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10 Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
* Correspondence: seedris@kau.edu.sa

Abstract: The environmental pollution of antibiotic resistance genes (ARGs) and antibiotic-resistant
bacteria (ARB) is a growing public health concern. In the current study, de novo metagenomic
assembly and bioinformatics analysis approaches were utilized to estimate the quantitative risk index
of the environmental resistomes in wastewater influent (INF) and effluent (EFF) of a conventional
wastewater treatment plant (WWTP) in Egypt. Furthermore, the risk indices of the local INF and
EFF resistomes were compared to those calculated for the selected publicly available wastewater
datasets from eight countries worldwide. Additionally, a classification framework prioritizing the
public health hazard level of the discharged non-redundant highly mobilized ARGs was introduced.
This integrative outline considered the estimated mobility potential percentage, host pathogenicity,
and annotation category (perfect, strict, and loose) of the detected ARGs on their assembled contigs.
Moreover, high-quality metagenome-assembled genomes (MAGs) were extracted and the putative
genome bins with acquired ARGs were determined. The comprehensive resistome risk scores of
the local WWTP showed that INF resistome had a slightly higher risk index (47.87) compared to
the average score of the other examined counterparts (41.06). However, the estimated risk value
of EFF resistome (26.80) was ranked within the global average (26.06) of the selected international
WWTPs. Furthermore, the determination of the samples’ risk ranking showed that most of the
effluent resistomes were clustered in a lower risk rank compared to the other selected samples for
raw sewage, influent, and hospital wastewater, indicating the impact of the wastewater treatment
process on reducing the ARG mobilization potential in downstream environments. The evaluation of
the ARGs’ genetic context in their ARG-carrying contigs (ACCs) indicated that a total of 161/648
(25%) non-redundant ARGs were co-located with sequences of mobile genetic determinants on the
same ACC in both the INF and EFF assemblies. These ARGs comprised the pan mobile resistome of
the studied WWTP. Of them, 111 ARGs with a mobility potential percent (M%) less than 95% were
grouped at the least risk level 5. The remaining 50 highly mobilized ARGs (M%≥ 95%) were extracted
and classified into four higher risk levels. Those of risk levels 1 and 2 (39 ARGs) represented the
current ARG dissemination threats for further monitoring in downstream environments, where they
were all carried by pathogenic hosts and annotated to the perfect and strict categories by the resistance
gene identifier software (RGI). A total of 10 highly mobilized ARGs were assigned to risk rank 3, as
they comprised the loose hits of the RGI analysis. Finally, the risk level 4 ARGs constituted genes that
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co-existed with the non-pathogenic sequence on the ACCs and were represented by one gene in the
current analysis framework. The two previous categories constituted new highly mobilized ARGs of
emergent threat to public health. On the other hand, a total of 35 and 118 MAGs were recovered from
INF and EFF assembled metagenomes, respectively, using selection cutoff thresholds of a minimum
completeness of 70% and a maximum contamination of 10%. While none of the INF MAGs carried
any acquired ARGs, six EFF genome bins (5%) were associated with ten acquired ARGs, as indicated
by the ResFinder software. These results suggest that potential horizontal gene transfer (HGT) events
have evolved among the community members of the studied EFF samples.

Keywords: metagenomic assembly; antibiotic resistance genes; mobile resistome; resistome risk ranking

1. Introduction

Antibiotic resistance is a global problem that threatens human health. The elevated
levels of acquired infections among diverse communities has attracted the attention of sci-
entific communities worldwide to to extensively monitor the development of antimicrobial
resistance (AMR) in various environmental and clinical matrices [1,2].

Wastewater treatment plants were identified as hotspots for the spread of ARGs and
ARB in the environment [3]. The microbial diversity within wastewater provides a large
pool of genes (i.e., genetic reservoir) that assists in the transmission of mobilizable ARGs
carried by mobile genetic determinants (plasmids, integrons, transposons, and integrons)
among closely related species [4,5]. However, a study by Jiang et al. (2017) [6] validated
the incidence of ARG transfer between evolutionary-distant phyla (Proteobacteria to Acti-
nobacteria). This complicates the problem of ARG dissemination in various environments.
Provided that environmental bacteria and human pathogens co-exist in close proximity in
a WWTP, without transmission barriers, a putative exchange of resistance determinants
between environmental and pathogenic bacteria through HGT might occur [7]. For exam-
ple, a study demonstrated that an ARG known as CTX-M, encoding for extended-spectrum
beta-lactamase (ESBL), putatively originated from a beta-lactamase gene of soil bacteria,
namely, Kluyvera species [8]. Moreover, McKinnon et al. (2018) [9] indicated that commensal
Escherichia coli was found to cause disease in human (i.e., urosepsis) as a consequence of
acquiring a virulence plasmid carrying multidrug resistance genes associated with disease
factors in one genomic cassette.

Several studies demonstrated that effluents of conventional WWTPs exhibited high
pathogenic content in addition to low removal of ARGs and ARB [10–12]. For instance,
a research work indicated that the two opportunistic pathogens Pseudomonas spp. and
Aeromonas hydrophila were determined in the effluent of a conventional WWTP [13]. Further-
more, a comparative metagenomics study for ARGs in wastewater effluents and surface
water in Singapore [14] concluded that many environments are impacted by clinically
relevant ARGs, conferring resistance against multidrug, tetracycline, aminoglycoside,
macrolide–lincosamide–streptogramine (MLS). Regardless of the applied treatment technol-
ogy and the geographic location of a WWTP, it has been suggested that wastewater effluents
are an important source of ARGs associated with mobile genetic elements (MGEs) such as
plasmids, transposons, or integrons in the receiving water streams [15–18]. This conclusion
was validated by multiple scientific reports showing that ARGs, ARB, and MGEs were
found in the treated wastewater and in downstream water bodies as well [19–21].

The stress-inducing acquisition of a new ARG by a bacterial host can occur by
two mechanisms, namely, mutation via single-nucleotide polymorphism (SNP) and/or
HGT [22]. HGT was considered the major mechanism for the dissemination of ARGs and
ARB in diverse environmental matrixes including WWTPs [23], for example, the mcr-1
gene, which confers resistance to the colistin antibiotic and is considered as the last resort
treatment against multidrug resistant Gram-negative bacteria. Since the discovery of the
first plasmid-mediated mcr-1 gene in China, in 2015 [24], the gene was isolated in more
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than fifty countries worldwide and it was associated with multiple different plasmids
(IncI2, IncHI2, and IncX4) and providing evidence for the role of HGT in the spread of the
gene [25]. ARGs, ARB, human pathogens, and MGEs in association with elevated levels of
nutrients, heavy metals, and antibiotic residues in one ecological niche during the wastewa-
ter treatment process may cause a selection pressure favoring the exchange of the resistance
determinants among environmental and pathogenic bacteria through HGT [26–28]. It was
demonstrated that ARGs carried by MGEs and hosted by human pathogenic bacteria have
a higher health risk due to the fact of their increased mobilization potential [29]. Several
researchers have analyzed the co-occurrence of ARGs and MGEs in association with human
pathogens in wastewater to assess the mobility potential of the ARGs released into the en-
vironment [30–32]. Although the assessment of the mobility potential of an ARG provides
an indicator of the level of its health risk, it lacks a cumulative quantitative measure for
the risk level at the large-scale ARG profile of a metagenomic dataset. A novel pipeline
for estimating a comprehensive risk index of antibiotic resistome in an environment using
metagenomic assembly was recently introduced [33]. This software tool determines the
relative abundance of the total ARG-carrying contigs (ACCs) in addition to those that
coexist with ARGs, MGEs, and pathogen-like sequences in the assembled metagenomic
dataset. Then, the data from the previous step are used to calculate one resistome risk index
for a metagenomic sample. As a result, the comparison for the values of the resistome risk
among multiple environments becomes more feasible to support surveillance plans against
the dissemination of ARGs and ARB in the environment.

