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ABSTRACT Traffic offloading in cellular networks is considered an evolving application of unmanned aerial vehicles 

(UAVs). UAVs have attractive characteristics for this application, such as the ease of deployment, the relatively low cost and 

the line-of-sight signal propagation. This paper proposes a machine learning-based deployment of UAVs as temporary base 

stations (BSs) to complement cellular communication systems in times of excess traffic loads. In this role, the UAV is tasked 

with the proper sizing of the excess mixed traffic demands on the terrestrial BSs and the subsequent offloading of this traffic, 

given its different QoS requirements. We achieve this objective by optimizing the number of needed UAVs and their three-

dimensional (3D) positions. A traffic estimation technique based on the Autoregressive Integrated Moving Average (ARIMA) 

model is utilized to estimate the mixed traffic demand. Our proposed machine-learning approach, based on the reinforcement 

learning (RL) methodology, aims to obtain real-time results close to the solution’s optimal bound. Simulation results show that 

the proposed RL solution achieves its close-to-optimal real-time objectives. The proposed UAV deployment approach is also 

shown to clearly outperform a commonly used generic technique for UAVs deployment in such situations. 

INDEX TERMS mixed traffic estimation, network traffic offloading, reinforcement learning, UAV 

deployment 

I. INTRODUCTION 

The unmanned aerial vehicles (UAVs) have attracted much 

attention in the past few years for use in the different areas 

of communication systems [1]. This is due to their high 

mobility, flexible deployment, low cost, and line-of-sight 

(LoS) propagation in air-to-ground communication links. In 

some public events, the communication traffic demands may 

become extremely high. This can also be the case when 

natural emergencies strike as the communication 

infrastructure may become unavailable or insufficient. In 

such cases, UAVs can be used to augment or replace parts of 

the communications infrastructure. That is, the UAV acts as 

the radio access station, or base station (BS), for the 

communication service users. The UAVs can also collect or 

offload the network data for the purpose of reducing the 

computational efforts of some network devices as in the 

machine-to-machine (M2M) communication applications 

[2], [3]. In these utilizations, the UAV must be equipped with 

the needed hardware and communication protocols to 

properly conduct its responsibilities. It should also be 

appropriately positioned, with sufficient bandwidth, in the 

area where the users need communication services to fulfill 

its mission efficiently. 

Offloading high traffic demands using UAVs has recently 

been discussed extensively in the literature. The UAV-based 

solutions proposed in the previous research efforts have 

focused mainly on a static approach by defining 

predetermined fixed trajectories. It is worth noting that most 

of the earlier studies addressed downlink communications, 

which are typically less challenging than the case of uplink 

communications. This is due to the fact that the case of 

uplink traffic involves considering the unpredictable traffic 

level and type of each user. 

In this study, we consider the deployment of UAVs to 

offload excess uplink traffic in cellular networks due to 

significant events with a temporary high density of users, 

e.g., the case of large-scale exhibitions or sports/musical 

events. As illustrated in Figure 1, both malfunctioning and 
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overloaded networks are modeled in our simulation 

scenarios while the UAVs are optimally deployed to support 

the communications in these situations. Also, this study 

evaluates the uplink performance of a mix of two traffic 

types: enhanced mobile broadband (eMBB) and the traffic of 

massive deployments of machine-type communication 

devices (MTCDs). The traffic demand is estimated using a 

traffic sizing model based on the autoregressive integrated 

moving average (ARIMA) model. We focus our study on 

fulfilling user requirements for each traffic type while 

deploying a minimum number of UAVs. We use an 

optimization technique to obtain the optimal bound of the 

solution to this problem. Then, we propose a machine-

learning-based (ML) technique to obtain a real-time solution 

that is close to the optimal bound but with significantly lower 

complexity. 

The novelty of our work lies in the dynamic deployment of 

multiple UAVs in 3D space without having to rely on a fixed 

trajectory. The UAVs move within the deployment area 

according to the instantaneous excess uplink traffic demand 

of the users. The traffic demand of the users is forecasted 

using our developed traffic sizing model. Then, the proposed 

online ML approach learns the uplink data rate pattern of the 

users and determines the minimum required number of 

UAVs and their locations to fulfill users’ demands and 

resource requirements. 

