1R ranking methods in the approach [4]. A brief
classification of the feature selection algorithms are given in Figure 1.

Figure 1. Classification of feature selection algorithms.

A very interesting approach on the path planning for the mobile robot is proposed in
reference. For defining the obstacle, the situation of workers in the Artificial Bee Colony
has been utilized and in the second phase, the shortest path is selected by Dijkstra’s algo-
rithm [5]. A very important application of the ABC algorithm has been reported for the
identification of mechanical parameters of the Servo-drive system [6]. A novel approach of
the Adaptive Procedure for Optimization Algorithms is proposed in reference [7]. Apart
from these approaches, recent approaches based on the metaheuristic optimization moti-
vated the author to employ the optimization algorithm in a feature selection task [8–10].
These references provide strong evidence of what optimization algorithms are capable of
for dealing with complex engineering problems.

Apart from the application of metaheuristic optimization algorithms and evolution-
based algorithms, there are many deterministic algorithms that are also employed for
conducting feature selection tasks. Due to the deterministic nature or gradient-based
mechanism, these algorithms are often stuck in a local minima trap and provide slow and
premature convergence. For avoiding such problems and to provide a smooth and fast
optimization environment, metaheuristic techniques are employed for executing feature
selection problems. The recent trend is to apply the metaheuristic optimization algorithm
for conducting this task; some of the fine approaches are depicted in the following refer-
ences, where the application of the Hybrid Whale Optimization Algorithm (HWOA) [11]
is explored with the amalgamation of the Whale Optimization Algorithm and Simulated
annealing Algorithm (SA). A chaotic dragonfly algorithm has been proposed and applied
on the feature selection task in reference [12].A similar approach based on the chaotic selfish
heard optimizer has been proposed in reference [13]. A rich review of literature pertaining
to the feature selection methods have been demonstrated in reference [14]. S-shaped and
V-shaped functions are employed to create a binary search space in gaining and sharing a
knowledge algorithm for the feature selection task in reference [15].
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1.1. Some Recent Chaos-Based Approaches for Feature Selection

A chaotic optimization algorithm based on gaining and sharing knowledge-based
optimization has been proposed in reference [16], as well as the the similar applications
based on chaotic fruit fly optimization [17], chaotic crow search algorithms [18], chaotic
multi verse optimizer [19] and chaotic salp swarm optimizers [20].

From these approaches, it is evident that the embedding chaos for making naive
algorithms compatible for feature selection is a potential area of research. These approaches
are strong evidence that by embedding chaos in the mechanism of algorithms, a substantial
improvement can be achieved as far as classification accuracy and reduction in dimension-
ality is considered. Based on this discussion, the following subsection presents the research
proposal for the work and objectives.

1.2. Research Objectives and Proposal

Recently, a new metaheuristic has been proposed [21] based on predatory behav-
ior. The algorithm is known as the marine predator algorithm (MPA). The application
of this algorithm in a multi-objective domain has been explored in reference [22]. A new
improved model of MPA has been established in reference [23]. The paper touched the
theme of introducing an opposition-based learning method, chaos map, self-adaption of
population, and switching between exploration and exploitation phases. Application of
this algorithm has been explored in the field of controller tuning. Further, a hybrid compu-
tational intelligence-based approach has been proposed for structural damage detection in
reference [24].

Keeping these facts in mind, the work proposed in this paper addresses following
objectives.

1. To propose a chaotic marine predator algorithm and develop a balance between the
exploration and exploitation phase considering the binary search space.

2. To benchmark the proposed algorithm on a standard data set used in state-of-the-art
classification tasks.

3. To evaluate the performance of the proposed algorithm with some recently proposed
approaches in the feature selection domain.

4. To evaluate the performance of the proposed algorithm on certain evaluation crite-
rion such as the statistical parameter calculation such as mean feature selected by
algorithms, mean values of classification accuracy obtained in optimization runs and
mean fitness values. Apart from these statistical attributes, a statistical test has also
been conducted for showcasing the statistical significance of the algorithm.

The remaining part of this paper is organized as follows: in Section 2, brief details of
the MPA are discussed. Section 3 presents the basic framework of the chaos embed marine
predator algorithm (CMPA). Section 4 presents the problem formulation and details of the
objective considered in this study. Section 5 presents the results and analysis of different
tests. Section 6 concludes all major findings.

2. Marine Predator Algorithm: An Overview

The marine predator algorithm (MPA) [21] is a recently developed optimization
technique that is based on the philosophy that while predator is searching for the prey,
the prey also updates its position according to the location of food. The MPA presents a
beautiful mimicry of a social life in terms of mathematical representations. This section
briefly discuss the steps incorporated in the development of MPA. The different steps of
MPA are as follows

1. Conceptualization of MPA: Like other nature-inspired algorithms, the initial popula-
tion in MPA is equally scattered in the search region, which can be given as:

Y0 = Ub + m(Ub − Lb) (1)

Here, Ub and Lb are the minimum and maximum values of variables and r is an
arbitrary number satisfying 0 < m < 1.
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Following the well-known Darwinian fittest theory in MPA, a group of best predators
are selected as a final solution. In MPA, the initial location of the prey can be expressed as
the following matrix of order n× d, where n represents the number of search agents and d
is the dimension of the problem.

