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ABSTRACT The problem of the uplink resource allocation of mixed-traffic types in cellular networks is a
challenging problem that has not been addressed sufficiently in the literature. In this paper, we consider the
5G uplink scheduling for Ultra-Reliable and Low Latency Communications and enhanced Mobile Broad-
Band (eMBB) traffic types. There are three main scheduling techniques to be considered, namely, the grant-
based (GB), the semi-persistent, and the grant-free (GF) techniques. Furthermore, there are three different
schemes used in GF scheduling, namely, the reactive, the k-repetitions, and the proactive schemes.We devise
a mathematical model for the GF services using the k-repetitions scheme as the first model to define such
traffic in a single cell. In addition, the GB scheduling model for eMBB traffic is adapted to fit our problem.
We formulate the scheduling problem as a mixed-integer non-linear programming optimization problem.
We introduce a complete system model that includes GF and GB subsystems. We introduce a novel mixed
scheduler that combines the advantages of two well-known schedulers in the literature. We introduce novel
machine-learning-based scheduling algorithms and evaluate them in comparison to well-known algorithms
in the literature in addition to the optimal bound that we also derive. The results show that the proposed
algorithms produce near-optimal results in real time.

INDEX TERMS GF modeling, reinforcement learning, resource allocation, supervised neural networks,
uplink scheduling, URLLC.

I. INTRODUCTION
Currently the existence of different traffic types in cellular
networks presents a major challenge. This is due to the dif-
ference in the nature and needs of these traffic types which
renders the resource allocation, or traffic scheduling, task
quite challenging. The problem of scheduling data from the
transmitting nodes is called the uplink (UL) scheduling prob-
lem, while the scheduling of data from the base stations to
the receiving nodes is called the downlink (DL) scheduling
problem. Each of these problems is solved separately and
each has its own models and restrictions. In 5G systems,
which we consider in this study, there are three types of users,
namely, the enhanced Mobile BroadBand (eMBB) users, the
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massive Machine Type Communications (mMTC) devices,
and the Ultra-Reliable and Low Latency (URLLC) users.

In the DL, the 5G base station (gNB) knows exactly the
packets required to be transmitted and can be scheduled per-
fectly based on each traffic requirement and the scheduling
policy. However, the problem is different in the UL direction
where the gNB does not know exactly when the URLLC
nodes would send their data due to their sporadic nature.
The type of scheduling in the UL depends on each traffic
requirement. The grant-based (GB) scheduling is normally
used with the eMBB traffic, however, it cannot be used
with the URLLC traffic as the handshaking procedure would
not satisfy the URLLC latency constraints. Grant-free (GF)
scheduling can therefore be used in conjunction with Hybrid
Automatic Repeat reQuest (HARQ) techniques to satisfy the
reliability and latency requirements of the URLLC traffic.
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A. RELATED WORK
In this section, we discuss the studies that are relevant to the
research that we present in this paper.1 In [2], the expected
requirements for 5G systems are discussed in detail to demon-
strate how the demands ofMachine-to-Machine (M2M) com-
munications are accommodated.

The studies in [3] and [4] discuss the theoretical framework
of the existence of different traffic types in the UL channel
and the GF URLLC scheduling. In [5], the authors discuss
the common types of the GF HARQ access schemes in the
5G New Radio (NR) system to mitigate the latency and
reliability requirements of the URLLC packets. The schemes
are, namely, the reactive, the proactive, and the k-repetitions
schemes. The results show that the proactive scheme provides
the lowest access failure probability than the reactive scheme
in the high Signal to Interference plus Noise Ratio (SINR)
scenario. For lower SINRs and high-density URLLC devices,
the k-repetitions scheme results in a lower access failure
probability. In [6], twoways of GF access in 5G are discussed,
namely, using a separate band for URLLC transmissions and
overlaying the eMBB and URLLC traffic, respectively. It is
shown that the Successive Interference Cancellation (SIC)
decoder provides a good performance in the overlaying mode
in low or high Signal to Noise Ratio (SNR) scenarios.

In [7], the GF procedure is discussed in detail along with
its requirements when sharing the resources to enable multi-
user decoders. The authors show that the performance can
be enhanced by using frequency hopping for HARQ and
advanced receivers. Several enhanced GF UL techniques are
studied and developed in [8]. The authors developed several
GF scheduling techniques to accommodate the requirements
of the URLLC traffic, namely, the reactive scheme with
power boost, repetitions with hybrid allocations, and GF
Non-Orthogonal Multiple Access (NOMA) with advanced
receivers. A GF algorithm to mitigate the collision problem
between URLLC packets is discussed in [9]. The gNB offers
each URLLC device a dedicated RB and a shared pool with
other URLLC devices. The algorithm assigns an RB based on
the number of repetitions the system can offer, the channel
conditions, and the traffic loads.

In [10], an optimization problem for UL GB scheduling
is discussed. In this paper, the power requirements of the
URLLC devices are taken into consideration. An objective
function with an aim to decrease the power consumption
of the URLLC traffic while maximizing the system utility
function is formulated. Another ULGB scheduling technique
using the matching process is discussed in [11]. The adopted
model depends on the assumption that the gNB has a massive
number of antennas greater than the number of users in the
cell (both human-type communications and critical machine-
type communications). Therefore, more than one user can use
the same RB. A UL optimization problem is formulated for

1Part of this work is published in the IEEE International Conference
on Wireless and Mobile Computing Networking and Communications,
2021 [1].

maximizing the rate of eMBB users while satisfying the con-
straints of the URLLC traffic. The authors use the concepts
of effective BW and effective capacity to model the Quality
of Service (QoS) requirements of the URLLC devices. The
overlaying between the eMBB traffic and the URLLC traffic
is discussed in [12]. The authors discuss how the power con-
trol for both types of traffic will affect the throughput of the
eMBB traffic and the reliability of the URLLC traffic. In [13],
a deep learning technique is adopted and tuned to solve the
mixed traffic problem for the eMBB and URLLC mixed
traffic in the UL direction with puncturing for eMBB traffic.
In [14], The authors use game-theoretic approaches to divide
the UL network resources into two pools, one for eMBB traf-
fic only and the other pool is shared between URLLC devices
and eMBB traffic. In [15], the UL multiple access techniques
are discussed for overlapping traffic betweenURLLC devices
and eMBB users. In [16], the authors design an algorithm for
UL scheduling using non-orthogonal multiple access tech-
niques to multiplex the network resources between eMBB
and URLLC traffic. In [17], traffic load prediction approach
is developed to accommodate the eMBB and URLLC traffic
requirements using dynamic selection mechanisms. In [18],
the authors defined the rate of URLLC traffic analogous to
URLLC traffic. Based on that the authors evaluated the ratios
of RBs that the eMBB users and URLLC devices can send
their data. Although different perspectives are studied in the
literature for UL scheduling, none discussed how tomodel the
sporadic nature of the URLLC traffic and how to use such a
model to optimize the network scheduling task.

As evident from the discussed work in the literature, the
work in the UL scheduling is scarce, especially when the
URLLC traffic is involved along with other traffic types, due
to the absence of a good understanding of the problem and
different interactions among different traffic types. In addi-
tion, the Machine Learning (ML) approaches are not yet well
investigated in the domain of UL scheduling and the Rein-
forcement Learning (RL) approach is not previously used in
the context of theUL scheduling problem.Due to the previous
reasons, we focus on two aspects that were not discussed in
previous research work. We develop a probabilistic model
for URLLC traffic for a single cell to aid in the scheduling
procedure. We provide a mathematical proof for the devel-
oped probabilistic model to eliminate the need for simulation
results in different scenarios. In addition, we design two
different ML-based schedulers to overcome the limitations of
classical scheduling algorithms and discuss their potential for
scheduling tasks.

