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HNIO: A Hybrid Nature-Inspired Optimization
Algorithm for Energy Minimization in UAV-assisted

Mobile Edge Computing
Yang Chen, Dechang Pi, Shengxiang Yang, Senior Member, IEEE, Yue Xu, Junfu Chen, Ali Wagdy Mohamed

Abstract—Mobile edge computing (MEC) is an emerging
computing paradigm that decreases the computing time and
extends the lifespan of user equipments (UEs). In MEC, the
computational tasks are offloaded from UEs to the base station
(BS) at the edge of the network for processing. However, MEC
cannot cope with environments where there are no BS or where
communication facilities have been destroyed. In this paper,
we study the problem of minimizing the energy consumption
of UAV equipped with MEC servers as a mobile base station
to serve users. The problem involves user offloading decision,
UAV location and allocation with computational resources, and
is a hybrid optimization problem with continuous and discrete
variables. To address this problem, we propose a hybrid nature-
inspired optimization algorithm (HNIO) and its version for
discrete optimization, where HNIO incorporates mutation and
population diversity detection mechanisms to boost its global
optimization capability, and we design a probabilistic selection-
based coding strategy for the discrete optimization version. The
experimental study is conducted based on ten cases with different
numbers of UEs. Comparing HNIO with several other state-
of-the-art optimization algorithms, it is concluded from the
Friedman and Wilcoxons test of the experimental results that
HNIO shows better precision and stability in nine out of the ten
cases with higher number of UEs.

Index Terms—Mobile edge computing, UAV, Nature-inspired
algorithms, Computational task offloading, Discrete optimization,
Convergence analysis.

I. INTRODUCTION

THe process of industrial informatization is developing
rapidly and people have come to the 5G era. Various type-

s of mobile equipments have gained popularity among people,
which helps to gradually form an intelligent society where
everything is interconnected. The dazzling variety of services
and applications such as online gaming, live video streaming,
augmented reality, etc. generate a large amount of data that
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need to be processed on time. These services are sensitive to
time delays and traditional cloud computing methods cannot
fully meet their demands. Mobile edge computing (MEC) is a
promising computing paradigm that provides users with the
required service computing capabilities at the edge of the
wireless network. Compared with cloud computing, MEC can
effectively reduce the congestion of data transmission and save
the energy consumption of UEs to extend their life [1]–[3].
However, MEC has its shortcomings. Zhang et al. pointed out
that the existing MEC service facilities are not efficient in the
lack of wireless network scenarios, such as disaster response
or remote environments [4]. In addition, MEC services are
limited by fixed location, which is not flexible enough to meet
the needs of mobile users.

As a mobile platform with high flexibility, unmanned aerial
vehicle (UAV) has been focused on in recent years both in
military and life. Xu et al. investigated the UAV in wireless
communication to provide Hertzian connectivity, considering
the molecular absorption effect in the THz-enabled UAV
channel gain model [5]. Ho et al. studied the energy efficiency
of communication between UAVs and ground terminals from a
control perspective [6]. Aggarwal et al. sufficiently studied the
path planning problem of UAV, based on which the coverage
and connectivity of UAV network communication are dis-
cussed and analyzed [7]. In [8], blockchain technology is used
for UAV communication security to ensure data collection
and transmission. Moreover, Aggarwal et al. presented in
detail blockchain-envisioned UAV communication using 6G
networks and provide a viable solution. [9]. Straffelini et al.
combined UAV with motion structure-based photogrammetry
to detect potential waterlogging problems on farms [10].
Chhikara et al. applied UAV to air quality index prediction.
These studies provide a certain foundation for UAV in flight
and communication work [11].

Therefore, in order to address the environment with limited
MEC infrastructure, this paper employs a UAV equipped
with a MEC server as a BS to serve users. The system
model of UAV-assisted MEC consists of the local comput-
ing model, UAV computational model, and UAV hovering
model. From the perspective of minimizing system energy
consumption, the optimization variables of the system are UAV
deployment location, computational resource allocation, and
user offloading decision. The problem is a large-scale hybrid
optimization problem, which belongs to the category of non-
convex optimization. The hidden enumeration, branch delim-
itation, and dynamic planning methods are time-consuming.
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Nature-inspired algorithms are stochastic algorithms based
on population search, which can effectively cope with non-
convex optimization [12], [13]. There are two main categories:
evolutionary algorithms and swarm intelligence algorithms.
Evolutionary algorithms are a general term for a class of
algorithms that simulate the evolution of living organisms.
Swarm intelligence is a general term for a class of artificial
intelligence models that simulates the foraging and migration
behaviors of organisms living in swarms in nature, and one of
the most representative is the particle swarm algorithm [14],
[15].

The problem with nature-inspired algorithms is that there is
a loss of diversity in the process of population update leading
to premature convergence and failure to obtain a satisfactory
solution. To address this problem, we propose a hybrid nature-
inspired optimization algorithm (HNIO) that differs from
traditional algorithms and incorporates mutation operations
and a mechanism for population diversity detection, which can
effectively avoid the premature convergence and thus improve
the quality of the solution. Since the user offloading decision
in the UAV-assisted MEC model is discrete, we propose a
discrete version of the HNIO.