TPREM =


Ytp

1,1 Ytp
1,2 · · · Ytp

1,d
Ytp

2,1 Ytp
2,2 · Ytp

2,d
...

...
. . .

...
Ytp

n,1 Ytp
n,2 · · · Ytp

n,d

 (2)

where Ytp
1,1 represents the first top predator vector, which is replicated n times to construct

the Elite matrix TPREM, which can be extended up to n times and d dimensions. In MPA,
the prey is searching for food and the predator is searching for prey, hence both can be
considered as search agents. The matrix TPM has taken initial solutions, and after every
iteration, the position of prey has improved. This updated matrix is called the elite matrix
TPREM. The prey matrix (TPM) is given by following expression.

TPM =


Y1,1 Y1,2 · · · Y1,d
Y2,1 Y2,2 · Y2,d

...
...

. . .
...

Yn,1 Yn,2 · · · Yn,d

 (3)

Yi,j denotes the location of i-th prey in the j-th dimension. It is to be noted that during
the search process both prey and predators are search agents and they search for food.

1. Optimization steps: As predators and prey are two search agents of MPA, the whole
optimization process depends on their proportional velocity. To illustrate the optimiza-
tion process scientifically, it can be spilt up into three stages. Each stage predefined
a natural order and time and was inspired by the natural behavior of the prey and
predator. These stages are as follows:

• Stage 1: If the velocity of predator is greater than prey. This case occurs in the
initial steps or in intensification. When the proportion velocity is very high,
i.e., (≥10), then the predator is almost still. This can be mathematically written as
when t < Tmax/3,

~stepi = ~RB ⊗ (~TPREM
i − ~RB ⊗

−→
TPi) (4)

where t is the current iteration and TMax maximum values of iteration.

−−→
TPMi =

−−→
TPMi + K.~R⊗~stepi (5)

where stepi = step size of i-th iteration, ~RB = vector including arbitrary numbers
related to Brownian motion, K = constant number taken as equal to 0.5 and
~R = a vector of arbitrary numbers ∈ [0, 1]. This stage occurs in almost the first
33 percentage of the total iteration, when the intensification is high.

• Stage 2: If the proportional velocity of predator and prey is almost the same,
which indicates that the prey is looking for its food and the predator is looking
for its prey. This case happens in middle iterations, when intensification is slowly
converting into diversification. At this time, half of the part of the population,
i.e., predator, is accountable for the intensification and the prey is responsible for
the diversification. If the prey follows the Levy motion and the predator follows
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the Brownian motion, then we get proportional velocity (≈1). Mathematically,
when 1

3 Tmax < t < 2
3 Tmax. For the first part of the population:

~stepi = ~RL ⊗ (~TPREM
i − ~RL ⊗

−−→
TPMi) (6)

−−→
TPMi =

−−→
TPMi + K.~R×~stepi (7)

Here, the ~RL= vector includes arbitrary numbers related to the Levy motion. As in
the Levy distribution, the step size is very small, hence this movement represents
diversification.
In the second half population MPA consider

~stepi = ~RB ⊗ (~RB ⊗ ~TPREM
i −−−→TPMi) (8)

−−→
TPMi =

−−→
TPMi + K.C×~si (9)

C =
(

1− t
Tmax

)( 2t
Tmax ) is a control parameter that commands the step size of

movements of the predator. The predator moves according to the Brownian
motion and the prey follow the predator for its position updates.

• Stage 3: If the proportional velocity ratio is low, i.e., the predator is moving
faster in comparison to the prey. This situation occurs in the last iterations of
optimization, and is related to diversification. The predator adopts the Levy
motion in the case of low proportional velocity (=0.1). This can be given in the
following way, if t > 2

3 Tmax

−−→
stepi =

−→
R L ⊗

(−→
R L ⊗

−→
T PREM

i −−−→TPMi

)
i = 1, ..., n (10)

−−→
TPMi =

−→
T PREM

i + K.C× −−→stepi (11)

These three stages present different steps of predators in finding their prey.
According to their behaviour, we consider that the predator follows both the
Brownian and Levy motion equally. In stage I, the predator is still, in stage II it
follows the Brownian motion and in the last stage it moves in the Levy motion.
These same things are also followed by the prey, as the prey is also a predator for
some other marine creatures. For example, bony fish and marine invertebrates
are prey for tuna fish and themselves a prey for silky sharks.