B. PAPER CONTRIBUTIONS AND ORGANIZATION
The objective of this study is to build a robust UL system
model that addresses all the requirements of the eMBB and
URLLC traffic mix. Unlike the work done in [1], several
concepts are discussed, in detail, and insights on the effects of
several network parameters are provided. In addition, several
ML-based schedulers are designed and evaluated, compared
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to the basic algorithmic approach adopted in [1]. Thus,
we devise an RL and a Neural Network (NN) techniques to
solve the optimization problem. Finally, we compare their
results to determine the most suitable approach to handle this
problem in different scenarios.

The main contributions of this paper can therefore be sum-
marized as follows

• We build on the work done in [1] and explain, in detail,
the probabilistic model developed to model the prob-
abilistic nature of the URLLC traffic in a single cell.
We discuss, with several simulations, the effect of
changing various system parameters on the URLLC traf-
fic behavior.

• We propose a novel scheduling algorithm that provides
near-optimal solutions.

• We propose and discuss a reinforcement learning (RL)
approach to solve the aforementioned scheduling prob-
lem in real time with different policies. This is the first
work done to analyze the usage of the RL approach in
the context of UL resource allocation.

• We design a neural network (NN) model to fit our
problem and address the scheduling problem in different
types of environments.

The rest of the paper is organized as follows. Section II
introduces the URLLC traffic model and formulates the UL
optimal resource allocation problem. In addition, an algo-
rithm is proposed to solve the same problem in a more effi-
cient manner with low complexity requirements. In section
III, we propose and discuss novel Machine learning (ML)
based techniques for the scheduling problem at hand. The
complexity of the techniques is also discussed and analyzed.
In section IV, we present the simulation evaluation setup
along with the results of the different techniques that we
propose. In addition, various operating environments are sim-
ulated for each of the designed schedulers. In section V,
we conclude this study and propose directions for future
research.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, the UL resource allocation optimization prob-
lem is formulated. Based on the discussion in the previous
section, our adopted scheduling technique for URLLC nodes
is GF with k-repetitions HARQ while GB is adopted for
eMBB users. The GF scheduling is believed to be the most
suitable scheduling technique for URLLC traffic compared
to GB and semi-persistent scheduling. The URLLC traffic
is sporadic in nature thus pre-allocation with semi-persistent
scheduling is not suitable. In addition, the GB scheduling
requires 10 ms to be established which violates the URLLC
latency requirements [5]. In addition, k-repetitions HARQ is
adopted as it is the HARQ accepted by 3GPP and subsumes
the reactive HARQ as a special case [19]. The goal of the
scheduler is to satisfy both the URLLC and eMBB require-
ments in the system. Thus, the scheduler should decide on
the number of allocated RBs for URLLC nodes and their

TABLE 1. Symbols and notation.

position in the time-frequency grid. In addition, the scheduler
should decide on the best allocation for eMBB users to max-
imize the system’s throughput while maintaining a minimum
rate for each user to avoid starvation. Since knowing the
Channel Quality Indicator (CQI) for each URLLC device is
unrealistic, we assume that the gNB has no knowledge of
their channel coefficients. Thus, the decision of their allo-
cation on the time-frequency grid is based on maximizing
the rates of eMBB users. Our system is composed of Na
URLLC nodes and E eMBB users within a single gNB.
At each Transmission Time Interval (TTI),2 the gNB receives
the requests from the eMBB users, updates its information
about the number of URLLC devices in the system and
their latency and reliability requirements, and decides on the
suitable number of resources to satisfy their requirements,
R. Finally, it allocates, on the grid with Nf frequency slots
and Nt short TTIs (sTTIs), resources to both the eMBB and
URLLC traffic. Then, it broadcasts the new locations to the
URLLC nodes. In the next subsections, the adoptedGFmodel
is analyzed and the Probability of Delay Bound Violation
(PDBV) is derived for the k-repetitions HARQ. Next, the GB
model for the eMBB users is discussed and the rate equations
are derived. Finally, the UL resource allocation optimization
problem for our adopted system is formulated and several
optimization algorithms are discussed to solve it. Table 1
summarizes the notation and symbols used in this paper.

A. GF MODEL
In this section, we derive the PDBV for the GF model for
our system. The k-repetitions is used as the HARQ protocol,
as discussed in the previous sections. The PDBV is derived to
aid in understanding the reliability and latency requirements

2A TTI is 1 msec as defined in the 3GPP standards [19].
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FIGURE 1. k-repetitions diagram with k = 3.

of the URLLC traffic. In addition, to aid the network sched-
uler to provide enough resources to satisfy the URLLC traffic
requirements. In this scheme, the URLLC node receives a
packet from higher layers with probability pa. The packet
arrival probability is modeled as a Bernoulli arrival process.
The Bernoulli process is considered the best fit for the behav-
ior of the URLLC traffic since only one packet arrives from
the higher layers at a time and it is sent in an arrive-and-
go manner. In addition, the inter-arrival time between the
packets is large compared to the latency threshold of the
URLLC packets [2]. In the adopted k-repetitions scheme, the
packet is sent to the gNB in an arrive-and-go manner with the
k − 1 replicas. If an Acknowledgement (ACK) is received,
the packet is dropped, otherwise, the packet is re-transmitted
with the k − 1 replicas again if the latency threshold, τ ,
has not been reached. Since all the URLLC nodes share
a common pool of resources, interference (collisions) may
occur among the transmitted packets. If the SINR is below a
certain threshold, γth, this implies that a collision has occurred
and the transmission is considered as a failure. However,
if only one packet of the k replicas is decoded correctly, the
transmission is considered a success, and an ACK is trans-
mitted to the node. As shown in Figure 1, the transmission
time to and from the gNB is one sTTI and the processing
time is one sTTI. As discussed, the gNB does not know the
locations of the URLLC nodes, so the path loss is consid-
ered for the worst-case scenario. The full path loss inversion
power control, ρ, is used to compensate for the worst-case
scenario. A power level control mechanism, gm is defined to
ensure that the URLLC nodes can change the power level at
each re-transmission. Based on the discussed power scheme,
the targeted received signal power at the gNB is gmρ. The
channels are modeled as flat fading Rayleigh channels as
the Orthogonal Frequency Division Multiplexing (OFDM) is
the adopted modulation scheme in the 5G systems [20]. The
channel gains, h, are assumed to be constant for each TTI.
The receiver noise is modeled as white Gaussian noise with
variance σ 2

= N0B. For further details about the k-repetitions
HARQ, we refer the reader to the work done in [21].