The major drawback of the metagenomic analysis of short DNA sequences is the
limited information obtained with respect to the genomic context of the recovered ARGs.
Thus, the metagenomic assembly of short reads into longer contiguous sequences (contigs)
can overcome this challenge and provide more detailed annotation information related
to the genetic contexts of the detected ARGs [34]. Due to the low abundance of ARGs
compared to other functional genes in WWTP metagenomes, deep sequencing is required
to recover partial genomes and determine the co-occurrence pattern of ARGs and the
associated mobile elements as plasmids [35,36]. A recent metagenomic study exploring
the antibiotic resistome in 97 activated sludge samples over a 9 year sampling period at
a WWTP pointed out that the optimum sequencing depth required to obtain a complete
quantitative ARG profile from the whole metagenomic sequencing is 60 Gbp (giga base
pairs) [37], validating the importance of deep sequencing in the retrieval of the most
representative resistome profile of a WWTP microbiome.

In this study, metagenomic assembly and bioinformatic analysis approaches were
applied to quantitatively evaluate the human health risks of antibiotic resistomes in wastew-
ater influent (INF) and effluent (EFF) samples at a conventional WWTP in Egypt. These
datasets were previously analyzed as unassembled paired-end reads by the same authors
in a completely different prospective [38]. The current research aimed to, firstly, apply a
quantitative metric to estimate the risk index associated with INF and EFF resistomes of
the examined WWTP. Meanwhile, we wanted to assess the risk ranking of the local WWTP
resistomes compared to those derived from globally selected wastewater metagenomes
downloaded from publicly available databases. Secondly, we intended to evaluate the haz-
ard level of the INF and EFF non-redundant ARGs in their genetic context by proposing a
hierarchical ranking system based on the ARGs’ mobility potential percentage, pathogenic-
ity, and annotation category of their homology search against the CARD database (i.e.,
perfect, strict, and loose). Finally, we aimed to conduct genome binning of the analyzed INF
and EFF assembled metagenomes to determine the potential genomes harboring acquired
ARGs as an indication of the putative HGT incidence.

2. Materials and Methods

The sampling method, DNA extraction, and operation parameters of the studied
WWTP are described in our previous publication [38].
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The bioinformatics analysis pipeline of the current work was shown in Figure 1. Briefly,
the comprehensive resistome risk indices for the local samples of INF and EFF assembled
contigs as well as the selected publicly available wastewater datasets were computed using
the MetaCompare software pipeline. Then, the obtained risk scores were compared together
to identify the global risk rank of INF and EFF resistomes. At the same time, MetaCompare
output DNA sequences of ARG-like, MGE-like, and pathogen-like sequences were utilized
for a contig-based analysis of the INF and EFF resistomes. As a result, the percentage of
the ARG mobility potential at the resistance gene, drug class, and resistance mechanism
levels were estimated. On the other hand, the genome-based analysis was conducted to
extract high-quality MAGs of the INF and EFF datasets and to determine the genomes with
acquired ARGs.
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TZ-WWTP.

2.1. Metagenomic Assembly and ORF Prediction

In the present study, four metagenomic datasets of high-quality shotgun paired-end
sequences (q > 20) previously extracted from wastewater influent (INF) and effluent (EFF)
samples of WWTP in Egypt [38] were involved in two assembly pipelines. To improve the
depth and coverage of the performed assemblies [37], the two INF datasets were merged
together and assembled as one large sample using MEGAHIT software version 1.1.3 [39]
with the default parameters and using option “–min-contig-len 1000” to output contigs
with a minimum size of 1 kb and only those that provided a searchable length for the
possibly co-existing determinants for ARGs, MGEs, and pathogen-of-origin sequences [40].
Similarly, the two EFF datasets were incorporated into another assembly process. On
the other hand, seventeen publicly available metagenomic datasets from the European
Nucleotide Archives server (ENA) (https://www.ebi.ac.uk/ena/browser/view/, date
accessed: 25 July 2021) were downloaded, and they are listed in Table S1. The selected
metagenomes covered seven different geographic locations (i.e., Hong Kong, South Korea,
Germany, United Kingdom, United States of America, Uruguay, and South Africa) and four
different wastewater matrixes (Influent, effluent, raw sewage, hospital sewage). In brief, the
raw reads went through adapter trimming and quality filtering using Cutadapt v1.8.1 [41]
to remove the adapter sequences and retain the high-quality reads with quality scores ≥ 20.

https://www.ebi.ac.uk/ena/browser/view/
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The quality-controlled datasets were assessed using FASTQC v0.11.9 [42]. The high-quality
reads of the seventeen samples were incorporated into individual assembly operations
using the aforementioned software and cutoff thresholds. QUality ASsessment Tool (Quast)
v5.0.2 [43] was used to estimate the quality of the assembled metagenomes. The prediction
of the open reading frames (ORFs) from all 1 kb assembled contigs, including those of
the INF and EFF samples (n = 19), was conducted using Prodigal v2.6.3 [44]. The 1 kb
assembled metagenomes were incorporated into the resistome risk analysis process.

2.2. The Comparative Analysis of the Resistome Risk Scores in the Wastewater Samples

To estimate the risk scores of the antibiotic resistomes, the nucleotide sequences of the 1 kb
assembled contigs and the predicted ORFs of each sample were uploaded into the MetaCompare
software [33]. MetaCompare is a three-step pipeline of homology search for the detection of
ARG-like sequences, MGEs, and pathogen-like sequences of the assembled contigs. The first step
was achieved by running a BLASTx search [45] of the predicted ORFs against the comprehensive
antibiotic resistance database CARD v3.1.2 (23 April 2021 [46]), with the cutoff values of
E-value≤ 1e−10, identity ≥ 60%, and a minimum alignment length≥ 25 amino acids. Then, a
BLASTn search [45] was performed on the same assembled contigs of each sample against a
classification of mobile genetic elements database (ACLAME v0.4) [47] using the cutoff values
of E-value≤ 1e−10 and identity > 60%. Thirdly, a BLASTn homology search of each assembly
against the Pathosystems Resource Integration Center database (PATRIC v3.6.3) [48] using the
cutoff values of E-value ≤ 1e−10, identity ≥ 60%, and a minimum alignment length ≥ 150 bp
was conducted [33].

The results of the previous steps were involved in the calculation of three critical risk
ratios representing the number of ARG-carrying contigs (ACCs) divided by the total number
of assembled contigs in each sample (nARGs), the number of ACCs with ARGs and MGEs
coexisted on the same contig divided by the total number of total contigs (nARGs&–MGEs),
and the number of ACCs with ARGs and MGEs and associated with pathogen-like sequence
on the same contig divided by the total number of contigs (nARGs&–MGEs&–PAT).

Finally, these values were incorporated into a formula to calculate the environmental
resistome risk score. We optimized the Python script of the MetaCompare software in
house to save all of the intermediate and final resistome risk score output files locally in the
CSV text format (Supplementary Materials Script S1).

To assess the risk ranking of the INF and EFF samples associated with the current
study samples compared to the datasets from other geographic locations, the three risk
ratios (i.e., nARGs, nARGs&–MGEs, and nARGs&–MGEs&–PAT) were projected into a
three-dimensional hazard space using the Scatterplot3d package v0.3-41 [49] in RStudio
v1.3.959 (http://www.rstudio.com/accessed, 22 June 2020) with R software v4.0.2 (https:
//www.R-project.org, accessed on 22 June 2020)

2.3. Determination of the Risk Priority of Mobile ARGs in the Wastewater Influent and Effluent

The ACCs of the INF and EFF samples were extracted from the MetaCompare BLASTx re-
sults using the BBMap tool [50] with the command “./filterbyname.sh in=path/to/
final_assembly/fasta/filenames=path/to/list/ACCs_headaers out=name/of/output/
ACCs/fasta_file ow=t include=t truncateheader”. The INF and EFF ACCs were analyzed
using the resistance gene identifier (RGI) software v5.2.0 with the CARD database v3.1.2, re-
leased 23 April 2021. The resistome prediction and classification was performed based on
the perfect, strict, and loose paradigms of the RGI software web portal, with options for the
inclusion of nudge sequences (loose hits of≥95% identity were moved into the strict category).
In brief, the RGI predicted the ORFs from the submitted ACCs using Prodigal with a cutoff
selection of an ORF length ≥ 30 bp. Then, the antimicrobial resistance genes (AMR) were
identified from the ORF amino acid sequences using the diamond BLASTp search against the
CARD databases, with a predefined pass bitscore for the ARG classification for protein homolog
models, protein variant models, and protein-overexpression models. Finally, the recovered
ARGs were annotated as perfect hits with a clinical relevance if the whole query had a 100%

http://www.rstudio.com/accessed
https://www.R-project.org
https://www.R-project.org


Sustainability 2022, 14, 14292 6 of 24

match to the curated reference sequence in the CARD databases. On the other hand, strict and
loose hits represented new variants and distant homologs of known AMR genes in the CARD
database, respectively.