2. Fish Aggregating Device Effect (FAD): FAD is a floating device made by humans to
find some specific marine creatures in tropical regions. It also affects marine animals
in many other ways. According to [25], 80% of the lifespan of sharks has been spent
around FAD and the rest in jumping in various dimensions to find prey. These FADs
can be considered as local optima trapping agents of marine predators. The effect of
FADs can be given mathematically as:

−−→
TPMi =


−−→
TPMi + C

[−→
L b +

−→
R ×

(−→
U b −

−→
L b

)]
×−→A i f r ≤ f

−−→
TPMi + [ f (1− q) + q]

(−−→
TPMr1 −

−−→
TPMr2

)
i f r > f

(12)

Here, f is the probability of the FAD effect on any optimizer and taken as f = 0.2,
q = a is the random number between 0 and 1, and r1 and r2 represent two arbitrary
indexes of the prey matrix.

−→
A =

0 i f r < 0.2
1 i f r > 0.2

(13)
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3. Memory of marine predators: Almost all marine predators are good at memorizing
their location of successful foraging, which is referred to as the memory saving term
in MPA. When the prey updates their location and the FAD effect is implemented,
the fitness of the prey matrix has evaluated whether to update the elite matrix or not
and the most fit matrix is chosen. This step also helpful in the improvement of the
solution, according to [26].

3. Development of Chaos Embed Marine Predator Algorithm

This section presents the development of the chaos embed marine predator algorithm
(CMPA). The following are the procedural steps for the development.

1. The MPA has been divided into three phases. During the first phase, the search
agents take big leaps and try to acquire as much space as they can; hence, in a way
it can be said that this phase is primarily governed by exploratory action. Likewise,
during the final phase, the exploration virtue of the algorithm becomes weakened and
the exploitation virtue becomes enhanced. In a way, the starting phase that governs
1/3 of the iterations and the last phase that governs last 1/3 phase of iterations is
solely dedicated to the exploration and exploitation virtues. Hence, any modifications
in these either enhance the exploration or exploitation virtue of MPA. Considering
this fact, the authors are motivated to develop a new position update mechanism that
can affect both virtues simultaneously.

2. During the intermediate phase, where the both processes are simultaneously pro-
gressing, a position update mechanism that can search alternative solutions is acutely
required. Considering this argument, we propose a chaotic function-inspired position
update mechanism that helps the algorithm to transit swiftly between exploration
and exploitation phases.

(a) The generation of β-chaotic sequence through the initialization of the parameters
(ν, µ, J1, J2) is carried out. A generalized equation for the β distribution, as given in
following expression, is as follows:

β(J; ν, µ, J1, J2) =

{(
J−J1
Jc−J1

)ν( J2−J
J2−Jc

)µ
i f J ∈ [J1, J2]

0 otherwise
(14)

where (ν, µ, J1, J2) ∈ R and J1 < J2. The β-Chaotic sequence at any iteration t will be
given as:

Jt+1 = kβ(Jt; ν, µ, J1, J2) (15)

(b) For the first part of the population, during the second phase an update mechanism is
introduced and represented as:

~stepi = ~RL ⊗ (~TPREM
i − ~RL ⊗

−−→
TPMi) (16)

−−→
TPMi =

−−→
TPMi + K.~R×~stepi (17)

Here, the ~RL= vector includes the arbitrary numbers related to the Levy motion.
As in the Levy distribution the step size is very small, this movement represents
diversification.

(c) More precisely, the update in prey position can be governed by by the following
decision-making loop. −−→

TPMi =
−−→
TPMi + K.~J ×~stepi (18)

In this modification, R has been replaced by Equation (15). This implies that for every
iteration there will a new chaotic number is assigned for making a decision process.
Hence, the decision for the position update is handled with the help of the chaotic
function instead of a random function that is normally distributed. Pseudo code of
the proposed algorithm is depicted in Algorithm 1.
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Algorithm 1 Pseudo code of proposed CMPA.

1: Initialize the search agent number, maximum iteration Tmax and FAD probability
2: while Termination criterion is not met, start the algorithm loop do

if(t < Tmax/3)
3: Update prey based on phase 1 Equations (4) and (5).
4: else if(Tmax/3 > t < 2 ∗ Tmax/3)
5: Update prey based on phase 2 Equations (8), (9) and (15)–(18).
6: Else update prey based on phase 3 Equations (10) and (11).
7: End if loop
8: Accomplish Memory saving and update TPREM

9: Apply FAD effect and update based on the last phase as per Equations (12) and (13)
10: end while
11: Print the values of Fitness, Accuracy and Attributes.

Discussion

During stage 2, both prey and predator moves at the same pace; hence, there is a
chance of local minima stagnation as the exploration and exploitation rates are almost same.
Hence, to keep the exploration and exploitation phase alive the position update equation
based on a random number has been replaced with chaotic numbers, which are obtained
from the sequence generation as per the definition in Equations (14) and (15).