The round trip transmission time, T RTT , can be calculated
directly from the discussed procedure for any k as

T RTT = k + 3 sTTIs, (1)

where the three additional sTTIs are the transmission, pro-
cessing, and feedback delays assumed to be constant and each
equals 1 sTTI. The maximum allowable re-transmissions,M ,

can be calculated as

M =

⌊
(τ − 1)/T RTT

⌋
, (2)

where τ is the URLLC latency threshold expressed in sTTI
units. The PDBV is calculated as the complement of all
possible re-transmissions that can be done by the URLLC.
It is given as

PF = P(T ≥ τ ) =

{
1 M = 0
1 −

∑M
m=1 Ampm M ≥ 1

, (3)

where Am is the probability that the URLLC node is still
active at the mth re-transmission and pm is the GF access
success probability, as defined in [5]. The probability Am can
be calculated as the failure of the past m− 1 re-transmissions
as follows

Am =

{
1 m = 1
1 −

∑m−1
i=1 Aipi m ≥ 2

, (4)

and the GF access success probability of a single URLLC
node, pm, can be calculated as the probability of the number
of interfering nodes multiplied by the probability of success
transmission as follows

pm =

Na∑
n=0

(
Na
n

)
(Ampa/R)n(1 − Ampa/R)Na−n

.2[n,m, k](1 − 2[n,m, k])n, (5)

where2[n,m, k] is the probability of successful transmission
of the mth re-transmission for k replicas given that the num-
ber of interfering nodes is n. And the number of allocated
resources for URLLC traffic is denoted by R.
To derive the probability of a successful transmission,

2[n,m, k], recall that the packet transmission is considered
successful if at least one of the k replicas is received correctly
with SINR > γth. This can be written as

2[n,m, k] = 1 −

k∏
l=1

(1 − Prob(SINRml ≥ γth), (6)

where SINRml is the SINR of the mth re-transmission of the l th

replica.
Eq. (6) can be rewritten using the Binomial theorem as [5]

2[n,m, k] =

k∑
l=1

(−1)l+1
(
k
l

)
Prob(SINRm1 ≥ γth,

SINRm2 ≥ γth, . . . , SINRmk ≥ γth|N = n), (7)

and,

Prob(SINRm1 ≥ γth, . . . , SINRmk ≥ γth|N = n)

= exp(−
lγthσ 2

gmρ
)Lmintra(

γth

gmρ
|N = n), (8)

where Lmintra is the Laplace Transform of the aggre-
gate intra-cell interference of the mth re-transmission,
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and it is derived as

Lmintra(s|N = n) = E[exp(−s
n∑

Q=1

gmρ

k∑
l=1

hlQ)]

= (
1

1 + sgmρ
)ln. (9)

Substituting Eq. (9) in Eq. (8), then substituting in Eq. (7)
yields

2[n,m, k] =

k∑
l=1

(−1)l+1
(
k
l

)
exp(−lγthσ 2/gmρ)

(1 + γth)ln
. (10)

The equations presented in this section are the first step
to fully comprehend the URLLC behavior. In addition,
it enables the gNB to choose the optimal number of rep-
etitions and RBs to satisfy their requirements. In the next
section, the GB model is derived for eMBB users to grasp
all the system’s requirements. One of the advantages of our
model is that it is based on the worst-case scenario where
the motion of the user inside the cell will not affect the deci-
sion on the number of RBs. In addition, the mobility of the
URLLC device inside the same cell will not affect the model
assumptions. It is worth noting that this work discusses the
single gNBmodel in order to address the resource scheduling
problem for each cell independently. The topic of multi-gNB
resource allocation as well as the handover from one cell to
another is out of the scope of this paper. As discussed, along
the lines of the model derivation, this model is based on an
already established and validated model in the literature [5].

Finally, we note that this model can be extended to include
inter-cell interference. This can be done by deriving the
Laplace Transform of the aggregate inter-cell interference.
However, we focused in this work on a system composed of
a single cell only as the first step to solve the mixed-traffic
resource allocation problem, and how to implement this
model in different ML algorithms to give insights for prob-
lems of higher complexity. Thus, inter-cell interference could
be added in future work. Another topic of consideration for
future work is to allow link adaptation for different modula-
tion and coding schemes for each eMBB user. It is clear that
this can be extendedwithout affecting the PDBVcalculations.
In addition, we assumed that the decoding of the k-repetitions
scheme is done in an independent manner. However, we can
increase reliability by using a successive interference cancel-
lation decoder. The issue, in this case, will be formulating the
PDBV. It might be non-tractable to define such an equation.
Even if it existed, the computation of the required number of
URLLC RBs will be cumbersome. However, we provide a
worst-case scenario computation, which will allow network
designers to have a qualitative intuition if it happens that a
better decoder is used.

B. GB MODEL
In this section, the eMBB rate equations are formulated.
As discussed in the previous sections, the main requirement

for eMBB users is increasing the traffic rate. For this purpose,
the rate equation for each eMBB users can be defined as

Re =

∑
i,j

SeijB log(1 + SNReij), (11)

where Re is the rate of the eMBB user e, and Seij is the gNB
scheduling parameter for user e on the (i, j) RB, that is,

Seij =

{
1 eMBB user e is allocated the (i, j) RB
0 elsewhere

, (12)

and the SNReij is the SNR of the eth eMBB user on the RB on
the ith row and jth column of the time-frequency grid, defined
as

SNReij =
|hij,e|2Pe
N0B

, (13)

where hij,e is the channel gain of the eth eMBB user on the
(i, j) RB. Pe is the transmission power of the eth eMBB user
and N0B is the noise variance.

C. PROBLEM FORMULATION
In this section, the UL resource allocation optimization prob-
lem is formulated and it is shown that it has combinatorial
nature which is, in general, complex, to solve in real time.

As discussed in the previous section, a good scheduler
should provide the URLLC nodes with enough resources,
based on their requirements, to satisfy their latency and relia-
bility requirements. In addition, it should maximize the accu-
mulated eMBB users’ rate to avoid the under-utilization of
the system’s resources. To avoid starvation, a minimum rate
should be guaranteed for each eMBB user. In our proposed
system, there is no overlap between different types of traffic.
Based on the previous discussion, the UL resource allocation
optimization problem can be formulated as

max
Seij,R,k

∑
e

Re (14)

subject to

p(T ≥ τ ) ≤ ϵ, (14a)

Seij ∈ {0, 1}, ∀i, j, e (14b)

Re ≥ Rmine ∀e (14c)∑
e

Seij = 1, ∀i, j (14d)

R ∈ {0, 1, 2, . . . ,Nf } (14e)

Seij = 0, for i ∈ {i1, i2, . . . , iR}, ∀j, e (14f)

Equation (14) aims to maximize the accumulated eMBB
users’ rate based on the optimization parameters. Equation
(14a) ensures that the PDBV for a certain latency, τ , is below
the reliability threshold, ϵ. Equation (14b) ensures that the
scheduling decision is binary, as discussed in the previous
section. Equation (14c) prevents starvation for each eMBB
user by providing a minimum rate, Rmine . Equation (14d)
ensures that each RB is scheduled for only one eMBB and
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Equation (14f) ensures no overlapping between both types
of traffic. Equation (14e) limits the number of the allocated
RBs for URLLC traffic based on the system’s resources. Note
that this problem can be mapped into a full integer decision
variables problem, without affecting the optimality.

By analyzing the resource allocation optimization problem
carefully, we can reach the optimal solution in a step-by-
step procedure without affecting the solution optimality. The
first step is choosing the two URLLC parameters, namely,
the number of RBs for URLLC traffic, R, and the repetition
factor, k , to satisfy equation (14a). This, of course, requires
a good understanding of the PDBV behavior based on the
system’s parameters. To this end, equation (14a) is studied
when varying several system parameters to aid designers and
network engineers in choosing the optimal decision variables.
Since we focus on providing the minimum number of RBs
to satisfy the URLLC requirements, this step-by-step proce-
dure will not affect the optimality of the resource allocation
optimization problem. The second step is to use the values
of the previous step to optimally allocate the eMBB users’
traffic along with the URLLC traffic to maximize the eMBB
users’ accumulated rate while satisfying their minimum rate
requirements.