The potential genetic context and taxonomic lineage of the recovered INF and EFF
ARGs were identified by a BLASTn homology search of ACCs against the NCBI-nt database
(v5.0, July 2021) with a cutoff threshold of E-value≤ 1e−10, identity≥ 60%, and a minimum
alignment length = 150 bp. As the genetic context of ARGs determines their mobility status,
the ACC IDs in the output tables obtained from the BLASTn search against the nt and
ACLAME databases were cross-mapped together to collect instances of ARG association
with a sequence of mobile determinant including plasmid, transposon, integron, integrative-
conjugative element (ICE), or bacteriophage [51]. The logic matrix for the classification of
ACC genetic context is explained in Table S2. The ARG was annotated as mobile if it existed
in co-localization with at least one MGE-like sequence on the same ACC. The mobility
potential percentages (M%) of the ARGs in the INF and EFF assembled metagenomes were
calculated as mentioned in (1) for the non-redundant individual resistance genes, antibiotic
drug class, and resistance mechanism [52]:

M% =
N1
N2
× 100 (1)

where M% is the mobility potential percent; N1 is the count of ACCs associated with MGEs
in each category; N2 is the total number of ACCs in this category. An ARG was considered
highly mobilized if M% ≥ 95% and low-mobilized if M% ≤ 5% [52].

The output data obtained from the previous steps were utilized to classify the detected
ARGs into a five-level risk ranking system based on the value of their mobility potential
percentages (M%), the co-existence status of the ARG with a pathogen-of-origin sequence
on the same ACC and RGI annotation category (i.e., perfect, strict, and loose) (Figure 2).
Highly mobilized ARGs that coexisted with pathogen-of-origin sequences on the same
contig were determined by the cross-matching of the ACCs IDs to their counterparts
resulting from the BLASTn homology search against the PATRIC database.

The ARGs that belonged to risk rank 1 constituted highly mobilized genes that co-
existed with pathogen-of-origin sequences and annotated as perfect hits by the RGI tool.
The criteria for the ARGs of the risk ranks 2 and 3 were the same as above, except for the
RGI categorizations of strict and loose. The mobile ARGs assigned to risk rank 4 were
those that were not associated with pathogenic sequences on the same ACC, indicating less
dissemination potential. Moreover, the ARGs with a mobility potential percentage less than
95% were affiliated to risk rank 5, regardless of their genomic context or RGI classification.
On the other hand, the ARGs not associated with an MGE determinant on the same ACC
were considered as having no mobilization potential and were left unassessed.

Finally, the potential taxonomic classifications of the INF and EFF ACCs were deter-
mined by submitting BLASTn hits of the two sets into MEGAN software v6.18.0, built
28 October 2019 [53], using the default parameters.

2.4. Genome Binning of the Influent and Effluent Assembled Metagenomes

The process of genome binning and extraction of high-quality draft genomes from the
INF and EFF 1 kb assembled contigs was completed using a modular pipeline for genome-
resolved metagenomic data analysis software, MetaWRAP 1.2.1 [54]. Briefly, the initial
binning process was performed using MaxBin2 [55], metaBAT2 [56], and CONCOCT [57]
binning software using differential sequence composition and GC content percentage.
Secondly, the bin refiner tool [58] was used to create hybrid bins from the previous step
such that no two contigs were placed in the same bin if they were found in different bins of
the original sets. Then, the high-quality consolidated genome bins were extracted using
the CheckM software tool [59], with the selected cutoff threshold of a minimum genome
completeness of 70% and a maximum contamination of 10% [60]. The quality filtered
genome bins were incorporated into a final reassembly process using SPAdes software [61]
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to improve completeness of the recovered draft MAGs. Taxonomic classification and
functional annotation of the extracted MAGs were completed using the online Rapid
Annotation using Subsystem Technology server (RAST) (http://rast.nmpdr.org/ (accessed
on 8 January 2022) [62]. The closest neighbor species for each genome bin was determined
from the seed analysis of the RAST server. To infer genome bins with acquired antimicrobial
resistance genes (AMRs), the nucleotide sequences of the contigs in the recovered bins (i.e.,
INF and EFF) were searched against the acquired antimicrobial resistance genes database
ResFinder 4.1 [63] using the program defaults of a minimum percent identity of 90% and a
minimum hit coverage of 60%.
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3. Results
3.1. Metagenomic Assembly of the Wastewater Metagenomic Datasets

A total size of 70 Gb of data belonging to the INF (36 Gb) and EFF (34 Gb) metage-
nomic samples from the Tz-WWTP in Egypt were assembled using MEGAHIT software.
Furthermore, a total of 180 Gb representing the seventeen globally selected metagenomes
were assembled as well. The percentage of mapped reads of the local INF and EFF samples
in the 1 Kb assembled datasets accounted for 73.14% and 69.00%, respectively, with an
average of 71.07%. However, it ranged from 28.34% to 90.62% with an average of 56.54%
for the downloaded metagenomes (Table S3). The average contig coverage for the INF and
EFF assembled datasets constituted 29.55 and 21.70, respectively. While it ranged from
10.22 to 45.54 (average of 21.57) for the assembled wastewater metagenomes of the selected
datasets. The above results showed a higher sequencing depth and average contig coverage
of the assemblies of the samples related to the present study.

3.2. Estimation of the Comprehensive Risk Scores for the Wastewater Resistomes

The number of ACCs extracted from the MetaCompare analysis of the INF and EFF
assemblies were 2409 (0.7%) and 1196 (0.2%), respectively. In addition, 4622 (1.4%) and
2955 (0.7%) MGE sequences and 138,798 (41.5%) and 78,279 (19.1%) pathogen-like sequences
were derived from the INF and EFF contigs, respectively. These numbers indicate a one-fold
decrease of the ACCs, MGEs, and pathogen-like sequences ratios from the INF to the EFF
metagenomes. The calculated risk score of the INF resistome accounted for 47.8; however,
that of the EFF resistome was 26.9. The risk ratios of the INF and EFF were compared to
those derived from other wastewater datasets of the selected geographic locations to assess
the risk ranking of the study samples from the Egyptian WWTP (Table 1 and Figure 3a). The
MetaCompare analysis showed that the risk score of Egyptian wastewater INF resistome
was ranked as the second top value after the South African INF resistome (50.3), while the
EFF risk value was the third top value after the South Korean (37.9) and South African
(35.5) EFF resistomes. A trend among the assessed samples was observed, where the raw
sewage (RS), influent, and hospital sewage (HS) samples were ranked with the highest risk
scores regardless of their geographic locations. This was validated by the 3D hazard space
analysis (Figure 3b) in which the risk ratios of EFF resistomes of most samples (7/9) were
clustered at lower hazard plane than INF, RS, and HS.

Table 1. Summary of the results collected from the MetaCompare analysis pipeline for the resistome
risk scores associated with the current study samples (EG-INF and EG-EFF) as well as other globally
selected samples (n = 17).