Embedding chaos at this stage, when the velocity of prey and predator is almost the
same, is more meaningful because these search agents can be directed to a local minima spot
without changing or exploring in the different direction. Hence, it is quite necessary to keep
the gradient of the velocity agile. This fact also motivates the experimental investigation of
embedding chaos in other phases. In this work, our focus is to embed chaos and observe
the impact of this addition only on the optimization performance of the algorithm in the
binary domain. The following section presents the problem formulation part for evaluation
of the proposed CMPA.

4. Problem Formulation

From the evaluation perspective, the feature selection problem can be classified into
two broad categories, in the first type of approach, which is based on filter-based methods,
an effective subset of the feature is selected and its performance is evaluated; finally,
the algorithm suggests the optimal subset. In this type of approach, the subset is not
evaluated over the training samples. On the other hand, the wrapper feature selection-
based approaches evaluate the feature subset and performance validation is conducted
with testing and validation of the data sets. Feature selection is always considered as a
multi objective optimization problem where objectives can be the maximization of the
classification accuracy with the minimum number of feature subsets. It appears that both
of the objectives are conflicting in nature. Hence, the objective function employed in this
study is a weighted combination of these objectives.

ObjectiveFuncion(J) = w1 × Er(D) + w2 ×
Rc

N
(19)

where Er(D) is the error in the classification rate of a given classifier; in this work, we have
employed the K-nearest Neighbor classifier (KNN), and w1 and w2 are the weights where
w1 = 1− w2. The weighted combination philosophy has been adapted from reference [11].

5. Results and Discussions

For comparing the proposed variant we draw a comparison on the basis of the accuracy
of the classification, fitness values obtained by algorithm and average attributes obtained
from the optimization runs. In order to access the performance of the proposed algorithm,
17 classical data sets have been chosen. The details of data sets are shown in Table 1.
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We have reported our results in two sets. In set-1, a comparison is made with contem-
porary algorithms, and in set-2 the chaotic algorithms are simulated and their comparative
analysis is presented.

5.1. Experimental Details

Designing a mechanism that chooses the optimal feature from the given sets is a very
important procedure, as the randomness can alter the results in a very effective manner;
hence, a rigorous experimental analysis has been carried out for choosing the number of
iterations, number of search agents and both chaotic marine algorithms, along with the
marine algorithm, have been analyzed for many independent runs. We choose the Vote,
Tic-Tac-Toe, Sonar, Penguin, Lymphography, Exactly, CongressEw and Breast Cancer for
analysis. In this analysis, we change the values of search agents from (5, 10 and 20) and
number of maximum iterations (20, 30, 50 and 70). From the analysis conducted in this
experiment, we have adopted the numbers of search agents to be 10 and the maximum
iteration number is 100. This analysis is conducted in such a manner that the parametric
impact can be observed on the accuracy of classification and fitness values. We observe
that in choosing these values of the parameters, the accuracy of the classification is not
compromised and fitness values are also optimal. Further, the experimental details of this
study has been shown in Figure 2.

Table 1. Data sets used for experimental verification.

S. No. Data Set No. of Attributes No. of Objects

1 Breastcancer 9 699

2 Breast EW 30 569

3 CongressEw 16 435

4 Exactly 13 1000

5 Exactly2 13 1000

6 HeartEW 13 270

7 IonosphereEW 34 351

8 KrvskpEw 36 3196

9 Lymphography 18 148

10 Penguin 325 73

11 SonarEw 60 208

12 SpectEw 22 267

13 Tic-tac-toe 9 958

14 Vote 16 300

15 WaveformEw 40 5000

16 Wine 13 178

17 Zoo 16 101

Comparison with Previously Published Approaches

For investigation, the comparison is made with some of the previously reported
approaches in the classification domain, where the objective function depicted in the
previous section has been considered for dealing with the KNN classifier. The comparison
results of the fitness values has been shown in Table 2. It is worth mentioning here that the
simulation process is time consuming, hence the mean values of 10 runs are reported in the
table. We observe that the fitness values for all the test data is optimal for the proposed
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CMPA and in some cases these values are optimal. This fact establishes the applicability
of CMPA in the binary domain. For example, in the case of CongressEw data, the fitness
values are optimal for both CMPA and MPA.

Figure 2. Classification of feature selection algorithms.

Table 2. Fitness value.