D. SOLUTION APPROACH
As discussed in the previous section, we can solve the
optimization problem defined in equation (14) iteratively.
Without loss of generality, we can find the optimal number
of RBs that satisfy the URLLC traffic requirements. Then,
we use this value to find its optimal allocation while consid-
ering the eMBB traffic requirements. This two-step approach
will be referred to as the first sub-problem and the second
sub-problem going forward.

In solving the first sub-problem, Algorithm 1 is used. The
algorithm requires the system’s parameters to be known in
order to calculate the PDBV. Due to the iterative nature of
equation (3), the algorithm calculates each instance of the
activation probability, Am, and the GF access success prob-
ability, pm, then calculates the PDBV. Equation (3) requires
high computational power especially if the number of the
URLLC nodes is large. This is the main reason for the
problem separation. As the resource allocation scheduling
needs to be done at each TTI, it will be time-consuming
and unrealistic to calculate it every time. Equation (3) can
be calculated once and used at each TTI if all the required
system parameters remain unchanged. In addition, equation
(3) is irreversible as the repetitions factor, k , and the number
of allocated RBs for URLLC nodes, R, cannot be calculated
directly. This is the main reason for studying this equation
separately in the next section. Finally, we note that these
calculations are normalized, in the sense that if each URLLC
device requires α frequency slots to send their packets, we can
multiply the resulting number of RBs by a factor of α.

The second sub-problem is of a combinatorial nature.
In this case, the exhaustive search method is, generally,
the common approach to finding the optimal solution.

Algorithm 1 Calculating the PDBV in Eq. (14a)
Require: τ , Na, k , γth, σ , gm and ρ

Calculate M using Eq. (2)
if M = 0 then

PDBV=1
else

for m = 1 to M do
calculate Am using Eq. (4)
Calculate pm using Eq. (5)

end for
end if
Calculate PDBV using Eq. (3)

The exhaustive search method becomes impractical when
the dimensions of the problem increase and the use of
sub-optimal algorithms ismore common in this case. As far as
resource scheduling is concerned, the Best Channel Quality
Indicator (Best CQI) algorithm and the Proportional Fair
(PF) algorithm [22] are the most well-known algorithms in
the literature. The Best CQI solves the resource allocation
optimization problem without taking into consideration the
minimum rate constraint. This might cause starvation for the
eMBB users with bad channel conditions. However, it serves
as a benchmark for throughput maximization for the other
scheduling algorithms. On the other hand, the PF algorithm
provides fairness among the eMBB users, where the eMBB
users are allocated channels with the objective of having
approximately equal rates. This might decrease the accumu-
lated throughput of the system especially if at least one of the
users has bad channel conditions on all the available RBs.
Another well-known approach that is used in solving the
same kind of problems is the Genetic Algorithms (GA) [23].
GA uses reproduction and mutation to reach a sub-optimal
solution. In addition, GA ensures the starvation problem is
resolved. However, as the dimensions of the problem become
larger, the GA becomes less accurate and consumes a lot of
time that is not suitable for real-time operation.We have opted
to use the aforementioned algorithms, namely, the exhaustive
search, the PF, the best CQI, and the GA, to compare their
performance to that of our proposed techniques. This is due
to the fact that they directly fit the problem that we are
solving without the need to make any modifications to them
thus affecting their nature. There are no other algorithms in
the literature that can fit the nature of this problem without
significant modifications which, if made, would affect the
fairness of the comparison to our advantage. The previously
discussed algorithms will be compared in different realistic
network scenarios in the next sections. Later on, we also
discuss and propose machine learning-based solutions that
can be used in real-time network settings.

E. PROPOSED MIXED SCHEDULER FOR RESOURCE
ALLOCATION
To avoid the shortcomings of the previous algorithms,
a novel scheduling algorithm is proposed. The proposed
algorithm combines both the benefits of the Best CQI and
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PF algorithms. The real-time operation is also taken into
consideration since it depends solely on both the aforemen-
tioned scheduling techniques which are considered real-time
schedulers. The first step in the proposed algorithm is to
provide fairness among the eMBB users by allocating the
same number of resource blocks to each user, by calculating
Nch. This can be calculated as Nch = ⌊

Nf −R
E ⌋. The next

step is to increase the throughput of each user by using
the Channel State Information (CSI). In this step, each user
is assigned a channel to provide the highest possible rate.
The ordering of the users is kept random to avoid any pro-
cessing delays. Then, the previous step is repeated for the
second-highest channel possible for each user, and so on till
the Nch channels are allocated to the users. The final step is
to broadcast the remaining R RBs to the URLLC devices.
It is important to note that the remaining R RBs are the
worst for eMBB users, however, these RBs might not be
the worst for the URLLC devices. We chose this approach
since it is unrealistic for a real-time scheduler to estimate
the channel coefficients of all the URLLC devices in its cell.
In addition, URLLC devices have a limited power supply
so channel estimation for each TTI will inefficiently deplete
their batteries. Another approach for allocating resources is
allocating the best R RBs to URLLC devices but there is
no guarantee that these RBs are optimal for URLLC devices
since their channel gains are unknown to the scheduler. In this
sense, the accumulated eMBB rate is decreased with no guar-
antee of providing the URLLC devices with better channels.
Algorithm 2 explains each step in the adopted scheduling
process. The proposed algorithm is evaluated and compared
to the previous algorithms in different scenarios in Section
IV. Part of this evaluation was discussed briefly in [1]. In [1],
we discussed briefly the general behavior of the PDBV with
varying some of the system parameters. In addition, themixed
scheduler results were evaluated for certain environments.
Although Algorithm 2 produces near-optimal results and has
low complexity, as discussed in Section IV, it suffers from
having inner loops which still require high processing power.
This is due to the nature of the optimization problem defined
in 14 which is NP-hard, in general. That is why the use of
ML approaches is essential for schedulers in next-generation
wireless systems. For this reason, we also discuss in this paper
different ML approaches, namely, the RL-based and the NN-
based approaches to show their effectiveness compared to the
schedulers that are based on the classical approaches.

III. PROPOSED MACHINE LEARNING-BASED
APPROACHES
Machine Learning (ML) is proven to be one of the vital
tools for solving different communication systems prob-
lems [24]. However, resource scheduling is one of the areas
where the limits and applicability of ML techniques are still
being investigated. For the purpose of an efficient resolution
of our problem, we present two ML-based approaches for
addressing the scheduling problem as per the model that
we presented in Section II-B. First, we use RL techniques

Algorithm 2 Proposed Mixed Scheduler for the Channels
Assignment Problem
Require: R and CSI
Calculate Nch, the number of channels assigned to each eMBB
user to ensure minimum rate requirements
for i = 1 to E do

for j = 1 to Nch do
Choose the best jth channel for user i using CSI

end for
end for
Reserve the worst R channels for URLLC traffic

to solve our scheduling problem in different environments
with different policies. We discuss the limitations imposed
by the RL techniques. Then, to mitigate the limitations of
the RL approach, we introduce NN-based techniques to solve
the same problem. It is important to note that, in this paper,
we deal with both proposed ML algorithms as stand-alone
solutions and compare their results with other algorithms
in different scenarios. This means that the ML algorithms
are designed to solve the resource allocation optimization
problem defined in previous sections and are not designed
to mimic the mixed scheduler defined in Algorithm 2.