A. RELATED WORK  

Several approaches have been discussed in the literature for 

using UAVs in the downlink direction to provide 

communication services for excess traffic offloading. The 

UAV trajectory design approach is discussed in [4]-[8] to 

achieve maximum downlink data rate for mobile users at 

overloaded cells or the cell edges of cellular networks. The 

study in [4] uses stochastic geometry to position multiple 

UAVs in a chain-like topology as a bridge between the 

overloaded and underloaded BSs. In [5], multi-UAVs 

coordination and offloading schemes are proposed to extend 

coverage to the cell-edge users. This scheduling problem is 

also considered in [6] and [7]. In [6], the fairness between 

the scheduled users is attained by maximizing the minimum 

rate according to the users’ quality of service (QoS) 

requirements. This is done using a successive convex 

optimization technique in a configuration that positions a 

UAV at the edge of three adjacent cells. In [7], a spectrum 

sharing scheme is proposed to partition the total bandwidth 

orthogonally between the UAV and the BS in a UAV-

assisted cellular offloading scheme. The energy efficiency of 

a single deployed UAV is maximized in [8] by jointly 

optimizing the resource allocation, user partitioning, and the 

UAV’s trajectory selection. 

The UAV dynamic positioning for traffic offloading 

basically in the downlink direction is addressed in [9]-[13]. 

In [9], traffic offloading is done using UAVs based on a 

contract designed by the BSs. This work devises a two-stage 

 

Figure 1.  UAV-assisted coverage scenario 

contract optimization in multi-UAV cellular networks, 

considering both the current traffic demands as well as the 

required UAV energy consumption. Furthermore, the 

authors in [10] use an unsupervised learning approach 

combined with the concept of electrostatic forces of 

attraction and repulsion to obtain the minimum number of 

required UAVs and their 3D placements to fill the network 

downlink coverage gaps in the areas with some failed BSs. 

In [11], the minimization of the number of UAVs is done by 

using an optimization model with three constraints, namely, 

the ratio of covered users by each UAV, the downlink rate, 

and the limited UAV availability due to the charging time. 

The study in [12] proposes a deployment that limits the BSs 

to the minimum power levels that are sufficient to provide 

the users’ minimum QoS demands with the help of UAVs. 

In [13], the sum of downlink data rates is maximized by the 

joint optimization of the UAVs’ altitude, transmission power 

and the percentage of offloaded users. 

Moreover, the traffic estimation-based UAV deployment is 

discussed in [14]. The data rate estimation is done by 

capturing the downlink traffic density using a Gaussian 

mixture function. The authors also utilize the weighted 

expectation maximization approach to estimate the areas of 

high traffic demands with respect to the users’ distribution. 

The overloaded BS broadcasts a signal that contains 

information about the downlink demand and the service area 

to request the assistance of a UAV. The BS designs contracts 

for all UAVs and then chooses the UAV that mainly fulfills 

the transmission power requirements. 

The studies discussed above investigate the use of UAVs 

to support traffic offloading in the downlink direction. 

However, few other studies have investigated the uplink 

communications supported by deploying UAV-mounted 

BSs. The work in [15] tests the performance of augmenting 

a network of terrestrial BSs in both the uplink and downlink 

directions with a single UAV base station. The authors 

consider the problem of maximizing the average data rate 

while controlling the transmission power without 

considering traffic offloading scenarios. The M2M network 

deployments are studied in [16] and [17]. The network 
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performance is regulated by establishing communications 

with the UAV-mounted BSs deployed at optimal locations 

while considering the physical resource allocation of the 

deployed UAVs in the absence of the terrestrial 

infrastructure. 

In this study, we address the shortcomings in previous 

works by using a traffic estimation model to predict the 

different traffic demands of the users in the uplink direction. 

Then, we propose a low-complexity ML-based algorithm for 

the dynamic deployment of multi-UAVs in a 3D space to 

serve excess uplink traffic demands that the existing 

terrestrial BSs cannot normally handle. The proposed 

technique is designed to perform in real-time with 

performance close to the optimal bound that is also 

determined in this study. 

B. PAPER CONTRIBUTIONS AND ORGANIZATION 

The main objectives of this study are summarized as follows. 

• We formulate a traffic estimation model to size dynamic 

uplink excess traffic demands using the ARIMA model. 

This traffic is a mix of eMBB and MTCD users. 

• We propose an algorithm that provides the optimal 

bound for the 3D locations of the minimum required 

number of UAVs to satisfy the overload traffic demands. 

• We propose an ML-based technique for the dynamic 

determination of the number and positions of the UAVs 

to satisfy the instantaneous excess uplink traffic 

demand. 

• We provide a detailed analysis and evaluation of the 

computational complexity of the proposed ML-based 

solution against that of the optimal solution to show the 

relative merit from the real-time perspective. 

• We perform a complete evaluation study for the 

proposed techniques as well as a selected benchmark 

technique to demonstrate the performance 

characteristics of the proposed solutions under different 

operating scenarios. 