A. Related Work

Research on UAV-assisted MEC has been conducted in
recent years. Researchers have discussed it from different
perspectives. UAV-assisted MEC will greatly enhance the
advantages of MEC. Zeng et al.. stated that UAV can provide
services to mobile users with wide coverage, reliable line-of-
site (LOS) and with additional computing capabilities [16].
MEC service to mobile users is required to offload computa-
tional tasks from the UEs to the MEC’s server for processing,
which mainly involves the offloading computational tasks and
computational resources allocation [17]. Tranet et al. averred
that UEs can transmit more data and offload more computa-
tional tasks over the LOS channel when working with a UAV
equipped with a MEC server [18]. Meanwhile, since UAV can
be deployed flexibly, UEs can save energy when transferring
data to the UAV. Nguyen et al. discussed the problems of MEC
and the challenges of UAV-assisted MEC [19]. Ye et al. in-
vestigated the flight speed scheduling problem in UAV-assisted
MEC systems [20]. Liu et al. proposed an IoT collaborative
MEC network based on UAV, in which UAV act as a type of
MEC server to provide computing services not only for local
devices but also for BS with small coverage in the vicinity
[21]. Hu et al. studied the maximum latency minimization
problem between the UAV and the users, aiming to optimize
the UAV trajectory, the ratio of offloading tasks, and the user
scheduling variables, where energy consumption is the major
constraint [22]. Zhang et al. studied to improve the average
user delay in UAV-assisted MEC networks where UAVs act
as computational nodes and relay nodes [23]. Zhou et al.
studied maximizing UAV data transfer rate in two computation
offloading modes: Partial computation offloading mode and
Binary computation offloading mode [24]. The starting points
of the above studies are different and both mention the problem
involving user resource allocation and task offloading which

is a non-deterministic polynomial problem. In this paper, we
conduct a study with the objective of minimizing the system
energy consumption of UAV-assisted MEC and propose a
nature-inspired algorithm for continuous-space and discrete-
space optimization.

Slowik et al. inductively discussed the nature-inspired algo-
rithms and their applications in industry [25], [26]. In the liter-
ature [15], Han et al. designed a nonlinear regression function
to adjust the weight coefficients of PSO based on the fitness
of the population, named adaptive particle swarm optimiza-
tion (APSO), which was applied to a self-organizing radial
basis function neural network to improve the accuracy and
resolution. With the continuous exploration, the researcher’s
ideas are not limited to the simulation of biological behavior.
Karaboga et al. proposed the artificial bee colony algorithm
(ABC) by simulating the behavior of a bee colony foraging
work [27]. Santana et al. proposed an improved novel binary
bee colony algorithm (NBABC) for discrete optimization
problems, which successfully solved the OneMax problem,
Knapsack problem, and Feature Selection [28]. Geem et al.
proposed harmony search by simulating music performance
(HS) [29]. Pan et al. introduced the adaptive mechanism to
HS and proposed self-adaptive HS (SGHS) for continuous
function optimization problems [30]. Salmanet al. proposed
an adaptive probabilistic harmony search (APHS) to deal with
combinatorial optimization problems [31]. Rao et al. proposed
a teaching-learning based optimization (TLBO) by simulating
classroom learning [32], and an algorithm called JAYA [33].
Shukla et al. proposed an adaptive teaching learning-based
optimization (ATLBO) that employs a chaotic initialization
strategy as well as an adaptive weighting approach, which
demonstrates superior performance over TLBO in continuous
function optimization with gene selection problem [34]. Li
et al. improved JAYA for the flexible job shop scheduling
problem with transportation and setup times [35]. Yang et al.
proposed a flower pollination algorithm (FPA) by simulating
the pollination of flowering plants [36]. Chen et al. studied the
performance of FPA and proposed a cloud mutation-based FPA
version (CMFPA) [37]. In addition, two other improved were
applied to chaotic system identification and UAV path planning
[38] [39]. This kind of algorithms are currently studied to
improve the precision and stability of the solution for solving
practical application problems.

B. Contributions and Organization

A UAV equipped with a MEC server is promising to provide
services to users in the target area in environments where wire-
less communication infrastructures are not available or limited.
In this paper, we propose a hybrid nature-inspired algorithm
with the goal of optimizing the UAV deployment location,
with computational resource allocation and user offloading
decisions to minimize the overall energy consumption.

The main contributions of this work are summarized as
follows:

1) We propose a hybrid nature-inspired algorithm as well
as its discrete version. In contrast to traditional algorithms
such as PSO, this algorithm combines multiple strategies to
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avoid premature convergence, such as employing a solution-
based probability to control different update strategies for the
population. In addition, individuals are selected for mutation
operations based on probabilities. Finally, we detect the di-
versity of the population and construct new populations for
searching again in the objective space when diversity is lost.

2) The convergence of HNIO is theoretically analyzed by
constructing a Markov model. We define HNIO’s population
state space and the state space of individuals. First, we verify
whether the population state sequence generated by HNIO is
a homogeneous Markov chain, and then verify whether the
population’s state set can be transferred to the population’s
optimal set as iterations proceed.

3) The energy minimization problem of UAV-assisted MEC
is a large-scale hybrid optimization problem. The proposed
HNIO is used for the optimization of UAV location and
computational resource allocation, and its discrete version
is used to optimize user offloading decisions. Analyzed by
experimental results and non-parametric tests, the optimization
performance of HNIO is better than the other six state-of-the-
art algorithms in nine scenarios.

The remainder of this paper is organized as follows: Section
II presents the problem formulation. In Section III, we study
the proposed algorithm and analyze the convergence. Exper-
imental results are given in Section IV. Section V concludes
this article.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the UAV-assisted MEC system
model for UEs and the minimizing energy consumption for the
system. Fig.1 presents a brief diagram to explain the system,
where UE1, UE2 and UE4 offload the tasks to the UAV
equipped with the MEC server, while UE3 and UE5 perform
local computation without offloading the task.The solid and
dashed lines in the diagram indicate the upload and download
links respectively when the user computes tasks that need to
be offloaded.

Considering a total of N UEs in a region, the set of UEs
is denoted as N = {1, 2, · · ·, N}. Although some of these
UEs can perform smaller computational tasks independently,
the UAV platform must be involved if more computational
tasks arise simultaneously. Therefore, the UAV assisted MEC
system model, can be specifically divided into the local com-
putational model and UAV computational model. The UAV
computational model should include the energy consumption
on the hovering of the UAV. We summarize the key symbols
of the system model in Table I.

A. Local computational model
The local computational model is that the UEs use their

own allocated computational resources to complete the com-
putational task, and the time consumed is calculated as follows
[2], [3]:

T l
n = Cn(fn)

−1
,∀n ∈ N (1)

where Cn represents the total number of CPU cycles to
complete the n-th UE task and fn denotes the computing
resources of UE n.