Sample
Name

Number of
Input Contigs

%
ACCs

% ACCs +
MGEs

% ACCs +
MGEs + PAT

Risk
Score

Sample
Source Country Continent

SK_EFF 145,531 0.48% 0.0004 0.0004 37.89 Effluent South Korea Asia
SA_EFF 59,712 0.41% 0.05% 0.05% 35.51 Effluent South Africa Africa
EG_EFF 410,198 0.29% 0.02% 0.02% 26.80 Effluent Egypt Africa
HK_EFF 191,621 0.23% 0.02% 0.02% 24.89 Effluent Hong Kong Asia

HK_EFF2 66,117 0.17% 0.01% 0.01% 22.56 Effluent Hong Kong Asia
DE_EFF 82,507 0.15% 0.01% 0.01% 22.07 Effluent Germany Europe

USA_EFF 163,101 0.15% 0.01% 0.01% 21.69 Effluent United States of
America

North
America

DE_EFF2 148,405 0.15% 0.01% 0.01% 21.68 Effluent Germany Europe

UK_HS 108,598 0.61% 0.06% 0.05% 48.56 Hospital
sewage United Kingdom Europe

DE_HS2 143,088 0.63% 0.04% 0.04% 45.33 Hospital
sewage Germany Europe

SA_INF 45,534 1.44% 0.07% 0.07% 50.25 Influent South Africa Africa
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Table 1. Cont.

Sample
Name

Number of
Input Contigs

%
ACCs

% ACCs +
MGEs

% ACCs +
MGEs + PAT

Risk
Score

Sample
Source Country Continent

EG_INF 334,605 0.72% 0.03% 0.03% 47.87 Influent Egypt Africa
SK_INF 159,229 0.76% 0.02% 0.01% 44.37 Influent South Korea Asia
DE_INF 93,644 0.50% 0.03% 0.03% 36.79 Influent Germany Europe

DE_INF2 168,139 0.47% 0.02% 0.02% 34.32 Influent Germany Europe
HK_INF 236,067 0.42% 0.03% 0.03% 32.75 Influent Hong Kong Asia
UK_RS 135,578 0.81% 0.04% 0.04% 52.29 Raw sewage United Kingdom Europe

USA_RS 202,631 0.55% 0.03% 0.03% 39.46 Raw sewage United States of
America

North
America

UR_RS 67,082 0.23% 0.03% 0.03% 25.86 Raw sewage Uruguay South
America

Bold font denotes data of the samples belonging to the present study. EG: Egypt, DE: Germany, HK: Hong Kong,
UK: United Kingdom, SA: South Africa, SK: South Korea, UR: Uruguay, and USA: United States of America.
INF: wastewater influent, EFF: wastewater effluent, HS: hospital sewage, RS: raw sewage, ACCs: ARG-carrying
contigs, MGE: mobile genetic element, and PAT: pathogen-of-origin sequence.
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Figure 3. Risk ranking of the antibiotic resistomes showing (a) the average risk scores of the environ-
mental samples from the selected global wastewater sites (i.e., influent, effluent, hospital sewage, and
raw sewage) and (b) a 3D hazard space diagram of the risk ratios estimated for all analyzed samples
indicating the clustering of resistomes from the same sample source in closely related hazard level.

3.3. Resistome Composition of the Wastewater Influent and Effluent of the Assembled Metagenomes

The DNA sequences of the INF and EFF ACCs were extracted from the assembled
metagenomes and annotated using pass-bit score cutoff values of the CARD-RGI web
portal which classified the annotated ARGs into three categories, namely, perfect hits
with 100% identity to manually curated known functional ARGs in CARD database, strict
hits that represent variants of functional genes in the reference database, and loose hits
of newly emergent ARGs that require functional validation and deviate from the cutoff
threshold of CARD-RGI detection model. As a result, a total of 2386 and 1189 ACCs of
INF and EFF datasets, respectively, were successfully annotated. The ACCs annotated by
the RGI accounted for 99% of the MetaCompare output contigs in both samples (Table 2).
Furthermore, both datasets showed the same distribution for the number of contigs carrying
one ARG and those with two or more ARGs (multiple-ARG-carrying contigs) to be 60%
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and 40% of the total annotated ACCs, respectively. Moreover, the distribution of the ARG
ORFs among the perfect, strict, and loose categories exhibited slight differences in their
relative abundances before treatment (INF) and after treatment (EFF). For the INF ACCs,
a total number of 64 (2%) perfect, 415 (11%) strict, and 3412 (87%) loose ARG sequences
were detected. However, 56 (3%) perfect, 174 (9%) strict, and 705 (88%) loose ARG hits
were derived from the EFF ACCs (Table 2). A total number of 648 non-redundant ARGs
were recovered from the INF and EFF assembled metagenomes belonging to 26 different
drug classes (Table S4). Of these ARGs, only 30% could not be detected in the effluent
compartment, 17% were found only in the EFF ACCs, and 53% of the total non-redundant
ARGs were shared by both sites (core resistome) implicating insufficient removal of these
genes through the treatment process (Figure 4a). Five drug classes for multidrug, beta-
lactam, macrolide–lincosamide–streptogramin (MLS), aminoglycoside, and tetracycline
accounted for approximately 71% of the detected ARGs (Figure 4b).

Table 2. Summary of the ARG annotations using the CARD resistance genes identifier (RGI) software
for the ARG-carrying contigs (ACCs) of the local influent and effluent assemblies in the Tz-WWTP.

Parameter INF EFF

Total ACCs by MetaCompare software (% of total
assembled contigs) 2409 (0.7%) 1196 (0.3%)

Total RGI-annotated ACCs (% of total ACCs) 2386 (99%) 1189 (99%)
ACCs with one ARG (% of total ACCs) 1429 (60%) 705 (60%)

ACCs with more than one ARG (% of total ACCs) 980 (40%) 484 (40%)
Total annotated ARG ORFs in ACCs 3891 1996

Total non-redundant ARGs 536 455
Perfect ARG hits (% of total ARGs) 64 (2%) 56 (3%)
Strict ARG hits (% of total ARGs) 415 (11%) 174 (9%)
Loose ARG hits (% of total ARGs) 3412 (87%) 705 (88%)
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Figure 4. Resistome composition of the assembled metagenomes showing (a) the non-redundant
ARGs annotated in both INF and EFF and (b) the abundance percentage of ARGs per drug class. (The
drug classes with abundance percentages less than 1% are not listed in the Pie chart and included in
the “others” category).

To identify potential ARG hosts, the BLASTn search results of the INF and EFF ACCs
were submitted into MEGAN software to assign each contig to the lowest common taxo-
nomic rank. The classification of the INF and EFF ACCs at the phylum level showed that
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria represented the most abun-
dant phyla with total ACC percentages of 94% and 84% in the INF and EFF, respectively
(Figure S1). Although 97% and 93% of the ACCs in the INF and EFF samples were success-
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fully assigned to a taxonomic name at any level, only 82% and 63% could be classified at the
genus level, respectively (Figure S2). The genera for Pseudomonas, Aeromonas, and Klebsiella
were the most prevalent potential ARG hosts with relative abundances of 22%, 11%, and
6% in the INF ACCs and 26%, 9%, and 4% in the EFF ACCs, respectively (Figure 5).
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assembled metagenomes at the genus level only.

However, the analysis showed variations in the taxonomic assignments of some
other genera from INF to EFF. For example, nine genera, namely, Achromabacter, Aci-
dovorax, Alcaligenes, Burkhulderia, Janthinobacterium, Laribacter, Nocardioides, Pandoraea, and
Stenotrophomonas were detected as potential ARG carriers in the EFF ACCs with relative
abundance above 1%, while for INF ACCs, they were below the detection limit. In con-
trast, Yersinia, Raoultella, Morganella, and Rahnella were annotated as potential ARG hosts
in the INF ACCs only (Figure 5). Remarkably, the relative abundance of the Escherichia
genus, as an indicator for the fecal contamination of the discharged effluent, was enriched
from almost 2% in the INF ACCs to approximately 6% of the treated EFF ACCs. Table S5
summarizes the potential ACC hosts at the genus level and the corresponding number of
contigs in each drug class associated with the annotated host.