Data Set MPA [21] CMPA ALO [27] GA [28] PSO [29]

Breastcancer 0.05 0.04 0.02 0.03 0.03

Breast EW 0.06 0.06 0.03 0.04 0.03

CongressEw 0.02 0.02 0.05 0.04 0.04

Exactly 0.16 0.12 0.29 0.28 0.28

Exactly2 0.21 0.21 0.24 0.25 0.25

HeartEW 0.19 0.19 0.12 0.14 0.15

IonosphereEW 0.07 0.07 0.11 0.13 0.14

KrvskpEw 0.03 0.03 0.05 0.07 0.05

Lymphography 0.13 0.13 0.14 0.17 0.19

Penguin 0.03 0.03 0.14 0.22 0.22

SonarEw 0.10 0.10 0.18 0.13 0.13

SpectEw 0.17 0.17 0.12 0.14 0.13

Tic-tac-toe 0.22 0.23 0.22 0.24 0.24

Vote 0.03 0.03 0.04 0.05 0.05

WaveformEw 0.21 0.21 0.021 0.2 0.22

Wine 0.03 0.03 0.02 0.01 0.02

Zoo 0.02 0.02 0.07 0.08 0.1
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Further, the comparative analysis of the classification accuracy has also been conducted
with previously published algorithms; we observed that the classification accuracy of the
proposed algorithm is better than MPA and better than GA, PSO and ALO. These results
are shown in Table 3. For example, in the case of the ZOO data base, we observed that
the classification accuracy of the CMPA is about 98%, on the other hand, the classification
accuracy has been substantially compromised in ALO (91%), GA (88%) and PSO (83%).

It is also important to showcase the fact that classification accuracy has been achieved
without compromising feature size. Hence, the attributes (feature) selected by every
algorithm in each run has been averaged and showcased in Table 4. These values are
very important indicators, as it can be easily observed from the table that the number of
features selected by the algorithm is optimal in many cases, and this happens without
compromising the classification accuracy.

Table 3. Comparative analysis of classification accuracy.

Data Set MPA CMPA ALO GA PSO

Breastcancer 0.96 0.96 0.96 0.96 0.95

Breast EW 0.94 0.94 0.93 0.94 0.94

CongressEw 0.98 0.98 0.93 0.94 0.94

Exactly 0.84 0.89 0.66 0.67 0.68

Exactly2 0.78 0.78 0.75 0.76 0.75

HeartEW 0.81 0.82 0.83 0.82 0.78

IonosphereEW 0.93 0.93 0.87 0.83 0.84

KrvskpEw 0.97 0.97 0.96 0.92 0.94

Lymphography 0.87 0.87 0.79 0.71 0.69

Penguin 0.97 0.97 0.63 0.7 0.72

SonarEw 0.90 0.90 0.74 0.73 0.74

SpectEw 0.83 0.83 0.8 0.78 0.77

Tic-tac-toe 0.78 0.78 0.73 0.71 0.73

Vote 0.97 0.97 0.92 0.89 0.89

WaveformEw 0.79 0.79 0.77 0.77 0.76

Wine 0.97 0.97 0.91 0.93 0.95

Zoo 0.98 0.98 0.91 0.88 0.83

Table 4. Optimized mean of attributes.

Data Set MPA CMPA ALO GA PSO

Breastcancer 3.44 3.38 6.28 5.09 5.72

Breast EW 7.02 6.22 16.08 16.35 16.56

CongressEw 4.63 4.37 6.98 6.62 6.83

Exactly 4.75 5.61 6.62 10.82 9.75

Exactly2 2.10 2.05 10.7 6.18 6.18

HeartEW 5.07 5.73 10.31 9.49 7.94

IonosphereEW 7.39 6.88 9.42 17.31 19.18

KrvskpEw 18.82 15.94 24.7 22.43 20.81
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Table 4. Cont.

Data Set MPA CMPA ALO GA PSO

Lymphography 5.30 5.89 11.05 11.05 8.98

Penguin 63.83 60.43 164.13 177.13 178.75

SonarEw 20.78 16.23 37.92 33.3 31.2

SpectEw 5.29 5.00 16.15 11.75 12.5

Tic-tac-toe 5.60 5.53 6.99 6.85 6.61

Vote 3.81 3.61 9.52 6.62 8.8

WaveformEw 22.41 19.79 35.72 25.28 22.72

Wine 4.55 4.30 10.7 8.63 8.36

Zoo 4.92 4.78 13.97 10.11 9.74

5.2. Comparative Analysis of MPA and CMPA

For conducting this analysis, we have compared the optimization run results on the
basis of attributes selected by the optimization algorithms, i.e., MPA and CMPA, on the
basis of the fitness function values and on the basis of the classification accuracy achieved
for different data sets. Table 5 showcases the results of the Wilcoxon rank-sum test [30]
between MPA, and CMPA and the p-values are depicted in the table. This test is conducted
with 95% confidence interval (5% significance level).

Table 5. Statistical significance test with MPA.