UE 1
UE 2

UE 3

UE 4
UE 5 

z

y

x

Fig. 1. UAV-assisted MEC system. The diagram contains five UEs, where
UE1, UE2 and UE4 need to offload computing tasks to the UAV for process-
ing, and UE3 and UE5 perform local computation. The solid and dashed lines
indicate the communication channels for uploading and downloading.

TABLE I
THE SYMBOLS OF SYSTEM MODEL

Symbols Definitions

N The number of all UEs
N Set of N UEs
B System Bandwidth (Hz)
Dn The size of input data of UE n
Cn The number of CPU cycles required for computing UE n
η1, η2 The effective switched capacitance of different chip architecture
fn Computing resources allocated to UE n
pn The transfer power of UE n
h0 The channel power gain at the reference distance
β The noise spectral density

fmax The maximum allowable computing resources of UEs
h0 Channel power gain at the reference distance
Ph UAV hovering power
Th UAV hovering time
T l
n Time consumption for UE n on local computing

El
n Energy consumption for UE n on local computing

Ln The distance from UE n to UAV
Rn The uplink data rate of UE n
Tu
n Time consumption for UE n on UAV
Eu

n Energy consumption for UE n on UAV
Eh The energy consumption of UAV hovering

Consequently, the energy consumption of the local model
processing task is calculated as follows

El
n = η1Cn(fn)

2
,∀n ∈ N (2)

where η1 denotes the effective conversion capacity that de-
pends on the chip architecture [2].

B. UAV computational Model

The UAV provides computing services to UEs within the
coverage area that need to take into account the location of
the UAV deployment.

The distance from UE n to the UAV is Ln. {xn, yn, zn}
is the location of n-th UE and {xu, yu, zu} is the location of
UAV.

Ln =

√
(xn − xu)

2
+ (yn − yu)

2
+ (zn − zu)

2
,∀n ∈ N (3)

For UE n , the uplink data rate Rn is calculated as (4) [3].

Rn = Blog2(1 +
pn · h0

B · β · L2
n)

(4)
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where B is system bandwidth, pn is transfer power from the
UEs offload task to the UAV, β is the noise spectral density,
h0 is the channel power gain at the reference distance.

The time spent on processing UEs under the UAV compu-
tational model is the sum of the task computation time and
transmission time, which is denoted as Tu

n and is calculated
as follows:

Tu
n =Cn(fn)

−1
+Dn(Rn)

−1 (5)

Therefore, the energy consumption of UAV to handle UEs
tasks is expressed as:

Eu
n = η2Cn(fn)

2
+ pnDn(Rn)

−1 (6)

where η2 is effective switched capacitance depending on the
chip architecture, pn is the transfer power of UE n.

The energy consumption of the UAV while hovering is
denoted as Eh , which is calculated as follows:

Eh = Ph · Th (7)

where Ph denotes the UAV hovering power, Th is the hovering
time.

C. Description of the constraints

Each UE can only be performed in one mode, so we set
the decision variable k = { 0, 1 } . When an,k = 1, k =
1 denotes that the UE n offloads the computing task to be
processed on the UAV. k = 0 indicates that the UE n processes
the task using the local computational model [17].

an,k =

{
1, UEs task is processed
0, otherwise (8)

We require all UEs to be processed in the objective area,
which ensures that every task is counted.∑N

n=0
an,k = N, ∀n ∈ N , k ∈ {0,1} (9)

The computational consumption of the UEs is finite, so
excessive tasks computation must be handled on offload to
the UAV, i.e., each UEs has to meet the following constraints:∑N

n=1
an,kfn ≤ fmax,∀k = 0 (10)

Regardless of whether the task is handled using a local
computational model and or a UAV computational model, the
completion time must be within the hover time of the UAV.
That is, the constraints to be satisfied are as follows:

T l
n ≤ Th, Tu

n ≤ Th,∀n ∈ N (11)

Thus, the overall energy consumption of the UAV-assisted
MEC as an objective function for the fixed hover time of the
UAV is as follows:

F = min (
∑N

n=1
(an,k=0(El

n) + an,k=1(Eu
n))+Eh)

, s.t.(8),(9),(10),(11)
(12)

III. PROPOSED ALGORITHM

A. Motivation

The energy minimization problem of the UAV-assisted MEC
system is a large-scale non-convex optimization problem in-
volving continuous space and discrete space. The application
of nature-inspired algorithms to tackle this problem does not
require knowledge of the specific gradient information of its
objective function. It can be solved directly by the designed
objective function. However, the nature-inspired algorithm
suffers from the premature convergence problem, which affects
the precision of the final solution of the algorithm. Litera-
ture [25] points out that traditional nature-inspired algorithms
often give a satisfactory sub-optimal solution in engineering
applications, but how to design methods to enhance the
global optimization capability of the algorithm is crucial in
engineering optimization. In order to improve the quality of the
solution for solving the objective problem, we need to propose
an algorithm with stronger optimization capability applicable
to search in both continuous and discrete spaces.

Nature-inspired algorithms can be divided into two cate-
gories. In algorithms with evolution as the main idea, pop-
ulation individuals update new solutions by crossover and
mutation. In contrast, swarm intelligence algorithms tend to
guide the population evolution using the best individuals of the
current population. These types of algorithms all have different
mathematical models designed for population updating and
their main problem is premature convergence with iterations.
The FPA proposed in the [36] combines the ideas of two types
of algorithms to guide the population and is controlled by a
stochastic parameter with two different update strategies. One
of the update strategies is to converge in the population toward
the current optimal individual, and the other is to update
all individuals of the population by a difference vector. The
parameter controlling the switch between these two strategies
is dependent on human empirical, which severely affects the
performance of the algorithm [38].

An affective population diversity evaluation helps to im-
prove the search efficiency and can help to determine whether
the algorithm is premature convergence the iterative process.
The solutions of individuals in the population are similar be-
cause they are all obtained after evaluating the same objective
function. We consider the application of clustering algorithms
to monitor changes in population diversity. The change in
the population’s clustering center as well as the global best
solution is determined to detect whether the population falls
into a local optimum. The population can be regenerated when
they lose diversity but do not reach the maximum iteration
number.