3.4. Evaluation of the Mobility Incidence Percentage of the Antibiotic Resistomes in the WWTP

The co-occurrence pattern analysis of the ARGs and MGEs (plasmids, transposons,
integrons, ICEs, and bacteriophages) on ACCs was conducted to assess the mobility in-
cidence in the INF and EFF assembled datasets (Tables S6 and S7). A total number of
117 (5%) and 58 (5%) ACCs were found to carry 163 and 92 mobile ARGs that coexisted
with an MGE-like sequence on the same ACC of the INF and EFF, respectively (Table S8).
Of those ACCs, 96 (82%) and 51 (88%) were associated with pathogen-like sequences in
the INF and EFF, respectively. These results showed that the majority of the ARG mobility
incidence of the studied datasets took place in pathogenic hosts before and after wastewater
treatment. The mobile ARGs of the INF ACCs comprised 47%, 12%, and 2% of the total
perfect, strict, and loose annotated hits, respectively. Similarly, the percentages of 46%
perfect, 16% strict, and 5% loose hits were determined from the EFF ACCs.

The mobility potential percentages (M%) of non-redundant ARGs in both datasets
were calculated to assess the treatment impact on the ARG mobilization. The total mobile
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resistome in the studied WWTP comprised 161 ARGs that existed in 14 drug classes
accounting for 25% of the total non-redundant ARGs of INF and EFF ACCs (648 genes)
(Figure 6a and Table S9). The distribution of the percentage of ARG mobility incidence
among drug classes is shown in Figure 6bx. The percentages of the mobility that decreased
from INF to EFF of the ARGs were present in the drug classes for sulfonamide (40–9%),
nucleoside (30–0%), diaminopyrimidine (19–9%), and tetracycline (14–7%). However, the
mobility incidence percentages showed an increase from INF to EFF in the drug classes
for aminoglycoside (14–20%), beta-lactam (13–20%), fluoroquinolone (3–19%), phenicol
(5–11%), and disinfecting agents and intercalating dyes (9% to 33%) (Table S10a). With
respect to the percentage of the mobility of the ARGs per resistance mechanism, it was
found that antibiotic inactivation (19%), antibiotic target alteration (14%), and antibiotic
target replacement (21%) were the most abundant mechanisms in the INF. While antibiotic
inactivation (23%), antibiotic target protection (17%), and reduced permeability to antibiotic
(9%) resistance mechanisms were the dominant mechanisms used by mobile ARGs of
the EFF wastewater (Figure 6c and Table S10b). The above described results indicate the
existence of shifts in the drug classes and resistance mechanisms of mobile ARGs from INF
to EFF as a result of the treatment process.

3.5. Risk Priority Classification of the Wastewater Mobile Resistome

The proposed ranking system determines the priority level for further surveillance of
the mobile ARGs in a downstream environment. The extracted mobile ARGs (161 genes)
were initially divided into two groups according to the value of M% assigned to each
gene. The first group constituted 111 genes (17% of the total 648 non-redundant ARGs)
with M% < 95% and, hence, were classified as risk level 5 representing the least haz-
ards for potential ARG mobilization (Table S11). The other 50 highly mobilized ARGs
(8% of the total ARGs) with M% ≥ 95% were assigned to risk levels from 1 to 4 with
respect to ARG pathogenicity and annotation cutoff class (Table 3). Risk level 4 ARGs com-
prised only one transposon-encoded highly mobilized ARG from beta-lactam drug class
OXA-347 which was hosted on non-pathogen-of-origin ACC. The remaining 49 genes were
all hosted by potential pathogens and classified due to their BLASTP pass bitscore in RGI
analysis. A total of 20 ARGs annotated as perfect hits by RGI software were allocated
in risk level 1 representing the highest priority ARGs of 100% homology to functional
resistance genes in CARD database. Those genes conferred resistance to clinically-relevant
antibiotics namely aminoglycoside (AAC(6′)-Il, AAC(6′)-IIa, aadA2, aadA6, and ANT(2′′)-Ia),
beta-lactam (CfxA2, CMY-4, GES-2, OXA-2, PER-3, TEM-181, and VEB-9), diaminopyrimi-
dine (dfrB5), fluoroquinolone (QnrS1, QnrS2, and QnrVC4), MLS (mphE), peptide (MCR-5.1),
and phenicol (catI and cmlA5). Risk level 2 constituted 19 ARGs belonged to RGI strict hits
forming a group of highly mobilized ARGs for unknown variants of functional resistance
genes in CARD database.

The ARGs of this class comprised genes for resistance against aminoglycoside (AAC(6′)-
Ib9, aadA, aadA10, aadA15, aadA16, aadA16, and ANT(3′′)-IIa), beta-lactam (NPS-1, OXA-1,
OXA-129, and OXA-663), diaminopyrimidine (dfrA1 and dfrA1), MLS (ErmB, lnuB, and
lnuF), phenicol (floR), and tetracycline (tetM and tetX). Lastly, a total of 10 ARGs associated
with the RGI loose hits were ranked as risk level 3, indicating new emergent threats for
ARG mobilization that require further functional validation. The list of genes belonging
to this group comprised ARGs encoded for resistance to aminoglycoside (ANT(9)-Ia and
aadA6/aadA10), beta-lactam (TLA-3, OXA-15, and OXA-898), fluoroquinolone (norB), MLS
(lsaB and mef(D)), multidrug (efpA), and tetracycline (tetA(P)) antibiotics (Figure S3).
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Table 3. Risk priority classification of highly mobilized ARGs in the effluent (ARG count = 50).

ARG Risk
Priority Level

ARG Name Drug Class
INF

Mobility,
%

EFF
Mobility,

%

ARG Annotation in the Effluent
Potential Pathogenic

Host (PATRIC BLASTn
Best Hit)

ARG Genomic
Context (NCBI

BLASTn Best Hit)

RGI Cutoff
Category

Level 1
(20 genes)

aadA6 aminoglycoside antibiotic 0% 100% Pseudomonas aeruginosa plasmid Perfect
ANT(2′′)-Ia aminoglycoside antibiotic 0% 100% Escherichia coli plasmid Perfect

aadA2 aminoglycoside antibiotic 75% 100% Pseudomonas aeruginosa plasmid Perfect
AAC(6′)-Il aminoglycoside antibiotic 100% 100% Pseudomonas aeruginosa plasmid Perfect

AAC(6′)-IIa aminoglycoside antibiotic Ud 100% Pseudomonas aeruginosa integron Perfect
GES-2 beta-lactam 50% 100% Pseudomonas aeruginosa integron Perfect
CMY-4 beta-lactam 100% 100% Escherichia coli plasmid Perfect
OXA-2 beta-lactam 100% 100% Shigella sonnei plasmid Perfect
PER-3 beta-lactam 100% 100% Acinetobacter baumannii plasmid Perfect
CfxA2 beta-lactam Ud 100% Chlamydia trachomatis bacteriophage Perfect

TEM-181 beta-lactam Ud 100% Shigella sonnei plasmid Perfect
VEB-9 beta-lactam Ud 100% Pseudomonas aeruginosa plasmid Perfect

dfrB5 diaminopyrimidine
antibiotic 0% 100% Pseudomonas aeruginosa integron Perfect

QnrS2 fluoroquinolone antibiotic 0% 100% Vibrio parahaemolyticus plasmid Perfect
QnrVC4 fluoroquinolone antibiotic 100% 100% Vibrio parahaemolyticus plasmid Perfect
QnrS1 fluoroquinolone antibiotic 100% 100% Escherichia coli plasmid Perfect
mphE MLS 0% 100% Acinetobacter pittii plasmid Perfect

MCR-5.1 peptide antibiotic 100% 100% Pseudomonas aeruginosa plasmid Perfect
cmlA5 phenicol antibiotic 0% 100% Pseudomonas aeruginosa integron Perfect

catI phenicol antibiotic 100% 100% Acinetobacter baumannii plasmid Perfect

Level 2
(19 genes)

aadA17 aminoglycoside antibiotic 0% 100% Pseudomonas aeruginosa plasmid Strict
aadA16 aminoglycoside antibiotic 50% 100% Vibrio cholerae plasmid Strict
aadA15 aminoglycoside antibiotic 100% 100% Pseudomonas aeruginosa integron Strict