A. REINFORCEMENT LEARNING-BASED SCHEDULING
APPROACH
In this section, the RL-based scheduling approach is intro-
duced and analyzed. The UL resource allocation optimization
problem is adapted to fit the RL approach. The motivation
behind the choice of the reward function and action space
is tackled in order to satisfy all the optimization problem
constraints and reach the highest possible rates.

RL has shown great potential in solving different schedul-
ing problems and combinatorial optimization problems in
general [25], [26], [27], [28]. The RL model contains two
building blocks, namely, the agent and the environment. The
agent makes decisions at every instant and the environment
responds with feedback with its state to take the proper action
in the next time instant. The policy the agent tracks, for select-
ing an action, is based on maximizing a reward function that
has been defined for the system. Themain three parameters of
any RL model are therefore the state space, s(t), the reward
function, r(t), and the action space, a(t). The action space
is the set of all the possible actions the agent could take
in a specific environment. The state space is the space that
includes environment feedback. Finally, the reward function
is the function that defines to the agent how to take proper
action to maximize the system output.

1) PROBLEM TRANSFORMATION
In RL, the constraints of our resource allocation optimization
problem cannot be defined explicitly. The reward function
is designed in order to include these constraints implicitly.
The reward function, r(t) should be increasing when the
accumulated rate of eMBB users increases and should pro-
duce negative rewards whenever the PDBV is violated or the
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minimum rate constraint for each eMBB user is not satisfied.
To satisfy all the requirements in the optimization problem
defined in 14, the reward function is defined as

r(t) =

∑
e

Re − c1ζ1 − c2ζ2, (15)

where

ζ1 =

{
1 if R < Rassigned
0 otherwise

,

and,

ζ2 =

{
1 if Re < Rmine

0 otherwise
,

where Rassigned is the assigned number of resources that pro-
vide the latency and reliability requirements of the URLLC
traffic as calculated by Algorithm 1. Both the ζ1 and ζ2 allow
the reward function, agent, to take into consideration the
constraints of the resource allocation optimization problem.
The two weighting factors, c1 and c2, need to be chosen to
balance the magnitudes of the factors affecting the reward
function.

The action space, a(t), is the space of all the decisions the
agent, gNB, can take. In our formulation, it is the scheduling
for eMBB users, i.e., Seij, and the frequency slots allocated
for the uRLLC traffic, i.e., the position of the R URLLC
frequency slots. Constraints (14d) and (14f) can be defined
in the action space instead of the reward function. This can
be done by limiting the actions, Seij, to those satisfying the
aforementioned constraints. This, of course, is significantly
more effective than defining those constraints in the reward
function since implementing this way eliminates the possi-
bility of taking any action that violates the constraints (14d)
and (14f). As discussed, in this setup, the agent will function
as the scheduler within the gNB. The agent must choose the
best possible allocation that maximizes the reward function,
i.e. maximizing the eMBB accumulated rate while satisfying
the constraints. The dimension of the action space can be
calculated easily as |A| = (E + 1)Nf , where E is the number
of eMBB users and Nf is the number of RBs in the system.
In conclusion, the action space can be viewed as any possible
action that can be taken by the scheduler that does not violate
equations (14d) and (14f). It can be written compactly as

A = {Seij :

∑
e

Seij = 1, ∀i, j, Seij = 0, i ∈ {i1, . . . , iR}, ∀j, e},

(16)

where {i1, . . . , iR} are the resources allocated to the URLLC
traffic.

The state space, s(t), is the environment that gives feedback
for learning and building the Markov decision process and
transition probabilities along with the reward function. Thus
the logical choice for the state space is the channel state
information in which the environment informs the gNB of
the channel gains, coefficients, for each eMBB user. Thus,
the gNB performs channel estimation for each eMBB user

that sends a scheduling request. We note that there is no
extra processing required by the RL-based scheduling since
channel estimation is done by the gNB in any case before
transmission. In addition, this shows that our scheduler does
not require extra information or processing more than that of
the classical scheduler even during training. Thus the state
space can be defined mathematically as the channel coeffi-
cients for all eMBB users on each frequency slot as follows

s(t) = [h1XNF∗E
i ]. (17)

For the complete mathematical model for RL, we refer the
reader to [29].

As discussed, the state space is the channels gain, thus it
is continuous and infinite. That is why deep RL is adopted.
In deep RL, NN layers are added to grasp the relations
between the infinite possibilities of channel gains. This,
in turn, makes the learning procedure much faster and con-
verges with a higher probability to the optimal value.

There are several learning policies in the RL and each
policy differs in the exploration-exploitation factor [30]. One
of such policies is the greedy policy which aims to find the
highest rewards with no extra exploration [31]. The greedy
policy action at any time instant, t , can be defined mathemat-
ically by the following equation

agreedy(t) = argmaxQ(a(t)), (18)

where Q(.) is the action-value function. The greedy policy
aims to maximize the reward at any time instant. This might
affect the agent by choosing a sub-optimal path due to the
absence of the exploration factor.

Another variation is the epsilon-greedy policy whichmodi-
fies the exploration from the greedy policy to avoid reaching a
sub-optimal result [32]. The ϵ-greedy policy action modifies
the greedy policy by adding an exploration factor in the
training policy. It can be defined mathematically as

aϵ−greedy(t) =

{
argmaxQ(a(t)) w.p. 1 − ϵ

any random action a(t) w.p. ϵ
.

(19)

Based on equation (19), the ϵ-greedy chooses the optimal
action with probability 1 − ϵ. On the other hand, there is a
probability of choosing a random action that enables the agent
to explore the action space.

Boltzmann and max-Boltzmann policies balance explo-
ration and exploitation using statistical distributions to reach
better results [33]. In the Boltzmann policy, the aim is to
exploit all the available information from the Q-table. Instead
of choosing the optimal action or a random action, the dis-
tribution of all the available actions is designed based on
Boltzmann distribution, to choose the most probable action
to produce better results. The main difference in this policy
compared to the previous ones is that it constructs a belief
table. The information on other actions in the belief table
can be taken into consideration. The max-Boltzmann policy
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offers a slight modification compared to the Boltzmann pol-
icy. In max-Boltzmann Policy, the exploration parameter can
be controlled based on the belief table to choose actions with
better rewards. In this paper, we use these four policies to
build RL-based schedulers and compare their performance in
different scenarios.

2) THE LIMITATION OF THE RL APPROACH
The main problem in the RL approach is the dimensions of
the problem. For example, if we consider a small setup with
only 3 eMBB users and 6 RBs where one RB is reserved for
the URLLC traffic, we find, with a simple calculation, that
the number of possible actions is 4096 actions. In general, for
any number of eMBB users, E , with Nf RBs where R of these
RBs assigned to URLLC traffic, the number of actions equals
(E+1)Nf . Therefore, the number of actions increases rapidly
with the increase of any of the aforementioned parameters;
for a moderate or large environment, the training becomes
cumbersome and overly time-consuming. It is worth noting
that any RL-based model will have the same problem. That
is because the action space increases with the number of RBs
exponentially.

B. NEURAL NETWORK APPROACH
In this section, a NN approach using a multi-layer perceptron
is introduced and analyzed to mitigate the drawbacks of the
RL approach. The transformation of our main optimization
problem to the NN domain is discussed and the shortcoming
of using the modified optimization problem is analyzed.