Therefore, we propose a hybrid nature-inspired algorithm
that is designed to control different update strategies of the
population based on the probability of individual solutions. To
further overcome premature convergence, a mutation operation
is employed as a mechanism to determine population diversity.

B. Algorithm design and implementation

FPA has two update strategies , where global exploration is
performed as shown in Eq.13 and the other is local exploitation
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as in Eq.14. Essentially, the global exploration is the updating
process of individuals all with the participation of the best
individuals in the population, defined as follows:

Xi = Xi + l(g∗ −Xi) (13)

where Xi denotes an individual in the population, g∗ is the
current best individual and l denotes random numbers obeying
the Lévy distribution [40].

Another update strategy is basic differential evolution equa-
tion [36], defined as follows:

Xi = Xi + r(Xj −Xk) (14)

where r is a random number between 0 and 1, Xj and Xk

are two individuals different from Xi.
We employ the solution-based probabilistic selection

method in [27] to guide the switch of the two update strategies.
The total number of individuals in the population is NP .
The probability of selecting the i-th individual is calculated
as follows:

Pfiti =
Fiti∑NP
i=1 Fiti

(15)

where Fiti denotes the fitness of the i-th individual.
For the minimization problem, the lesser the solution an

individual obtains, the better that individual is. Some of the
worse individuals should get information from the dominant
individuals in the population to update their positions. There-
fore, for the i-th individual, we execute Eq.(13) when a random
number is less than Pfiti , otherwise we execute Eq.(14). This
improves the inconvenience of setting parameters manually.

The subjective form of the loss of population diversity is
expressed by the fact that all individual positions stagnate at
the same position at some point in the iteration and do not
change. All individuals are unable to obtain further better solu-
tions. For this, we aim to evaluate population diversity using a
clustering algorithm. The clustering algorithm is used to divide
the population into three classes based on their solutions, and
the best individual in each class is defined as the class center.
Therefore, the population is considered to lose its diversity
once the solutions of the three class centers are identical during
the iterative process, at which a new population is generated
using the generalized opposition-based learning. Generalized
opposition-based learning implementation is as follows:

X̃d = r · (Ubd + Lbd)−Xd (16)

where X̃d is new individual that is generated by Xd in d-
dimensions, r is a random number between 0 and 1, Ubd
and Lbd denote the upper and lower bounds in dimension d
respectively.

In addition to detecting the diversity of populations, we
employed a mutation operation on individuals based on the
probability of the solution. The strategy of randomly assigning
positions to individuals in the search space has been used in the
literature [39] and [41], but that strategy was unfocused. Gaus-
sian mutation [42] is an effective way to improve the quality
of individuals. We perform gaussian mutation on individuals
with random probability less than Pfiti to reassign position

on the basis of the current population optimal position. For
individual Xi, the mutation method is calculated as follows:

X = g∗ (1+normrnd(0, 1)) (17)

where g∗ denotes the best individual, normrnd(0, 1) indicates
the generation of random numbers with a mean of 0 and a
variance of 1.

Therefore, we present the pseudo-code of HNIO as Al-
gorithm 1: Algorithm HNIO. The input parameters are the
population size: NP and the maximum iteration number:
MaxIter. Line 1 is the population initialization. Line 2 is the
evaluation of the solution for each individual in the population.
Lines 4 to 16 are the process of population update, where lines
13 to 15 are the process of individual mutation. Line 17 is the
clustering of the population according to the solution. Line 18
is the recording of the change in the best solution. Lines 19
to 21 are the generation of new populations.

Algorithm 1 : Algorithm HNIO
Input : Population size (NP ), Maximum iteration number

(MaxIter).
1: Population initialization.
2: while (Iter < MaxIter) do
3: Evaluating the solution of the population according to

the objective function.
4: for i=1:NP do
5: Calculating the selection probability Pfiti .
6: Record the solution for each individual.
7: Preserving the best optimal position g∗.
8: if rand < Pfiti then
9: Xi = Xi + r(Xj −Xk)

10: else
11: Xi = Xi + L(g∗ −Xi)
12: end if
13: if rand < Pfiti then
14: Xi = g∗ (1+normrnd(0, 1))
15: end if
16: end for
17: The population is clustered into three classes according

to the individual solutions, and the solutions at the
center of these three classes were recorded.

18: Recording the number of changes in the best solution
starting from the second function evaluation.

19: if The clustering centers are the same and the number
of times the best solution has not changed consecutively
is half of the number of times the maximum function
is evaluated then

20: Generating new populations by Eq.(16).
21: end if
22: end while
Output : g∗

C. Time complexity analysis

Time complexity is a measure of the efficiency of an
algorithm and evaluates how efficiently the algorithm performs
in the worst case. We analyze the time complexity of HNIO in
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this subsection. In HNIO, the time complexity of population
initialization is O (NP ). The frequency of execution of each
step is 1 in the population updating process of the HNIO.
Therefore, the time complexity from the 4-th line to the
16-th line is O (NP ). The time complexity of clustering is
O (NP ) in line 17 as well as regenerating NP individuals
in line 20. Therefore, the time complexity of line 4 to 21
is expressed as O (NP ). We record the time complexity of
the function evaluation as O (F). The time complexity of
the evaluation of NP individuals in line 3 is O (F ·NP ).
Therefore, the time complexity of HNIO within the while loop
is O (NP )+O (F ·NP ·MaxIter)=O (F ·NP ·MaxIter).
We can observe that the time spent on HNIO is related to the
parameters NP and MaxIter in addition to the objective
function.

D. Convergence analysis

Definition 1: The state of individuals in a population and
the state space.

The state of all individuals in HNIO is constituted by the
position of the individual in the objective space. Marked as
x, x /∈ A, A denotes the feasible space. The set of all
possible states of an individual constitutes the state space of
that individual, marked as X={x|x ∈ A}

Definition 2: The state of the population and the state space
of the population.