ANT(3′′)-IIa aminoglycoside antibiotic 100% 100% Pseudomonas aeruginosa plasmid Strict
aadA aminoglycoside antibiotic Ud 100% Yersinia enterocolitica plasmid Strict

aadA10 aminoglycoside antibiotic Ud 100% Escherichia coli plasmid Strict
AAC(6′)-Ib9 aminoglycoside antibiotic Ud 100% Pseudomonas aeruginosa plasmid Strict

OXA-129 beta-lactam 100% 100% Pseudomonas aeruginosa plasmid Strict
OXA-1 beta-lactam Ud 100% Pseudomonas aeruginosa plasmid Strict
NPS-1 beta-lactam Ud 100% Pseudomonas aeruginosa plasmid Strict

OXA-663 beta-lactam Ud 100% Pseudomonas aeruginosa integron Strict

dfrA1 diaminopyrimidine
antibiotic 0% 100% Escherichia coli plasmid Strict

dfrA14 diaminopyrimidine
antibiotic 100% 100% Escherichia coli plasmid Strict

ErmB MLS 0% 100% Staphylococcus aureus plasmid Strict
lnuF MLS 100% 100% Salmonella enterica integron Strict
lnuB MLS Ud 100% Staphylococcus aureus ICE Strict
floR phenicol antibiotic 33% 100% Pseudomonas aeruginosa plasmid Strict
tetM tetracycline antibiotic 0% 100% Streptococcus sp. transposon Strict
tetX tetracycline antibiotic 100% 100% Salmonella enterica plasmid Strict

Level 3
(10 genes)

ANT(9)-Ia aminoglycoside antibiotic 0% 100% Staphylococcus aureus plasmid Loose
aadA6/aadA10 aminoglycoside antibiotic 100% 100% Escherichia coli plasmid Loose

TLA-3 beta-lactam 100% 100% Escherichia coli plasmid Loose
OXA-15 beta-lactam Ud 100% Pseudomonas aeruginosa transposon Loose

OXA-898 beta-lactam Ud 100% Burkholderia glumae plasmid Loose
norB fluoroquinolone antibiotic 14% 100% Pseudomonas aeruginosa plasmid Loose
lsaB MLS 0% 100% Staphylococcus aureus ICE Loose

mef(D) MLS Ud 100% Burkholderia cenocepacia plasmid Loose
efpA multidrug Ud 100% Pseudomonas monteilii plasmid Loose

tetA(P) tetracycline antibiotic 50% 100% Clostridium butyricum plasmid Loose

Level 4
(one gene) OXA-347 beta-lactam 100% 100% NA transposon Perfect

Ud: ARG is undetected, MLS: macrolide–lincosamide–streptogramin drug class, and ICE: integrative conjugative element.

3.6. Genome-Based Analysis of the INF and EFF Samples

A total of 35 and 118 high-quality draft genomes were recovered from the INF and
EFF assembled metagenomes, respectively, using MetaWRAP software with bin refinement
cutoff thresholds of a minimum completeness of 70% and a maximum contamination of
10% (Figure S3). The consolidated high-quality draft genomes extracted by MetaWRAP
constituted approximately 10% and 23% of the total size of INF and EFF assembled contigs
respectively (Table 4). The heatmaps in Figure S5 show the level of completeness and
contamination in each reassembled genomic bin of the INF and EFF metagenomes. To
determine the potential ARG-carrying genomes (ACGs), the contig IDs of INF and EFF
ACCs were cross-matched to those of MetaWRAP genome bins. A total of 30/35 and
50/118 INF and EFF ACGs contained 90 and 200 ACCs, respectively. The RAST seed
analysis for the closest neighbor species resulted in the assignment of 26 and 79 non-
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redundant bacterial species belonging to 25 and 70 genera to the recovered draft genomes
of the INF and EFF samples, respectively (Table S12).

Table 4. Summary of the genome binning results for the influent and effluent assembled contigs
using a hybrid bin extraction algorithm in the MetaWRAP software.

Category Maxbin2 Metabat2 Concoct

MetaWRAP Binning (70%
Minimum Completeness

and 10% Maximum
Contamination)

INF EFF INF EFF INF EFF INF EFF

Number of binned contigs 297,403 365,355 89,792 128,060 334,602 409,577 16,449 37,923
Total size of binned contigs (Mbp) 649.59 1011.00 331.45 591.17 724.93 1108.99 73.01 260.11

Number of unbinned contigs 37,202 44,824 244,812 282,137 542 602 318,156 372,256
Total size of unbinned contigs (Mbp) 75.87 98.60 394.02 518.42 0.54 0.62 652.46 849.49

% Binned number 88.88% 89.07% 26.84% 31.22% 99.84% 99.85% 4.92% 9.25%
% Total size binned 89.54% 91.11% 45.69% 53.28% 99.93% 99.95% 10.06% 23.44%

Number of genome Bins 292 450 163 100 224 290 35 118

INF: influent assembled contigs; EFF: effluent assembled contigs.

A total of 10 species belonging to nine genera were shared by the INF and EFF genome
bins, indicating the potential persistence of these bacteria throughout the treatment pro-
cess. The persistent genera accounted for Acidovorax, Akkermansia, Bacteroides, Eubacterium,
Faecalibacterium, Stenotrophomonas, Thauera, Thermincola, and Tolumonas (Table S13). An
opportunistic pathogen, Bacteroides fragilis, was among the persistent species assigned to
one bin in the INF (bin1) and four bins in the EFF genomes (i.e., bin 37, bin 65, bin 111, and
bin 116). Although we could not recover any genomes on the WHO list for high-priority
human pathogens in the INF bins, two EFF genome bins were assigned to Salmonella enterica
(bin101) and Shigella dysenteriae (bin 11). In addition, two EFF genome bins (i.e., bin 40 and
bin 95) were assigned to the Gram-negative bacillus Laribacter hongkongensis. Moreover, an
emerging human pathogen species, namely, Arcobacter butzleri, was assigned to EFF bin 32.

The ResFinder search showed that none of the INF genome bins harbored any acquired
ARGs; however, six EFF genome bins were encoded for ten acquired ARGs (Table 5). The
identity percentage of the acquired ARGs to the reference sequences from ResFinder
database ranged from 97 to 100%. The genome bins with acquired ARGs comprised three
genomes carrying more than one ARG and the other three with one resistance gene each.
Bin 88 (closest-neighbor species, Bacteroides thetaiotaomicron) was encoded for two ARGs
against MLS (lnuB and lsaE), bin 94 (closest-neighbor species, Anoxybacillus flavithermus)
harbored genes against beta-lactam (cfxA6) and tetracycline (tetQ), and bin 75 (closest-
neighbor species, Acinetobacter calcoaceticus PHEA-2) with two genes against MLS (mphE
and msrE) and one against tetracycline (tet39) (Table S14). Furthermore, three bins, namely,
bin 3 (Janibacter sp. HTCC2649), bin 82 (Bacteroides vulgatus ATCC 8482), and bin 101
(Salmonella enterica subsp. enterica serovar Typhi Ty2), carried a single ARG against beta-
lactam (blaGES-14), nitroimidazole (nimD), and MLS (mdfA). Strikingly, it was observed that
the tet(39) gene was flanked by two MGE sequences, namely, the transposase and resolvase
genes, on its carrying contig in bin 75 (contig# k141_59336_length_24223_cov_13.4223),
suggesting a transposon-mediated ARG mobility event within the genomic region of the
recovered MAG (Figure 7).
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Table 5. List of acquired ARGs detected by ResFinder software in EFF genome bins along with
their annotations.