The rest of this paper is organized as follows. In Section II, 

the system model and the problem formulation are presented. 

Section III discusses the optimal solution to the problem and 

the proposed ML-based approach with their complexity 

analysis. Section IV introduces the evaluation results based 

on several operational scenarios. Finally, Section V 

concludes this paper. 

II. SYSTEM MODEL AND PROBLEM FORMULATION  

In this section, we present the system model that we use for 

our problem. It mainly considers the channel model and the 

network setup considered in this study. Then, we formulate 

an optimization problem that depends on the excess traffic 

prediction model that we also present in this section. 

A. CHANNEL MODELLING 

We consider an urban area where terrestrial BSs (TBSs) are 

deployed to serve a population of cellular communication 

users. It has been reported that the coverage of these TBSs is 

not fulfilling the user communication needs under some 

events. Let 𝑇 denote a set of TBSs covering a certain 

geographical area. Let U be a set of UAV-mounted base 

stations to be deployed to assist with handling the excess 

traffic demand on the TBSs. The set of all combined BSs is 

𝐺 = 𝑇 ∪ 𝑈. The serving BS is denoted by the superscript 𝑥 

where 𝑥 ∈ 𝐺. The set of served users in the deployment area 

is denoted as 𝐸 such that each user of this set is represented 

by a subscript 𝑖. The communication links between the BSs 

and users are modeled as block fading channels. Each 

channel is assumed to be constant within the fading block but 

generally changes from one block to another. The time 

duration of each fading block denoted as 𝑏 is smaller than 

each time slot period, so the number of fading blocks in one 

time slot is denoted as 𝐿 such that 𝑏 ∈ 𝐿 and 𝐿 > 1. The 

UAVs at high altitudes are likely to have LoS links with the 

users. The channel gain ℎ𝑖
𝑥(𝑡, 𝑏) between a user 𝑖 and an 

aerial/terrestrial BS 𝑥 in the fading block 𝑏 of a time slot 𝑡 is 

 ℎ𝑖
𝑥(𝑡, 𝑏) = √𝜌𝑖

𝑥(𝑡) 𝑔𝑖
𝑥(𝑡, 𝑏), (1) 

where 𝜌𝑖
𝑥(𝑡) is the large-scale fading component of the 

average channel power gain that includes the channel 

attenuation caused by the path loss and shadowing between 

the user 𝑖 and the serving BS 𝑥 and 𝑔𝑖
𝑥(𝑡, 𝑏) is the small-

scale fading which is a function of the Rician factor 𝑘𝑖
𝑥 and 

is modeled as 

 𝑔𝑖
𝑥(𝑡, 𝑏) = √

𝐾𝑖
𝑥(𝑡,𝑏)

𝐾𝑖
𝑥(𝑡,𝑏)+1

𝑔 + √
1

𝐾𝑖
𝑥(𝑡,𝑏)+1

�̃�, (2) 

where 𝑔 represents the deterministic LoS component of the 

channel as |𝑔| = 1, �̃� is a circularly symmetric complex 

Gaussian random variable that represents the random 

scattered components and 𝐾𝑖
𝑥(𝑡, 𝑏) is the Rician factor of the 

user 𝑖 in the fading block 𝑏 of the time slot 𝑡. The Rician 

factor for each user differs from one time slot to another. 

However, it is found to be related to the elevation angle 

between the user 𝑖 and the serving BS 𝑥 [18]. When the 

elevation angle increases, the Rician factor increases because 

the communication link would have less scattering and larger 

portion of the LoS component. When the elevation angle in 

each time slot has a small change, the Rician factors in 

different fading blocks are assumed to be identical as 

𝐾𝑖
𝑥(𝑡, 𝑏) = 𝐾𝑖

𝑥(𝑡), ∀ 𝑏 ∈ 𝐿. The elevation angle-based 

Rician factor is calculated as 

 𝐾𝑖
𝑥(𝑡) =  𝜆1𝑒𝜆2Ɵ𝑖

 𝑥(𝑡), (3) 

where 𝜆1 and 𝜆2 are environmental coefficients and Ɵ𝑖
 𝑥(𝑡) =

180

𝜋
 tan−1 𝐻𝑥(𝑡)

𝐵𝑖
𝑥(𝑡)

 is the elevation angle between the diagonal 

distance 𝑑𝑖
𝑥(𝑡) and the horizontal ground projection 

distance 𝐵𝑖
𝑥(𝑡) between the serving BS 𝑥 and the user 𝑖 at a 

time slot 𝑡. This direct communication link distance can be 

calculated as 
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 𝑑𝑖
𝑥(𝑡) = √𝐻𝑥