The state of the population is composed of the states of all
the individuals and is labeled s = (x1, x2, · · ·, xn). xi indicates
the state of the i-th individual in HNIO. All possible states of
the population constitute the state space of the population,
which is labeled S={s = (x1, x2, · · ·xn)|xi ∈ X}.

Definition 3: State transfer for an individual.
For ∀xi ∈ X , ∀xj ∈ X . An individual is transferred from

xi to xj in one step, labeled as Txxi = xj .
Theorem 1: The transfer probability P (Txx1 = x2) of an

individual state from x1 to x2 in one-step is determined by
Pa, Pb, Pc in HNIO.

Proof. Population can be considered as a set of point sets
in a hyperspace, and population evolution can be considered
as a transformation between point sets in that hyperspace.
HNIO employs the Eq.(13), Eq.(14) and (Eq.17) to update
the population, and their transfer probabilities are obtained as
Eq.(18) to Eq.(20), respectively.

Pa(Txx1=x2) = 1/|g∗ − x1| · pd(x1 → x2),

x2 ∈ [x1, x1 + g∗ − x1]
(18)

Pb(Txx1=x2) = 1/(|x3 − x4|) · pd(x1 → x2),

x2 ∈ [x1, (x3 − x4)]
(19)

Pc(Txx1 = x2) = 1/(g∗(1+normrnd(0, 1))) ,

x2 ∈ [Lb, Ub]
(20)

pd (x1 → x2) =

{
1 F itness (x1) < F itness (x2)

0 F itness (x1) ≥ F itness (x2)
(21)

Eq.(18), Eq.(19) and Eq.(20) are the probability of trans-
ferring the individual state from x1 to x2 when updating the
population using Eq.(13), Eq.(14) and Eq.(17), respectively.
HNIO adopts a greedy retention strategy, as shown in Eq.(21),
where Pd affects the calculation of transfer probability.

Definition 4: State transfer for a population.
The probability of a population state i to j is the prob-

ability of every individual moving from state i to j. For
∀si = (xi1, xi2, · · ·xin) ∈ S and ∀sj = (xj1, xj2, · · ·xjn) ∈ S,
the probability of a one-step population state transfer from si
to sj is shown in Eq.(22).

P (Tssi=sj) = P (Txxi1=xj1)P (Txxi2=xj2)

· · ·P (Txxin=xjn)
(22)

Theorem2: The population state sequence {s(t) : t >= 0}
for the HNIO is the homogeneous Markov chain.

Proof. According to Definition 4, ∀s(t − 1), s(t) ∈ S, the
P (Ts(s(t− 1)) = s(t)) depends on P (Txx(t− 1) = x(t)) that
is the probability of state transfer from t − 1 to t for each
individual. Form Theorem 1, the probability of an individual
state transfer in HNIO is jointly determined by Pa, Pb, Pc.
The state of all individuals at the t moment is determined by
their t−1 moment state. The state of all individuals determines
the state of the population. Therefore, the population state of
HNIO is only related to the state of the t − 1 moment. So
the population’s state sequence {s(t) : t >= 0} has Markov
property.

Furthermore, HNIO retains the solution using a greedy
strategy. If the solution does not improve at moment t then
the individual state is potentially identical at moments t − 1
and t−2. Therefore P (Txx(t−1) = x(t)) is not correlated with
moment t−1, but only with the state at moment t−1. So the
population state sequence {s(t) : t >= 0} is a homogeneous
Markov chain.

Solis et al. give the convergence criterion for stochastic
algorithms, which is that the algorithm needs to satisfy the
following two conditions [43]. 〈Ω, f〉 is an objective problem,
where Ω denotes the search space and f is the objective
function. For an algorithm A, xt is the solution at the t
iteration, the solution of next iteration is xt+1 = A(xt, ζ)
where ζ denotes the candidate solutions searched by S before
the t-th iteration.

Condition1: If f(A(x, ζ)) ≤ f(x) && ζ ∈ Ω, f(A(x, ζ)) ≤
f(ζ).

Condition2: If ∀B ∈ Ω,v(B) > 0, then
∞∏
t=0

(1− µt(B)) = 0.

v(B) is the Lebesguece measure on set B. µt(B) represents
the probability measure of the solution obtained in the t-th
generation on B.

Theorem 3: f is measurable. Algorithm A satisfies Con-
dition 1 and 2. {xt}∞t=0 represents the sequence of solutions
produced by iterations from t to ∞.

If lim
t→∞

P (xt ∈ Rε)=1, then A is convergence. Rε is the
set of global optimal position [43].

Definition 5: Population optimal state set M . Assuming
that g∗ is the optimal position. Therefore, the optimal set of
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states for the population is M={s = (x1, x2 · ··, xn)|f(xk) =
f(g∗), k ∈ 1 · · · n, s ∈ S}.

Theorem 4: State sequence of the population is {s(t) :
t >= 0}. The optimal state set M of the population is a
closed set on the state space S.

Proof. Defining L is step. ∀si ∈M , ∀sj /∈M , the transition
probability from state si via L+1 step to state sj is Eq.(23).

PL+1
si,sj =

∑
sr1

∑
sr2

· · ·
∑
sr

P (Ts(si) = sr1)P (Ts(sr1) = sr2)

· · ·P (Ts(sl) = sj)

(23)

For P (Ts(src−1) = src), ∃src−1 ∈Msrc /∈M , c ∈ 1, 2···L.
We can obtain Eq.24.

P (Ts(src−1) = src)=P (Txxrc−11=xrc1)P (Txxrc−12=xrc2)

· · ·P (Txxrc−1n=xrcn)
(24)

src−1 ∈ M , src /∈ M , f(xrc−1,k) < f(xrc,k), k ∈ 1, 2, · · ·n,
so f(xrc−1) = f(g∗) = inf(f(τ)), τ ∈ Ω.
According to P (Tx(xrc−1,k) = xrc,k)=0, PL+1

si,sj = 0 and the
Theorem 1, it can be shown that M is a closed set on S.