From an engineering standpoint, a NN treats the system as
a black box with inputs and outputs. The interactions between
different system elements are imitated by the neurons in the
hidden layers. The main advantage of the NN in our problem
is bypassing the action space expansion.

Unlike the RL approach, an NN needs a different treatment
for UL resource allocation scheduling problems. The problem
in this setup is as follows. The NN takes the channel gains
for all eMBB users as input and outputs the scheduling for
each eMBB user for each channel. The input and output
layers are of the same size E .Nf while the number of hidden
layers, the number of neurons per layer, the learning rate,
and the number of training epochs can be varied to generate
good results. The numbers of neurons in the input and output
layers are the same and at least one hidden layer, with a
different number of neurons, is adopted to understand the
interactions between the input and the output layers. This
method is used to overcome the dimensionality problem in
the RL approach. The mathematical model of the multi-layer
perceptron NN is well established in the literature [34]. The
neurons in the hidden layers try to understand the interactions
between the input and output through non-linear activation
functions. In our setup, the inputs are the CSI for each eMBB
user and the output layer is the scheduling information for
each eMBB user. The tuning of the NN is discussed in section
IV. Figure 2 illustrates the structure of the intended NN.

FIGURE 2. A NN diagram with a hidden layer and the same size
input/output layers.

TABLE 2. PDBV analysis parameters [5].

IV. EVALUATION RESULTS
In this section, several topics are discussed and analyzed.
First, we discuss and analyze the PDBV equation and the
effect of varying several system parameters on the latency,
reliability, and the number of RBs required to satisfy the
latency and reliability thresholds. Next, we compare the opti-
mal solution with our proposed scheduler, the Best CQI, the
GA, and the PF schedulers. Next, for real scenarios with
high dimensions, the optimal solution is dropped and the
proposed scheduler along with the Best CQI, the GA, and
PF schedulers are compared. Next, the RL-based scheduler
is analyzed in several operational scenarios and the accuracy
against the optimal solution is discussed. Finally, to mitigate
the issues of the RL-based scheduler, the NN-based scheduler
is used in larger, more complex operating environments and
the accuracy with the Best CQI is discussed. A comparison
is made between the NN-based scheduler and the RL-based
scheduler to investigate the applicability and the drawbacks
of each approach in different scenarios.

A. PDBV ANALYSIS
In this section, we evaluate the PDBV for URLLC devices as
given by equation (14a), while varying different parameters
in the system, e.g., the repetition factor, k , the number of
assigned frequency slots, R, the SINR threshold, γth and the
latency threshold, τ . Unless stated otherwise, the simulation
parameters are as given in Table 2.

Figure 3 shows that, at a low delay threshold, increasing
the number of repetitions, k , can negatively affect system
performance as in the cases of 1 ms and 1.5 ms. In such cases,
the optimal number of repetitions is 1, which implies that the
packet is sent one time with no repetitions. If the number of
repetitions, k , is increased beyond optimal values, the colli-
sion probability increases due to contention between URLLC
nodes. In contrast, increasing the repetition factor, k , for
Critical Machine Type Communicating Devices (c-MTCDS)
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FIGURE 3. PDBV (PF ) vs the number of packet repetitions (k). (a) One RB
(R = 1). (b) Two RBs (R = 2).

FIGURE 4. PDBV (PF ) vs the latency threshold (τ ). The number of
allocated RB (R)=1, and number of repetitions (k)=2.

that have a higher latency threshold decreases the PDBV and
increases the reliability, as in the case of the 2ms delay thresh-
old. If the number of repetitions is less than the optimal value,
the transmission reliability decreases as the system resources
are not fully utilized. Finally, Figure 3a and 3b look nearly
the same, however, 2 resource blocks are granted for URLLC
traffic in 3b instead of one resource block only as in 3a; this
suggests that broadcasting all the granted resource blocks
to all URLLC nodes is not the optimal technique. Instead,
the gNB should divide the nodes equally and multicast the
assigned RBs to each group individually. Certain measures
need to be taken into consideration in the second case for the
overhead increase.

Figure 4 shows that increasing the latency threshold, τ , will
not increase the PDBV. In fact, increasing the latency enables
the URLLC nodes to re-transmit their packets if Negative
ACK (NACK) is received which increases the reliability. It is
important to understand that sometimes increasing the latency
will not affect the PDBV because themaximum number of re-
transmissions,M , is not changed as with the 1.2 ms to 1.4 ms
interval, in Figure 4. Also, as the packet arrival probability,
pa, decreases along with the latency threshold, τ , a larger
difference between the PDBV trends increases. This is due
to the fact that for higher activation probability, the system
appears congested as the packets can be retransmitted several
times for a longer period of time which affects the PDBV.

Finally, Figure 5 shows that, as the SINR threshold
increases, the decoding of the URLLC packets becomes
difficult which decreases the system reliability and increases

FIGURE 5. PDBV (PF ) vs the SINR threshold (γth). The packet arrival
probability (pa)=10−4, and no repetitions, (k)=1.

the PDBV. In addition, the gap between one reserved fre-
quency slot and two frequency slots, R = 1 and R = 2,
decreases as the SINR threshold, γth, increases. This empha-
sizes the importance of a good decoder at the gNB in order to
maintain the reliability of the system. It should be noted that
at medium SINR thresholds, some repetition values, k > 1,
would have better performance, but this analysis is out of our
scope in this paper.

B. EVALUATING THE OPTIMAL SCHEDULER
PERFORMANCE
In this section, we compare different scheduling algorithms,
namely, the proposed scheduler, the Best CQI, the PF, and the
GA schedulers with the optimal grid search technique. In this
setup, we set the number of frequency slots, Nf , to 6 and the
minimum rate requirement for each eMBB user to 2 Mbps
with the rest of the parameters as per Table 3. Unless stated
differently, the system parameters are as given in Table 3. The
goal of the scheduling algorithm, after knowing the number
of frequency slots allocated for URLLC devices, is to choose
the suitable channels that maximize the eMBB rate, while
maintaining the minimum rate requirements for eMBB users.
As explained previously, the goal of Algorithm 1 is to find the
optimal number of resource blocks to satisfy the latency and
reliability constraints of the URLLC traffic. Next, the number
of resources chosen by Algorithm 1 is fed to the schedulers to
choose the optimal allocation for both the eMBB andURLLC
traffic. This separation will not affect the optimization prob-
lem optimal outcome since the PDBV is only affected by the
number of resource blocks, R. The GA scheduler operation
is explained in Section II and the parameters’ values are as
given in Table 4. As seen in Table 4, the population size is
100 to allow the scheduler to choose the best 100 actions.
The scheduler must choose integer values, as previously dis-
cussed, to allocate the channels to the suitable eMBB user
and the URLLC traffic. The constraint-dependent function
is used to allow only the choice of the integer numbers
within the range from 0 to the number of eMBB users,E . The
generations limit is set to 1000 in order to avoid the scheduler
searching for suitable allocation for more than the intended
time. This limit is important, especially for environments with
high dimensions, i.e., with a large number of RBs.
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TABLE 3. System parameters [5].

TABLE 4. Genetic algorithm parameters.