Data Set Attributes
Fitness Classification Attributes

MPA CMPA MPA CMPA MPA CMPA

Breastcancer
Mean Values 4.48 × 10−2 4.52 × 10−2 9.60 × 10−1 9.60 × 10−1 3.44 3.38

p-values 1.00 5.82 × 10−1 1.00 5.69 × 10−1 1.00 9.03 × 10−1

Breast EW
Mean Values 5.88 × 10−2 6.13 × 10−2 9.40 × 10−1 9.40 × 10−1 7.02 6.22

p-values 1.00 4.32 × 10−1 1.00 5.03 × 10−1 1.00 1.81 × 10−1

CongressEw
Mean Values 2.02 × 10−2 2.12 × 10−2 9.80 × 10−1 9.80 × 10−1 4.63 4.37

p-values 1.00 3.48 × 10−1 1.00 5.80 × 10−1 1.00 5.08 × 10−1

Exactly
Mean Values 1.16 × 10−1 1.57 × 10−1 8.40 × 10−1 8.90 × 10−1 4.75 5.61

p-values 1.00 2.35 × 10−1 1.00 2.35 × 10−1 1.00 3.10 × 10−1

Exactly2
Mean Values 2.15 × 10−1 2.15 × 10−1 7.80 × 10−1 7.80 × 10−1 2.10 2.05

p-values 1.00 2.35 × 10−1 1.00 2.35 × 10−1 1.00 7.35 × 10−1

HeartEW
Mean Values 1.86 × 10−1 1.92 × 10−1 8.10 × 10−1 8.20 × 10−1 5.07 5.73

p-values 1.00 1.26 × 10−1 1.00 1.10 × 10−1 1.00 2.07 × 10−2

IonosphereEW
Mean Values 6.60 × 10−2 7.05 × 10−2 9.30 × 10−1 9.30 × 10−1 7.39 6.88

p-values 1.00 5.41 × 10−2 1.00 6.39 × 10−2 1.00 4.41 × 10−1

KrvskpEw
Mean Values 3.41 × 10−2 3.01 × 10−2 9.70 × 10−1 9.70 × 10−1 1.88 × 101 1.59 × 101

p-values 1.00 2.67 × 10−1 1.00 1.55 × 10−1 1.00 5.65 × 10−2
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Table 5. Cont.

Data Set Attributes
Fitness Classification Attributes

MPA CMPA MPA CMPA MPA CMPA

Lymphography
Mean Values 1.28 × 10−1 1.29 × 10−1 8.70 × 10−1 8.70 × 10−1 5.30 5.89

p-values 1.00 6.62 × 10−1 1.00 6.64 × 10−1 1.00 2.18 × 10−1

Penguin
Mean Values 2.66 × 10−2 2.68 × 10−2 9.70 × 10−1 9.70 × 10−1 6.38 × 101 6.04 × 101

p-values 1.00 5.88 × 10−1 1.00 1.00 1.00 4.57 × 10−1

SonarEw
Mean Values 1.03 × 10−1 1.03 × 10−1 9.00 × 10−1 9.00 × 10−1 2.08 × 101 1.62 × 101

p-values 1.00 5.43 × 10−1 1.00 9.67 × 10−1 1.00 3.97 × 10−3

SpectEw
Mean Values 1.69 × 10−1 1.66 × 10−1 8.30 × 10−1 8.30 × 10−1 5.29 5.00

p-values 1.00 4.80 × 10−1 1.00 4.58 × 10−1 1.00 6.36 × 10−1

Tic-tac-toe
Mean Values 2.26 × 10−1 2.20 × 10−1 7.80 × 10−1 7.80 × 10−1 5.60 5.53

p-values 1.00 3.19 × 10−1 1.00 3.19 × 10−1 1.00 5.79 × 10−1

Vote
Mean Values 3.50 × 10−2 3.19 × 10−2 9.70 × 10−1 9.70 × 10−1 3.81 3.61

p-values 1.00 1.73 × 10−1 1.00 1.08 × 10−1 1.00 8.39 × 10−1

WaveformEw
Mean Values 2.11 × 10−1 2.11 × 10−1 7.90 × 10−1 7.90 × 10−1 2.24 × 101 1.98 × 101

p-values 1.00 7.76 × 10−1 1.00 9.89 × 10−1 1.00 1.33 × 10−1

Wine
Mean Values 3.33 × 10−2 3.19 × 10−2 9.70 × 10−1 9.70 × 10−1 4.55 4.30

p-values 1.00 7.62 × 10−1 1.00 7.41 × 10−1 1.00 5.43 × 10−1

Zoo
Mean Values 2.32 × 10−2 2.21 × 10−2 9.80 × 10−1 9.80 × 10−1 4.92 4.78

p-values 1.00 4.22 × 10−1 1.00 3.42 × 10−1 1.00 5.43 × 10−1

The column entry, which indicates value 1 in the p-values column, is considered as
the native algorithm, from which the statistical comparison is executed. Here, MPA is
considered as native algorithm and the rank-sum test calculation has been executed between
MPA and the proposed CMPA. Hence, the results that obtained 0.05 were considered as a
different distribution. From the entries depicted in the table, it has been observed that the
CMPA provides competitive results when compared with MPA, and provides an optimal
values of attributes, fitness function values and classification accuracies for almost all
data sets. This fact advocates the applicability of a proposed algorithm on the feature
selection problem.