Theorem 5: There is no non-empty closed set O in the state
space S of the population satisfying O

⋂
M = ∅

Proof. Suppose there is a non-empty closed set O ∈ S,
O
⋂
M = ∅, then si=(xi1, xi2 · · · xin)is a state on the O.

sj=(g∗, g* · · · g∗)is a state on M for the entire population.
Hence from Eq.23, Eq.23 and Teheorem1 we know that:
Because of f(xrc−1,k) < f(xrc,k), k ∈ 1, 2, · · ·n, so we have
P (Tx(xrc−1k) = xrck) > 0 and PL+1

si,sj > 0. This demonstrates
that a state on O can be transferred to a state of M by the
L+1 step. Therefore, O is not a closed set under S, which is
an incorrect assumption. That is, there is no non-empty closed
set O satisfying O

⋂
M = ∅ in S.

Theorem 6: The literature [41] provides a proof that if there
exists non-empty closed set Q in a Markov chain and no other
non-empty closed set W that makes Q

⋂
W = ∅. Then it

follows that i ∈ Q , lim
t→∞

P (xt = i) = πi, i /∈ Q, lim
t→∞

P (xn =

i) = 0.
Theorem 7: HNIO is a global convergence algorithm
Proof. HNIO is run with a greedy strategy for the best

solution retention method, regardless of which update equation
is utilized. Each individual in the population, as well as the
optimal position of the population, is preserved. Condition 1
is satisfied.

According to Theorem 4, Theorem 5 and Theorem 6, we can
conclude that the population’s state sequence {s(t) : t >= 0}
will necessarily enter the population’s optimal set M when
the population iteration of HNIO tends to infinity.

Therefore, the probability measure that HNIO cannot obtain
an optimal solution is 0 when the iteration satisfies t → ∞.
This satisfies Condition 2. Consequently, it follows from
Theorem 3 that HNIO is a global convergence algorithm.

E. Discrete HNIO based on probabilistic coding

The energy consumption optimization problem for UAV-
assisted MEC is a joint continuous and discrete optimization
problem. HNIO can be applied to UAV location selection

and computational resource allocation, but cannot directly deal
with offloading decision optimization. In this subsection, we
give the version of the framework based on HNIO to handle
the discrete problem. Since all individuals have only 0 or 1
decision variables, the two different update strategies of HNIO
both guide individual updates according to the difference of
different individuals in the population. To effectively fit the
0-1 variable problem, we use the designed elite probability
selection scheme to guide individual mutations. The elite
probability selection scheme is to calculate the percentage
of 0-1 variables for the top ranked individuals among them
after sorting the NP individuals in the increasing order of the
solution [34]. As shown in Fig.2, we select three dominant
individuals to determine the selection probability. Since our
goal is energy consumption minimization, X1 is necessarily
superior to XNP . Pf is defined as the selection probability,
and the decision variable for experimental individual Xi is
easily set to 1 for larger values of Pf .

The pseudo-code for the 0-1 discrete problem of HNIO is
shown in Algorithm 2: Discrete HNIO. The discrete HNIO
differs from HNIO in the adjustment of the main update
method. Line 9-Line 15 are the main update strategies of the
discrete version of the algorithm. For individual Xi, we judge
whether different individuals Xj and g∗ are consistent with Xi

variables respectively, and change the variables if they are not.
Line 17 to 21 are mutation operation for individuals according
to the probability Pf .

Fig. 2. Elite probability selection. The figure briefly describes the calculation
of the probability Pf . X1 represents the individual with the best solution and
XNP is the individual with the worst solution. According to the dimensional
accumulation of the five individuals in the figure, the individuals with a
decision variable of 1 are divided by the total number of individuals to obtain
Pf .

IV. EXPERIMENTAL STUDY

A. Experimental settings

In this section, we perform simulation experiments. The
software for the experiment is Matlab R2020a, and the hard-
ware is a PC with CPU: i5-11300H and Memory: 16GB. The
coverage area of UEs is within the range of 1000m*1000m.
Ten cases with different numbers of UEs are tested. The
number of UEs is from 100 to 1000. The parameters of the
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Algorithm 2 : Discrete HNIO
Input : Population size (NP ), Maximum iteration number

(MaxIter).
1: Population initialization.
2: while (Iter < MaxIter) do
3: Evaluating the solution of the population according to

the objective function.
4: for i=1:NP do
5: Calculating the selection probability Pfiti .
6: Record the solution for each individual.
7: Preserving the best optimal position g∗.
8: if rand < Pfiti then
9: if |Xi −Xj |=1 then

10: Xi = 1−Xi

11: end if
12: else
13: if |g* −Xj |=1 then
14: Xi = 1−Xi

15: end if
16: end if
17: if rand < Pf then
18: Xi = 1
19: else
20: Xi=0
21: end if
22: end for
23: The population is clustered into three classes according

to the individual solutions, and the solutions at the
center of these three classes were recorded.

24: Recording the number of changes in the best solution
starting from the second function evaluation.

25: if The clustering centers are the same and the number
of times the best solution has not changed consecutively
is half of the number of times the maximum function
is evaluated then

26: Generating new populations by Eq.(16).
27: end if
28: end while
Output : g∗

UAV-assisted MEC system are set as follows: B=10MHz, β=-
174dBm/Hz, pn=0.5W, η1, η2=10−27, h0=10−4, ph = 10W ,
fmax=2× 109 Cycles/s.

The comparison algorithms we used to compare the perfor-
mance of HNIO are: SGHS [30], APHS [31], CMFPA [37],
APSO [15], NBABC [28], ATLBO [34]. The descriptions of
the relevant parameter settings for the comparison algorithms
are shown in Table II. In order to compare the algorithm
optimization results fairly, we set the same parameters for
all algorithms as: the maximum iterations number MaxIter
= 500, the population size NP=40. Since the population
initialization of all algorithms has a random property, which
will have a certain impact on the final results. Therefore, we
have run each algorithm 31 times independently in order to
avoid this randomness of one experiment. The experimental
results are tested and ranked by Friedman test [44]. In addition,

the optimization results of all algorithms are performed using
Wilcoxon signed-rank tests [45] and comparing their average
error that is calculated as the difference between the average
solution and the smallest solution of these algorithms.