Figure 6 shows a comparison between the aforementioned
algorithms, the optimal scheduler, Best CQI, proposed sched-
uler, PF, and GA, with a 95% Confidence Interval (CI).
Figure 6a shows the accumulated eMBB rate when varying
the number of eMBB users, E , and reserving one frequency
slot for the URLLC traffic,R = 1. In Figure 6b, the number of
allocated URLLC frequencies, R, is changed, while maintain-
ing the number of eMBB users fixed, E = 3. The Best CQI
algorithm shows a higher accumulative rate than the optimal
search grid since it ignores the minimum rate constraint for
eMBB users. The GA performs near-optimal as for a small
search space the GA converges to near-optimal results. The
proposed mixed scheduler performs slightly lower than the
GA to maintain the fairness condition among eMBB users.
Since the available resources are limited, the mixed scheduler
aims to keep the fairness condition among the eMBB users
rather than maximizing the overall accumulated eMBB rate.
However, the proposed mixed scheduler achieves nearly the
same results as the GA scheduler with a lower processing
time. The PF performs the least due to the strict fairness
condition.

We discuss next an extended operational scenario and show
the relative performance of the different algorithms under the
scenario’s conditions.

C. EXTENDED OPERATIONAL SCENARIO RESULTS
In this section, a full operational scenario is discussed. A step-
by-step procedure is given and the different schedulers are
compared after assigning the suitable number of RBs to the
URLLC traffic. The system parameters are summarized in
Table 3.
First, the PDBV is calculated for different repetition fac-

tors, k , and different numbers of allocated frequencies, R.
Figure 7 shows that for k = 1, 2, 3 and R = 1 or R = 2,
the reliability threshold, accepted by 3GPP [19], for URLLC
devices, ϵ = 10−5, is satisfied. The least number of RBs that
satisfy the latency and reliability requirements of the URLLC
traffic is chosen to maximize the accumulated eMBB rate, i.e.
R = 1.
Next, Best CQI, PF, GA, and our proposedmixed scheduler

are used for the scheduling step. In addition, we examine
the level of satisfying the eMBB rate performance in the

FIGURE 6. Comparison among the different scheduling techniques.
(a) Fixing the number of URLLC allocated RBs, R = 1. (b) Fixing the
number of eMBB users in the system, E = 3.

FIGURE 7. PDBV (PF ) vs the number of packet repetitions (k).

different techniques, an error percentage is calculated for
each scheduler in each case where the results are taken by
averaging 10 simulation runs. In addition, a CI of 95% is
calculated for each case. The same setup as in Section IV-B
for the GA is adopted, as given in Table 4. Figure 8a shows the
accumulated eMBB rate when varying the number of eMBB
users, E , and reserving one frequency slot for URLLC traffic,
R = 1. While Figure 9a shows the accumulated eMBB rate
when varying the number of allocated URLLC frequencies,
R, and a fixed number of eMBB users, E = 15.
As shown in Figure 8 and Figure 9, TheBest CQI algorithm

results in the highest data rate. However, the algorithm vio-
lates the minimum rate requirements, as shown in Figure 8b
and Figure 9b, and this violation increases as the number of
eMBB users increases. Our proposed mixed scheduler comes
second in terms of the highest data rate, but with all the
requirements satisfied. The GA approach produces results
that are lower than our approach, due to the high dimension
of the problem. The PF algorithm is the least algorithm in
terms of the overall achieved data rate due to its strict fairness
condition. It is worth noting that all the simulated schedulers,
except the Best CQI, satisfy the minimum rate constraints as
shown in Figure 8b and Figure 9b.

D. RL-BASED SCHEDULERS RESULTS
As stated in the previous sections, different policies are tested
in order to find the best policy to fit each situation. Google
Colab notebook is used with the Keras-RL package. Adam
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FIGURE 8. (a) Comparison among the different scheduling algorithms.
(b) Error percentage in satisfying the minimum rate requirements.

FIGURE 9. (a) Comparison among the GA, PF, best CQI and the proposed
mixed scheduler. (b) Error percentage in satisfying the minimum rate
requirements.

TABLE 5. Scenario 1 system parameters.

optimizer is used, with a learning rate of 10−4 and the Mean
Average Error (MAE) is used for error calculations. Two
hidden layers are used to train the model with 64 neurons
each and the Rectified Linear Unit (RELU) as an activation
function. Following the work of the previous sections, two
different scenarios are discussed with different dimensions to
check the validity of our approach.

1) SCENARIO 1 RESULTS
In this system, different policies are tested in a small environ-
ment with 6 RBs. This system is adopted by the 3GPP [35].
The dimensions of the adopted environment are low due to the
dimensionality problem of the RL approach that we discussed
in Section III. The system and the deep RL parameters are
given in Table 5.
The deep RL scheduling results of this system are com-

pared with 2 different algorithms, the optimal algorithm, and

FIGURE 10. Comparison among different RL policies for scenario 1.

FIGURE 11. Comparison among different RL policies for scenario 2.

the Best CQI algorithm, as shown in Figure 10. To show the
robustness of the results, a 95% CI is done for 50 runs for
each algorithm. Figure 10b shows the percentage of time the
schedulers did not satisfy theminimum eMBB rate constraint.
In Figure 10c, the deviation percentage of the rates of the
different policies from the optimal rate is plotted. It is evident
that all the RL policies produce near-optimal results with
only a 2% deviation. However, it is clear that the Epsilon
Greedy policy is the best choice among the other policies.
The Epsilon Greedy policy has the highest robustness as its
deviation from the 2% line is minimal. So, in small environ-
ments, the Epsilon Greedy is the best choice due to its high
robustness comparedwith other policies. In addition, to check
the validity of our designed reward function, Figure 10b
shows that all the policies satisfy the minimum rate constraint
and that the Best CQI is the only scheduler that violates the
minimum rate requirements.

2) SCENARIO 2 RESULTS
In this section, a larger environment is adopted in order to
understand the influence of the problem dimensions on the
system. The system and the RL parameters are the same
as in scenario 1, for comparison purposes, except that the
BW = 20 MHz and the RBs Nf = 10. In this scenario, the
optimal solution is dropped due to the high processing power
required for such large dimensions, and all the comparisons
are done with the Best CQI algorithm. It is important to note
that this setup is the highest dimension we could simulate for
the RL-based schedulers.

As shown in Figure 11, the 2% deviation is maintained for
all RL policies compared with the optimal solution in the first
scenario and the Best CQI in the second scenario. However,
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TABLE 6. NN Training parameters.

as in the previous scenario, the Epsilon Greedy policy has the
highest robustness.

The NN-based algorithm’s results are discussed next.

E. THE NEURAL NETWORK BASED SCHEDULER DESIGN
APPROACH
In this section, the tuning for several training parameters of
the NN-based scheduler is evaluated. The effect of changing
any of the training parameters is plotted. Based on the tuned
parameters, the scheduler is tested against various scenarios.
The first scenario is the largest scenario adopted by the 3GPP,
which shows the potential of the NN-based scheduler to
handle the high dimensionality that the RL was not suitable
for handling. Then, smaller size environments are simulated
to show the consistency of the NN-based scheduler and its
efficiency as well.

To generate the training labeled samples, MATLAB is used
along with the results of the Best CQI scheduler. A sample
size of 10,000 samples is generated for each training instance
and the data are uploaded to Google Colab for training the
NN. A split of 70%-30% for training and testing for our NN
scheduler is done.