5.3. Comparative Analysis of Performance of the Proposed CMPA with Other Chaotic Algorithms

Further, it has been an established fact that amending the chaos in the metaheuristic
algorithms improvises the optimization efficiency in the binary domain. In order to in-
vestigate this fact, some recently published algorithms are considered for the evaluation
of the performance of the proposed CMPA. These algorithms are the enhanced chaotic
grasshopper optimization algorithm (ECGOA) (with sine map) [31], sinusoidal bridging
mechanism-based grasshopper algorithm (with sine map) [32] and enhanced chaotic ar-
tificial bee colony algorithm (ECABC) (with sine map) [33]. The binary version of these
chaotic algorithms are obtained, as per reference [11].
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For showcasing the impact of chaos on the performance of these algorithms, the
classification accuracy along with the mean fitness attribute selected by the algorithms
is depicted in Table 6. From the table it has been observed that for majority of the data
sets the classification accuracy is very competitive and that is with a smaller number of
selected features.

Table 6. Comparative analysis of performance with chaotic algorithms.

Data Set Parameter MPA CMPA ECGOA [31] SFECGOA [32] ECABC [33]
Mean (Feature) 3.44 3.38 3.54 3.65 6.74

Breastcancer
Classification 0.96 0.96 0.95 0.94 0.95

Mean (Feature) 7.02 6.22 7.29 7.56 7.25
Breast EW

Classification 0.94 0.94 0.94 0.93 0.93
Mean (Feature) 4.63 4.37 4.44 4.56 4.92

CongressEw
Classification 0.98 0.98 0.97 0.98 0.97

Mean (Feature) 4.75 5.61 5.68 5.92 6.01
Exactly

Classification 0.84 0.89 0.85 0.84 0.83
Mean (Feature) 2.10 2.05 2.21 2.35 2.47

Exactly2
Classification 0.78 0.78 0.77 0.78 0.79

Mean (Feature) 5.07 5.73 5.65 4.98 5.24
HeartEW

Classification 0.81 0.82 0.8 0.8 0.8
Mean (Feature) 7.39 6.88 7.21 7.46 7.15

IonosphereEW
Classification 0.93 0.93 0.92 0.91 0.93

Mean (Feature) 18.82 15.94 18.26 19.24 18.25
KrvskpEw

Classification 0.97 0.97 0.95 0.96 0.96
Mean (Feature) 5.30 5.89 5.48 5.98 5.77

Lymphography
Classification 0.87 0.87 0.86 0.86 0.86

Mean (Feature) 63.83 60.43 64.25 64.98 69.32
Penguin

Classification 0.97 0.97 0.97 0.95 0.96
Mean (Feature) 20.78 16.23 21.56 23.87 25.36

SonarEw
Classification 0.90 0.90 0.89 0.9 0.9

Mean (Feature) 5.29 5.00 5.24 5.63 5.41
SpectEw

Classification 0.83 0.83 0.82 0.85 0.83
Mean (Feature) 5.60 5.53 5.98 5.72 5.69

Tic-tac-toe
Classification 0.78 0.78 0.76 0.76 0.75

Mean (Feature) 3.81 3.61 3.89 3.95 3.63
Vote

Classification 0.97 0.97 0.96 0.95 0.96
Mean (Feature) 22.41 19.79 23.54 25.36 23.01

WaveformEw
Classification 0.79 0.79 0.77 0.78 0.78

Mean (Feature) 4.55 4.30 5.65 4.35 4.69
Wine

Classification 0.97 0.97 0.96 0.96 0.96
Mean (Feature) 4.92 4.78 4.98 4.65 4.79

Zoo
Classification 0.98 0.98 0.97 0.97 0.97

Further, as proof, the statistical significance test has been conducted for comparison
of the proposed algorithm with other chaotic algorithms. The results of the mean feature
obtained from the optimization runs along with the p-values of the rank-sum test have
been showcased in Table 7. The following points are observed:
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Table 7. Statistical significance analysis of CMPA with chaotic algorithms.