TABLE II
PARAMETER SETTING OF THE COMPARISON ALGORITHM

Algorithms Parameter Description

SGHS
Transfer probability is 0.2. The scaling of the ambiguity
and uncertainty measures are 2 and 0.1, respectively.

APHS

Harmony memory considering rate is 0.9. Pitch adjusting
rate is 0.3.
The sample size is 5 for adjusting the probability
distribution. The probabilistic increment is 0.2.

CMFPA
Transfer probability is 0.2. The scaling of the ambiguity
and uncertainty measures are 2 and 0.1, respectively.

APSO

The acceleration constants of APSO are1.49.
The parameters in the nonlinear regression function are
set as follows: 2.1. The parameter used to improve the
global search capability of the particles is set to 2.

NBABC Trials limit is 50. Flips limit is 0.1.

ATLBO Bifurcation coefficient is 4. The maximum weight is 0.9
and the minimum weight is 0.4.

B. Parameter calibration for HNIO

In performing the energy optimization of UAV-assisted
MEC systems, the proposed HNIO is affected by the maximum
iterations number and the population size, both of which need
to be set manually. The upper limit of the maximum iterations
number selected generally depends on the convergence of the
optimal solution obtained by the algorithm, which is set to
500 in accordance with experiments.

Since the population size NP affects the time complexity of
the algorithm, we adjust its value by experimental simulation.
Fig.3 gives the box plot of the optimization results for different
NP , which are tested in a scenario where the population size
of HNIO ranges from 10-100 at UEs of 1000. We can observe
that the distribution of the final optimization results tends to
be smooth after NP=40 under the condition of increasing NP
in sequence. Considering that the increase of NP affects the
running time of the algorithm, NP is set to 40 in this paper.

C. Impact of different strategies on HNIO

The HNIO we designed for optimizing the energy con-
sumption problem of UAV-assisted MEC has two strategies
to overcome the premature convergence of the algorithm. This
subsection tests the performance impact of the different strate-
gies on the algorithm. We name the algorithm when it does
not have population diversity detection and mutation strategies
as HNIO-s0, the algorithm with only mutation strategies as
HNIO-s1, and the algorithm with only population diversity
detection as HNIO-s2; the complete algorithm with both
strategies as HNIO. The box plots of the experimental results
of the algorithms under different strategies in the scenario with
the number of UEs of 1000 are given in Fig. 4. We can obtain
that the significance difference between the results of HNIO-
s2 and HNIO-s0 is not significant, and there is a slight per-
formance improvement, which indicates that generating new
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Fig. 3. Box plot for different number of NP at UEs of 1000. The figure
shows the distribution of optimization results under multiple independent runs
of HNIO for population sizes from 10-100.

populations using single population diversity detection has no
significant impact on the algorithm performance. However,
HNIO-s1 has a significant difference compared to HNIO-
s0, indicating that the mutation strategy can substantially
improve the performance of the algorithm. HNIO is increased
population diversity detection compared to HNIO-s1, which
further improves the search performance of the algorithm.
Therefore, the mutation strategy can effectively increase the
population diversity to improve the optimization precision of
the algorithm, and on the basis of having the mutation strategy
in addition to the population diversity detection can further
increase the optimization capability of the algorithm.
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Fig. 4. Box plot of different strategies for HNIO at UEs of 1000. In the
figure, HNIO, HNIO-s0, HNIO-s1 and HNIO-s2, indicate that the algorithm
has mutation and population diversity detection strategies, does not have
both strategies, has only mutation strategy, and has only population diversity
detection strategy, respectively.

D. Results and Discussion

We perform experiments to verify the energy minimization
results of the UAV-assisted MEC system with HNIO and
the other six comparison algorithms for the number of UEs
ranging from 100 to 1000. Due to the large number of all
experimental images, we only show here the images under the
number of UEs N of 100, 500, and 1000, where Fig.5 shows

the violin plot of the optimization results of HNIO and the
comparison algorithms after 31 independent runs, and Fig.6
gives the convergence curves of the seven algorithms under
the maximum iterations number. To show the figure more
clearly, we perform all Log10 transformations on all data in
the figure. We can observe from Fig.5 that the distribution
of optimization results of HNIO in the scenario of N=100 is
obviously the most concentrated with APHS, better than APSO
and ATLBO, and slightly more concentrated than CMFPA,
SGHS and NBABC. In the N=500 scenario, the distribution
of optimization results of HNIO does not overlap with the
other comparison algorithms, indicating that the optimization
results obtained in each of the multiple independent runs
are better than those of the other comparison algorithms.
HNIO still maintains a significant advantage in the scenario
with N=1000, and its stable optimization performance can be
derived from the data density. As the number of UEs increases
and the optimization dimension of the problem becomes larger,
the HNIO displays better advantages. The best convergence
curves of these algorithms are shown in Fig.6, from which
we can observe that HNIO has the fastest convergence speed
in the N=100 scenario, but the final convergence accuracy is
not obvious in comparison with SGHS, NBABC, CMFPA and
APHS. In the other two scenarios, we can observe from 6(b)
and 6(c) that HNIO has the fastest convergence speed spending
fewer iterations to get better solutions compared to the other
six comparison algorithms.

TABLE III
RANKING OF HNIO WITH COMPARISON ALGORITHMS IN DIFFERENT UES

EXPERIMENTS BY FRIEDMAN TEST.