Bin_ID Database Resistance
Gene Identity Query/Template

Length (bp) Contig_ID Position in
Contig Predicted Phenotype Accession

Number

Bin.101 macrolide mdf(A) 99.35 1233/1233 k141_999869_length_
12294_cov_6.7526 4976..6208 Gene is missing from

ResFinder database Y08743

Bin.75 tetracycline tet(39) 100 1122/1122 k141_59336_length_
24223_cov_13.4223 2428..3549 Tetracycline

resistance KT346360

Bin.75 macrolide mph(E) 100 885/885 k141_59336_length_
24223_cov_13.4223 4576..5460 Macrolide resistance DQ839391

Bin.75 macrolide msr(E) 100 1476/1476 k141_59336_length_
24223_cov_13.4223 5516..6991

Macrolide,
lincosamide and
streptogramin B

resistance

FR751518

Bin.3 beta-lactam blaGES-14 97.09 550/864 NODE_220_length_
549_cov_1.313559 1..549 Beta-lactam

resistance GU207844

Bin.94 beta-lactam cfxA6 99.7 996/996 k141_539772_length_
5362_cov_34.9153 333..1328 Beta-lactam

resistance GQ342996

Bin.94 tetracycline tet(Q) 98.81 1681/1926 k141_1010747_length_
2949_cov_30.2689 1..1681 Tetracycline

resistance L33696

Bin.82 nitroimidazole nimD 99.19 495/495 k141_1686426_length_
3658_cov_11.0000 2911..3405 Metronidazole

(5-nitroimidazole) X76949

Bin.88 macrolide lnu(B) 99.75 804/804 NODE_176_length_4337_
cov_1.714554 3114..3917 Lincosamide

resistance JQ861959

Bin.88 macrolide lsa(E) 99.39 1485/1485 NODE_176_length_4337_
cov_1.714554 1576..3060 Gene is missing from

ResFinder database JX560992
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Figure 7. Example of the functional annotation by the RAST subsystems for the chromosomal
region with acquired ARGs as determined by the ResFinder software in EFF MAG bin 75 (Contig#:
k141_59336_length_24223_cov_13.4223, starting base # 1 and ending base # 8616). Sets of the acquired
ARGs with a focus on tet(39) were compared to similar organisms to show the conserved gene
patterns. Homologous genes were labeled by the same number and color.

The RAST functional analysis of the resistance to antibiotics and toxic compounds
category showed that genes encoding for antibiotic resistance against fluoroquinolone,
beta-lactamase, multidrug resistance efflux pumps, tetracycline, vancomycin, fosfomycin,
streptothricin, and multiple antibiotic resistance (MAR) locus existed in the INF and
EFF genome bins. In addition, genes in the metal resistance category, including copper
homeostasis, cobalt–zinc–cadmium resistance, zinc resistance, mercuric reductase, mercury
resistance operon, arsenic resistance, resistance to chromium compounds, and cadmium
resistance were also present in the recovered genomes (Table S15).

4. Discussion

This study utilized the same datasets as in our previous publication [38] in a completely
different prospective. Although we previously analyzed the microbiome composition and
ARG abundance profiles of the nucleotide sequences extracted from the wastewater influent,
effluent, and activated sludge samples of a full-scale WWTP in Egypt, we could not examine
the ARGs in their genomic context due to the limitations of short read lengths which resulted
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from the Illumina shotgun metagenomics sequencing (150 bp). In the present study, the
metagenomic assembly and bioinformatic analysis approaches were utilized to quantita-
tively assess the potential human health risks of environmental resistomes and to estimate
the ARG mobility potential percentage of the influent and effluent datasets at the same
WWTP. In addition, high-quality draft metagenome-assembled genomes (MAGs) of the INF
and EFF samples were recovered and investigated for conferring acquired ARGs as evidence
for the incidence of horizontal gene transfer events during wastewater treatment. Our
analysis provided insight into the predicted impact of conventional wastewater treatment
on the ARG mobilization among the microbial communities of the receiving environments.

The application of a quantitative metric to evaluate the environmental resistomes in
WWTPs elaborated the role of conventional wastewater treatment to reduce ARG dissemi-
nation risks in the receiving water streams. For example, the comparison of the INF and
EFF risk ratios to the selected samples from various geographic locations revealed the
existence of a global trend in the risk ranking, indicating that wastewater influent, raw
sewage, and hospital sewage have higher risk ranks than effluent worldwide. These results
are consistent with a recent study [64] that demonstrated that the INF samples had a higher
risk index than the secondary effluent because of the removal of the ARGs and pathogenic
bacteria during the wastewater treatment.

The contig-based analysis of the INF and EFF ACCs showed that a large portion of
the detected ARGs (53%) persisted throughout the treatment process representing the core
resistome of the examined WWTP.

The calculated average percentage of ARG mobility potential in both INF and EFF ACCs
(5%) was comparable to those estimated by Ju et al. (2019) [52] (5.4%) and Sentchilo et al.
(2013) [65] in two WWTPs (2.5% and 4%) suggesting a common pattern of ARG mobility
incidence in WWTPs regardless of their geographical location.

We integrated the quantitative method for estimating the ARG mobility potential [52]
with the ARG annotation results obtained from the RGI analysis. This enabled us to
identify ARGs associated with high mobility potential and clinical significance at the same
time for further surveillance in downstream environments. The proposed classification
framework in the current study focused on the 50 highly mobilized ARGs with an M% in
EFF greater than 95% out of the total mobile ARGs (161 genes), since this group included
ARGs with the greatest potential of dissemination in the microbiomes of the receiving
environments. Theses ARGs either persisted throughout the treatment process from INF
to EFF (35 genes) or were detected in EFF only (15 genes). Most of the selected ARGs
(49/50 genes) were found to be associated with pathogenic sequences on their ACCs,
raising a concern regarding their potential health risk in the receiving environment and
calling for further investigation. Highly mobilized ARGs related to risk levels 1 (20 genes),
with a perfect match to known functional ARGs in the CARD database, and level 2 (19 genes)
for new variants of known ARGs accounted for the resistance genes posing current health
threats because of their clinical relevance. An example of a risk level 1 ARG is a plasmid-
mediated phosphoethanolamine transferase gene, MCR-5.1, from the peptide antibiotics
drug class conferring resistance to colistin, which is one of the last resort antibiotics for
the treatment of human infections [66]. Another group of highly mobilized ARGs that
encode for resistance to clinically important antibiotics from class-A, -C, -D beta-lactamases,
including VEB-9 and TEM-181, multiple genes from the OXA-family, CMY-4, and CfxA2
were among the highest risk levels 1 and 2, according to our classification.

The current analysis framework enabled us to extract a group of ARGs (10 genes)
representing the emergent threats (risk level 3) that belonged to the loose category of the
RGI cutoff threshold. A phenotype analysis for the genes of this group is needed to validate
their potential risks. Only one ARG (OXA-347) of the highly mobilized group (50 genes)
conferring resistance to the beta-lactam class (carbapenem, cephalosporin, penam) was
categorized as risk level 4, since it was located on non-pathogenic ACCs of the EFF samples.
The remaining group of non-redundant mobile ARGs (111 genes) detected in both the
INF and EFF ACCs with an M% less than 95%, regardless of their potential hosts and the
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RGI classification cutoff, were grouped in the least risk level 5. This class of genes was
considered as a lower risk priority due to the fact of their low mobility potential (from
0% to 63%) or complete removal from the discharged effluent. The proposed ranking
outline provided an initial step towards combining the results of the quantitative metric
for the ARG mobility potential (M%) with the knowledge for host pathogenicity and the
homology search results to the curated protein database of the functional AMRs in CARD.
The classified mobile ARGs by our approach were consistent with those detected from
the quantitative analysis of the ARG mobility potential from 12 WWTPs in China [52].
In addition, the high-priority ARGs detected in the current research were comparable
to the results obtained from a recent study for a multihabitat ARG health risk ranking
based on ARG enrichment in human-impacted environments, mobility potential, and host
pathogenicity [67].