Data Set Parameter CMPA ECGOA SFECGOA ECABC
Mean (Feature) 3.38 3.54 3.65 6.74

Breastcancer p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 6.22 7.29 7.56 7.25
Breast EW p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 4.37 4.44 4.56 4.92
CongressEw p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 5.61 5.68 5.92 6.01
Exactly p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 2.05 2.21 2.35 2.47
Exactly2 p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 5.73 5.65 4.98 5.24
HeartEW p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 6.88 7.21 7.46 7.15
IonosphereEW p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 15.94 18.26 19.24 18.25
KrvskpEw p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

Mean (Feature) 5.89 5.48 5.98 5.77
Lymphography p-values 1.00 4.40 × 10−8 6.99 × 10−8 1.80 × 10−8

Mean (Feature) 60.43 64.25 64.98 69.32
Penguin p-values 1.00 2.18 × 10−8 1.96 × 10−8 2.80 × 10−8

Mean (Feature) 16.23 21.56 23.87 25.36
SonarEw p-values 1.00 2.18 × 10−8 1.96 × 10−8 2.80 × 10−8

Mean (Feature) 5.00 5.24 5.63 5.41
SpectEw p-values 1.00 6.80 × 10−8 2.48 × 10−8 6.80 × 10−8

Mean (Feature) 5.53 5.98 5.72 5.69
Tic-tac-toe p-values 1.00 4.40 × 10−8 2.48 × 10−8 6.80 × 10−8

Mean (Feature) 3.61 3.89 3.95 3.63
Vote p-values 1.00 6.80 × 10−8 4.40 × 10−8 2.48 × 10−8

Mean (Feature) 19.79 23.54 25.36 23.01
WaveformEw p-values 1.00 2.48 × 10−8 4.40 × 10−8 6.80 × 10−8

Mean (Feature) 4.30 5.65 4.35 4.69
Wine p-values 1.00 2.48 × 10−8 2.80 × 10−8 3.20 × 10−8

Mean (Feature) 4.78 4.98 4.65 4.79
Zoo p-values 1.00 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8

• The mean values of features for 15 data sets are found optimal. Only the Zoo data set
has optimal results for SFECGOA, and the HeartEW data set has the ECABC. This fact
suggests that the selection of features without compromising accuracy can be possible
with the proposed CMPA.

• Inspecting the p-values obtained from the Wilcoxon rank-sum test [30], it has been
observed that all the algorithms have p-values less than 0.05. Hence, it can be said that
a statistical significance exists in the results for obtaining the mean attributes. This
fact indicates that if we repeat this experiment again with the same parameters, we
will obtain the same results.

• The graphical analysis of the results obtained from the optimization process has been
depicted with the help of bar charts in Figures 3 and 4. From these figures it is evident
that the optimization capability of the proposed CMPA is superior to other algorithms.

• From the analysis conducted in this experiment, it has been observed that the chaotic
position update mechanism in MPA yields better results as compared with the con-
temporary chaotic algorithms that uses chaos as a bridging mechanism. In short,
the modification suggested in the MPA is meaningful and demonstrates a positive
impact on the optimization performance of the proposed algorithm.
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(a) Breastcancer (b) Breast EW

(c) Congress EW (d) Exactly

(e) Exactly 2 (f) HeartEW

(g) IonosphereEW (h) KrvskpEw

Figure 3: Graphical Representation of the Optimization Results (Set-1)

17

Figure 3. Graphical representation of the optimization results (set-1).
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(a) Lymphography (b) SonarEw

(c) SpectEw (d) Tic-tac-toe

(e) Vote (f) WaveformEw

(g) Wine (h) Zoo

Figure 4: Graphical Representation of the Optimization Results (Set-2)

19

Figure 4. Graphical representation of the optimization results (set-2).

6. Conclusions

This paper reports an application of the chaotic marine predator algorithm in a feature
selection task; a binary version of the chaotic MPA algorithm is proposed in this work
by altering the decision making of the position update phase of stage-2 with a chaotic
sequence. We have changed the decision process by inculcating chaotic numbers generated
from a chaotic sequence. Further, the proposed binary algorithm has been tested over
17 data sets and the algorithm analysis has been performed with the native algorithm.
We observed that the native algorithm is strong and robust but some modifications in the
position update process make it more suitable for the feature selection task. The results
are reported with the help of different analyses. The following are the major conclusions
drawn from this work.

1. The algorithm analysis has been conducted on the basis of the number of search
agents selected and the number of iterations selected for feature selection. After this
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analysis, the optimal values of design parameters have been selected for executing
the feature selection task.

2. A comparison with a recently published algorithm and state-of-the-art algorithms
has been conducted to showcase the efficacy of the algorithm; the fitness value of the
objective function along with classification accuracy have been reported in order to
validate the efficacy of the proposed modification.

3. A comparison of some chaotic algorithms along with the proposed CMPA has also
been reported to showcase the feasibility of CMPA. It is observed that the classification
accuracy of the algorithm has not been compromised and the number of features
obtained from the optimization runs are found optimal for the majority of cases.

4. Graphical analysis along with statistical comparison of the proposed algorithm with
others revealed that a modification in the stage-2 of MPA algorithm has some positive
implications on the optimization performance of MPA.

Application of chaos in multiple phases with normalization and scaled functions will
be evaluated in the future.
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