N CMFPA SGHS APHS APSO NBABC ATLBO HNIO

100 2.94 4.10 1.90 6.90 3.74 6.10 2.32
200 3.76 2.02 4.16 6.97 3.69 6.03 1.37
300 3.81 2.61 4.81 6.97 2.77 6.03 1.00
400 3.87 2.10 4.84 7.00 3.19 6.00 1.00
500 3.27 3.26 4.97 6.97 2.50 6.03 1.00
600 3.48 3.52 4.87 7.00 2.13 6.00 1.00
700 3.16 3.74 4.84 6.97 2.26 6.03 1.00
800 2.90 4.03 4.77 6.97 2.29 6.03 1.00
900 2.97 4.19 4.68 7.00 2.16 6.00 1.00

1000 2.87 4.42 4.58 7.00 2.16 5.97 1.00

To further validate the performance of HNIO, we employ
Friedman test to rank-order the optimization results of these
algorithms in different scenarios of the number of UEs.
Table III shows the rank-mean ranking of HNIO with other
comparison algorithms in ten scenarios, and we bold the rank-
mean of the best algorithm. We can obtain that APHS is
the best among the seven algorithms in scenario N=100,
while HNIO is with the best performance in the other nine
scenarios. Wilcoxon signed-rank tests results of HNIO and the
comparison algorithms are given in Table IV, as well as the
mean error which is the difference between the optimization
results of each algorithm and the algorithm obtaining the
best optimization result. We can notice that APHS is the
best among the seven algorithms at N=100. However, as the
number of UEs increases, APHS shows progressively worse
optimization results. In scenarios with larger UEs, APHS falls
into premature convergence unable to update the excellent
solution further. HNIO overcomes this problem and achieves
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Fig. 5. Comparison of the violin plots of the experimental results of HNIO with the comparison algorithms at the number of UEs N=100, 500 and 1000.
The plots show the results of multiple independent running of these algorithms, from which the overall distribution of optimization results of these algorithms
can be observed visually.
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Fig. 6. The best convergence curves of HNIO are compared with the comparison algorithms at the number of UES N=100, 500 and 1000. The figure shows
the convergence status of these algorithms, from which the convergence precision and speed can be observed.

the best optimization results for the other nine UEs scenar-
ios except N=100. Therefore, summarizing the experimental
results, we can conclude that HNIO has a fast convergence
speed as well as a strong optimization capability, and can still
demonstrate a superior optimization effect as the size of UEs
increases.

V. CONCLUSIONS

In this paper, a hybrid nature-inspired algorithm is pro-
posed with the goal of minimizing the energy consumption
of a UAV-assisted MEC system. The energy consumption
minimization problem of UAV-assisted MEC system concerns
the joint optimization of computational resource allocation,
UAV location and offloading decision, and the variables in-
volve continuous space and discrete space. Our proposed
HNIO incorporates multiple advantageous strategies, e.g., the
population individuals are updated with different strategies.
The individual updating process is adjusted by solutions-
based probability and each individual will be operated with
random probability of mutation. In addition, the clustering
algorithm is used to determine whether the population falls in
premature convergence using the cluster center as a reference
during the iterative process. If the population stagnates then
a new population is generated with the local best position of

the current population using generalized opposition learning.
By constructing a Markov model, we establish that HNIO
converges towards the optimal position during continuous
iterations.

The experimental study tests the optimization capability
of HNIO with ten UEs of different sizes and compares it
with six other state-of-the-art algorithms. The experimental
results illustrate that HNIO is weaker than APHS in terms
of optimization precision when the number of UEs is 100,
but as the size of UEs increases, HNIO has a stable and
excellent optimization effect and can effectively reduce the
overall energy consumption compared to the six compared
algorithms.

Our future research work focuses on the following direc-
tions. The optimization capability of HNIO will be further
improved. HNIO will be applied to the energy consumption
problem of a multi-UAV cooperative terrestrial base station-
assisted MEC. In addition, the current studies are limited to
a single objective, and our subsequent work will consider the
design of a multi-objective UAV-assisted MEC system from
the perspectives of user data rate, system energy consumption,
and latency. HNIO will be extended as a multi-objective
optimization algorithm to solve the problem.
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TABLE IV
THE ERROR OF HNIO WITH CONTENDER ALGORITHM AND THE WILCOXON SIGNED-RANK TESTS RESULTS ON DIFFERENT NUMBER OF UES AT THE

SIGNIFICANCE LEVEL OF 0.5.

N CMFPA SGHS APHS APSO NBABC ATLBO HNIO
Mean(Wilcoxon’s test) Mean(Wilcoxon’s test) Mean(Wilcoxon’s test) Mean(Wilcoxon’s test) Mean(Wilcoxon’s test) Mean(Wilcoxon’s test) Mean

100 6.17E-03(+) 1.18E-02(+) 0.00E+00(–) 5.46E-01(+) 8.88E-03(+) 2.79E-01(+) 8.22E-04
200 6.35E-02(+) 1.63E-02(+) 6.96E-02(+) 1.47E+00(+) 6.66E-02(+) 8.25E-01(+) 0.00E+00
300 1.79E-01(+) 1.05E-01(+) 2.21E-01(+) 2.12E+00(+) 1.22E-01(+) 1.19E+00(+) 0.00E+00
400 3.37E-01(+) 1.32E-01(+) 4.45E-01(+) 3.02E+00(+) 2.44E-01(+) 1.53E+00(+) 0.00E+00
500 4.96E-01(+) 4.95E-01(+) 8.06E-01(+) 4.05E+00(+) 3.52E-01(+) 2.01E+00(+) 0.00E+00
600 8.04E-01(+) 8.21E-01(+) 1.15E+00(+) 4.84E+00(+) 5.14E-01(+) 2.49E+00(+) 0.00E+00
700 9.13E-01(+) 1.21E+00(+) 1.52E+00(+) 5.60E+00(+) 7.30E-01(+) 3.12E+00(+) 0.00E+00
800 1.23E+00(+) 1.77E+00(+) 2.03E+00(+) 6.47E+00(+) 1.01E+00(+) 3.45E+00(+) 0.00E+00
900 1.68E+00(+) 2.33E+00(+) 2.51E+00(+) 8.26E+00(+) 1.23E+00(+) 3.88E+00(+) 0.00E+00
1000 1.91E+00(+) 3.14E+00(+) 3.16E+00(+) 9.05E+00(+) 1.55E+00(+) 4.53E+00(+) 0.00E+00
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