The MEGAN taxonomic analysis of the INF and EFF ACCs at the genus level indicated
that the diversity of the potential ARG hosts increased from INF to EFF, as 82% of the
analyzed INF ACCs were assigned to 121 genera, while only 62% of the EFF ACCs were al-
located in 125 genera. The previous observation can be interpreted as some of the non-ARG
hosts in the influent possibly acquired ARGs during the treatment process [68]. Similarly, it
was demonstrated that the diversity of recipient phyla for the IncP-1 conjugative plasmid
pKJK5 in the effluent wastewater microbiome was broader than that of the influent [69].

The application of the modular hybrid genome binning pipeline of the MetaWRAP
software allowed for improving the percentages of genome completion and minimizing
the level of contamination in the recovered high-quality draft genomes, as explained in
Figure S4. However, the majority of the total size of the assembled contigs (90% in the
influent and 77% in the effluent) were below the selected bin refinement thresholds for the
extracted MAGs. This could happen due to the known metagenomic assembly challenges
of non-uniform contig coverage caused by the microbial complexity and diversity of the
environmental samples [70] as well as unresolved interspecies conserved repeat sequences
either of plasmidic or chromosomal origins which, in turn, resulted in the unsuccessful
resolution of most genomes from the metagenomics samples [71]. Despite the previous
challenges, we could highlight some remarkable observations in the recovered MAGs
regarding the impact of conventional wastewater treatment on the reduction of biomass
content and indirectly the ARG concentration from influent to effluent. For example,
the percentage of ACGs in the recovered high-quality draft MAGs declined from 86%
(30/35 bins) in the INF bins into 42% (50/118 bins) in the EFF genomes emphasizing the
removal of 50% of the ARB content from the discharged effluent. Furthermore, the number
of the extracted draft MAGs in EFF (118 genome bins) was higher compared to those
determined in the effluent of a WWTP in Singapore containing a membrane bioreactor
(101 genome bins) [60], suggesting more biomass discharged into the environment from
the conventional WWTP in our study.

Although we could not recover any high-quality genomes associated with E. coli as
an indicator for fecal coliform contamination in our samples, two species belonged to the
WHO’s high-priority human pathogens list [72], accounting for the closest neighbor species
Salmonella enterica subsp. Enterica serovar Typhi Ty2 and Shigella dysenteriae, which were
assigned to the EFF genome bins 101 and 11, respectively, as indicated by the RAST analysis.
This observation suggests the need for an in-depth functional investigation to assess the
regrowth possibility for the two organisms in the receiving water currents which might
have further implications for both human and environmental health.

The ResFinder analysis indicated no acquired ARGs in the INF MAGs. However, EFF
genome bin 101 (Salmonella enterica) was found to exhibit a multidrug resistance capacity by
encoding the acquired ARGs against beta-lactam (blaGES-14), nitroimidazole (nimD), and
MLS (mdfA) antibiotics, indicating the potential mobilization of these genes among EFF
microbial community members. Furthermore, the acquired mobile ARGs cassette detected
by ResFinder in bin 75 was previously determined to be plasmid-mediated in the human
pathogen Acinetobacter baumannii [73]. While we could locate genes associated with this



Sustainability 2022, 14, 14292 19 of 24

resistance cassette (i.e., tet39, mphE, msrE, resolvase, and transposase) encoded in EFF bin
75 (closest neighbor species Acinetobacter calcoaceticus), suggesting the possible incidence of
HGT events among the microbes of the examined WWTP. A recent study [74] compared
the reconstructed genomes of 82 multidrug-resistant bacteria isolated from WWTPs to their
closest neighbors of human/animal-associated bacteria in the publicly available databases.
The results showed that WWTP-associated bacteria had ARG-carrying plasmids with a
distinctive structure that mediated the potential HGT of multidrug resistance determinants
between WWTP bacteria and those of human/animal origin. It is worth mentioning here
that the extent of the HGT incidents in WWTPs, with respect to host range, frequency of
occurrence, and the environmental factors affecting them, is still debatable [75].

A recent study demonstrated that the examined Archobacter genomes were associated
with high levels of virulence genes proposing an elevated pathogenicity potential of com-
munity members affiliated to this genus [76]. As a result, the recovered EFF genome of
bin 32 assigned to Arcobacter butzleri RM4018 might pose a concern as an emerging human
pathogen and more detailed targeted studies are recommended to explore metabolic activi-
ties associated with this genome. Similarly, we were able to recover two EFF MAGs (i.e.,
bin 40 and bin 95) assigned to a closest neighbor species, namely, Laribacter hongkongensis
HLHK9, which exists extensively in fresh water fish [75], and a strain HLGZ1, which was
recently isolated from clinical samples in Hong Kong [77]. These findings necessitate an
in-depth functional research and long-term surveillance plans to explore the potential
interactions of the above-mentioned organisms within downstream environments.

The current study applied three analysis approaches to assess the assembled metage-
nomic datasets for potential public health risks of wastewater resistomes. Firstly, a compar-
ative quantitative method using MetaCompare software pipeline was applied to evaluate
resistome risk ranking of local and international wastewater samples. This step validated
the role of wastewater treatment process in the reduction of ARG spread risks at the
downstream environments. Secondly, a contig-based analysis for the local INF and EFF
assembled metagenomes was conducted to compare the ARG mobility potential percentage
before and after treatment in the examined WWTP. As a result, we proposed a hierarchical
framework to select the ARGs with a high mobility potential, carried by pathogenic host,
persisting from INF to EFF, and annotated as perfect or strict protein hits by the RGI soft-
ware. The detected ARGs using our method are considered of the highest health hazard,
which require further monitoring efforts in downstream environments. Thirdly, we applied
a software pipeline (MetaWRAP) to recover high-quality MAGs from the INF and EFF
assemblies. The extracted MAGs were searched for acquired ARGs on their contigs, which
indicates the potential incidence of HGT and confirms the possibility of ARG mobility
during wastewater treatment. Six genome bins of the EFF MAGs were found to have
10 acquired ARGs. Finally, the analysis showed the persistence of pathogens belonging to
the WHO high-priority list such as Salmonella enterica and Shigella dysenteriae in the wastew-
ater effluent. The above-mentioned findings suggest the need for long-term surveillance
plans by decision makers to minimize the potential hazards of the transfer of ARGs into
pathogens in receiving environments.

5. Conclusions

To our knowledge, this is the first study in Arab countries to assess the possible risks
of environmental resistomes in the influent and effluent of a conventional WWTP using
a metagenomic assembly approach. The current study provided a comprehensive risk
analysis of wastewater resistomes in a full-scale WWTP in Egypt. The risk scores of the
wastewater influent and effluent resistomes belonging to the study samples were compared
to their counterparts of other selected wastewater metagenomes from the publicly available
databases to determine the risk ranking of the global environmental resistomes. The
quantitative estimation for the resistome risk ranking by this study will help to improve
surveillance and monitor trends of resistance genes released to receiving environments.
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We proposed an integrative framework to identify the risk priority of unique ARGs on
ACCs based on the mobility potential percentage, host pathogenicity, and ARG annotation
cutoff category in RGI software with the CARD reference database. The proposed risk
ranking system with five levels provided insight into the highest priority ARGs with clinical
relevance (levels 1 and 2) and emergent threats (levels 3, 4, and 5) for further follow up
in receiving environments. The study sheds light on the potential role of horizontal gene
transfer in the spread of ARGs as a result of the co-occurrence of ARGs and MGEs in human
pathogenic bacterial hosts in wastewater metagenomes. Despite the low abundance of
mobile ARGs and pathogenic bacteria in the WWTP effluent, further investigations for
the functional activities and regrowth possibilities of the released ARB is recommended
to evaluate their impact on environmental and public health. Furthermore, future studies
that explore the development of microbial community and ARGs dynamics in downstream
environment are required to assess the implications of mixing treated wastewater with
receiving water bodies. Additionally, we recommend conducting larger scale metagenomic
studies either locally or internationally, especially in low-income countries to serve in
building a comprehensive profile of ARGs and ARB along with their correlation to the
operation parameters of WWTPs to help improve surveillance protocols and mitigation
strategies to minimize the potential mobilization of ARGs in environmental microbiomes.
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