1) TUNING THE NEURAL NETWORK MODEL
As discussed, several parameters need to be tuned in order to
find a model that will generate the best results. The system
parameters used are as given in Table 6.
To determine the best tuning for each parameter, we vary

a certain parameter while fixing the rest of the parameters.
We then plot a range of values of the tested parameter versus
the data rate and compare this with the Best CQI algorithm’s
rate. The number of input and output neurons, as stated
earlier, is Nf .E , it is 1200 in our system with 12 eMBB users
and 100 RBs. First, the system is tuned for the number of
training epochs, as seen in Figure 12. It requires, at least,
550 epochs to begin to converge to a suitable value. This
large number of epochs is needed due to the large dimensions
of the input and output layers. In addition, the system used
is stable as it keeps the results to about 250 epochs after
the 550 epochs, as opposed to other systems which diverge
quickly from the optimal values.

Second, the number of hidden layers is tested, as shown
in Figure 13, while keeping the number of training epochs
constant at 600 epochs. It is clear that the optimal number of
layers is 2 since it generates the highest rate. It is clear that
for only one hidden layer, the NN did not grasp the system
behavior to reach a good performance due to the insufficient
non-linearity. In contrast, when increasing the number of
hidden layers, the system will require a larger number of

FIGURE 12. Rate versus number of epochs.

FIGURE 13. Rate versus number of hidden layers.

FIGURE 14. Rate versus number of neurons per hidden layer.

epochs to train and converge, as in the case of the 4 hidden
layers.

Next, the number of neurons per layer is tested. A set of
small number of neurons was tested first. However, it showed
inefficiency in training so it was dropped. As shown in
Figure 14, the best number of neurons per hidden layer is
1700 as it generates the highest rate in our experiment. Both
1500 and 2100 neurons generate near-best results but not as
high as the 1700 neurons.

Lastly, the data rate is plotted versus the neurons’ learning
rate. As shown in Figure 15, the optimal learning rate is 10−4.
In the case of a low learning rate, the system did not have
enough time to learn the optimal policy to reach a solution.
In contrast, for a high learning rate, the results keep fluctuat-
ing and do not reach the best or near-best performance, as in
the cases of 10−3 and 10−2. In addition, fluctuations decrease
the robustness and reliability of the system.
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FIGURE 15. Rate versus learning rate.

TABLE 7. NN training parameters for scenario 3.

FIGURE 16. Comparing the NN model with the different scheduling
algorithms for 100 RBs.

Based on the above discussions, the best parameters used
for training is 600 epochs with 2 hidden layers and 1700 neu-
rons per layer with a learning rate that equals 10−4.

2) NN-BASED SCHEDULER’s RESULTS
In this section, we discuss the NN results that are based on the
model defined in Section III-B. The model parameters are as
presented above. The system and the NN model parameters
are as shown in Table 7.
As shown in Figure 16, the NN model is compared with

the Best CQI results after training for different numbers of
eMBB users, E . As illustrated in Figure 16b, the deviation
between the NN model and the Best CQI algorithm is 6%,
which makes sense as there is no reward function or policy as
in the case of RL-based schedulers.

3) NN-BASED SCHEDULER RESULTS FOR LOWER
DIMENSIONS
To make sure that our proposed technique works better or at
least the same for other environments, an additional opera-
tional scenario is tested with different dimensions [35]. For
this scenario, a BW of 5 MHz is used with 25 RBs. Extensive

FIGURE 17. Comparing the NN model with the different scheduling
algorithms for 25 RBs.

testing is done to tune the parameters as in the previous
section, with the goal to change the least possible number of
parameters. The adopted parameters are the same as Table 7,
however, the BW is 5 MHz, the number of neurons/layer is
400, the number of frequency slots, Nf is 25 and the number
of training epochs is 600.

It is clear in this scenario that the main difference from
the previous scenario is using fewer neurons per layer as
compared to the larger scale scenario. Figure 17 shows a
comparison among the different scheduling techniques along
with the adopted NN model. As shown in Figure 17(a), the
NN scheduler performs nearly the same as the GA scheduler
in terms of accumulated rate but with real-time operation,
after training. In Figure 17(b), it is shown that the maximum
deviation from the Best CQI scheduler is 1.2%.

From the previous results, it can be concluded that the NN
approach is a powerful tool that is applicable to different
scenarios and system dimensions. In addition, the NN-based
scheduler reaches nearly the same results as the GA scheduler
with nearly no processing time after training.

4) COMPARING THE RL-BASED, THE NN-BASED, AND
MIXED SCHEDULERS
The main comparison points between the ML-based sched-
ulers that we proposed in this study, namely, the RL and
NN schedulers, are illustrated in Table 8. As shown in this
table, the dimensions of the RL scheduler are of exponential
complexity as opposed to the linear relationship between each
factor for the NN scheduler. Therefore, the RL scheduler is
usable only in low-dimension environments that range e.g.,
from 6 RBs to 10 RBs. On the other hand, the NN scheduler
is scalable for all dimensions. In our simulated environments,
we experimented with 25 RBs, 75 RBs, and 100 RBs for
the NN scheduler which generated near-optimal results. It is
evident that both schedulers result in a real-time operation,
which is the main reason for adopting the ML approaches.
The main advantage of the RL scheduler compared to the
NN scheduler is the number of neurons in the hidden layers.
As shown in the table, the number of neurons per layer in the
NN approach is much higher than in the RL approach. How-
ever, we were able to train the largest environments using, the
open-source, Google Colab GPU for the NN approach. It is
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TABLE 8. Comparison between the RL, the NN schedulers, and the
adopted mixed scheduler.

clear that the NN scheduler has a lower deviation percentage
compared to the RL scheduler. The NN scheduler achieves
up to 99% of the performance of the Best CQI scheduler
in the 25 RBs environment compared to 98% for the RL
scheduler in the 10 RBs environment. Table 8 also compares
the used ML techniques and the mixed scheduler defined in
Algorithm 2. First, our proposed mixed scheduler is consid-
ered the most robust and reliable compared to the classical
scheduling algorithms in the sense that it produces near-
optimal real-time results without violating any of the system’s
requirements, as discussed in Section IV. In addition, it pro-
vides a very small deviation from the Best CQI algorithm.
However, as evident from its complexity, for systems with
a large number of eMBB users and frequency slots, it will
become impractical with non-satisfactory performance since
it will require high processing power and will not provide
real-time operation.

V. CONCLUSION
In this paper, several topics related to the uplink resource
allocation scheduling in mixed-traffic cellular networks are
studied. First, the probability of delay-bound violation of
the URLLC traffic is derived for a single cell. Then, The
uplink resource allocation optimization problem is defined.
Due to the combinatorial nature of the problem, it is sub-
divided into two sub-problems without affecting optimality.
In the first sub-problem, several parameters are simulated to
understand their effect on the URLLC traffic. In the second
sub-problem, different scheduling techniques from the liter-
ature are discussed. In addition, a novel mixed scheduler is
designed to mitigate the problems of the schedulers in the
literature in addition to providing a fast processing time. The
results show that the proposed mixed scheduler produces the
best sub-optimal results along with satisfying the system’s
constraints. Next, two machine learning approaches are pro-
posed to design the UL schedulers for real-time operation;
the RL-based schedulers and the NN-based schedulers. Sev-
eral environments are simulated and the results showed that
the RL-based schedulers for all the adopted policies have a

maximum deviation of 2.5% from the highest accumulated
rate along with satisfying the minimum rate constraint. While
there might be other RL models, the problem with all these
models is the explosion of the action space. The results show
the applicability of the NN-based scheduler in large environ-
ments with a maximum deviation that is maintained at 6%.
In addition, the NN-based scheduler is the only scheduler that
can provide real-time operation in large environments.
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