2(𝑡) +  𝐵𝑖
𝑥2(𝑡), (4) 

where 𝐻𝑥(𝑡) is the altitude of the serving BS 𝑥. From the 

direct channel distance 𝑑𝑖
𝑥, the average large-scale channel 

power gain 𝜌𝑖
𝑥(𝑡) can be calculated as 

 𝜌𝑖
𝑥(𝑡) = 𝜌0 (𝑑𝑖

𝑥(𝑡))
−𝜎

, (5) 

where 𝜌0 is the channel gain at a reference distance of 1 

meter and can be calculated as 𝜌0 = (
4 𝜋 𝑓𝑐

𝑐
)

−2

as 𝑓𝑐 is the 

carrier frequency, 𝑐 is the speed of light, 𝜎 is the path loss 

exponent. 

To formulate the channel capacity, the channel signal-to-

interference-plus-noise ratio (SINR) is calculated as follows 

 Γ𝑖
𝑥(𝑡) =  

∑ |ℎ𝑖
𝑥(𝑡,𝑏)|

2
 𝐿

𝑏 𝑃𝑖

𝑁0+∑ ∑ |ℎ𝑖
𝓏(𝑡,𝑏)|

2𝐿
𝑏 𝑃𝑖𝓏∈𝐺\{𝑥} 

, (6) 

where 𝑃𝑖  is the transmission power and 𝑁0 is the noise power. 

B. PROBLEM FORMULATION 

The problem that we try to solve is how to deploy a UAV-

assisted heterogenous network to offload excess traffic of a 

cellular structure due to public events, for example, with a 

temporary high population of users. By this heterogenous 

aerial and terrestrial BSs deployment, we aim to size the 

users’ traffic in the uplink direction to provide an acceptable 

SINR level per user and ensure that excess user data traffic 

demands are properly served. The instantaneous achievable 

data rate is targeted to satisfy the estimated traffic demands 

of the users. We consider a mix of two traffic types, namely, 

the eMBB traffic and the massive machine-type 

communications (mMTC) that consist of delay-tolerant 

camera devices with large packet sizes and wireless sensors 

with smaller packet sizes and lower arrival rate. The 

instantaneous achievable data rate 𝑅𝑖
𝑥(𝑡) of the user 𝑖 

associated with a serving BS 𝑥 can be calculated as 

 𝑅𝑖
𝑥(𝑡) =  𝐵𝑊 log2(1 + Γ𝑖

𝑥(𝑡)), (7) 

where 𝐵𝑊 is the channel bandwidth. 

The system can estimate the users’ traffic demands using a 

periodic data traffic modeling approach. Depending on this 

prediction, the formulated problem is solved to determine the 

UAV deployment required to cover any excess traffic needs. 

We use the multiplicative ARIMA model to predict the 

mixed eMBB and mMTC traffic demands. The ARIMA 

model is the most widely used approach in time series 

forecasting [19]. It predicts the future traffic depending on 

the previous information known about the traffic using a 

linear combination of predictors. The term autoregression 

(AR) indicates that the changing traffic regresses on its own 

lagged, or prior, values. The forecasted traffic using the AR 

model of order 𝑝 at a time instant 𝑡 can be written as  

 𝑦𝑖
𝐴𝑅(𝑡) = 𝑐 + 𝛽1𝑦𝑖(𝑡 − 1) + ⋯ + 𝛽𝑝𝑦𝑖(𝑡 − 𝑝) + 𝜀𝑖(𝑡),   (8) 

where y𝑖
AR(𝑡) is the estimated traffic of a user 𝑖 at time 𝑡 

using the AR formulation, 𝑐 is a constant, 𝛽1,…,𝑝 are the 

regression weights which are obtained from the prior 

observations known about the concerned mixed traffic 

demands, 𝑦𝑖(𝑡) is the traffic demand associated with a user 𝑖 
at a time instant 𝑡 and εi(t) is a white noise which is sampled 

from a normal distribution at a time instant 𝑡. This AR model 

is similar to the typical multiple regression models, but it 

uses the lagged values of y𝑖(𝑡) as predictors. 

If the time series data shows upward or downward trends, 

the moving average (MA) model is integrated to the AR 

regression model in (8) to enhance the estimation. The MA 

part of the overall ARIMA model uses the prior error terms 

of εi(t) to cope with the trends of the traffic data in the 

regression model. The MA regression model of order 𝑞 at 

instant 𝑡 can be written as 

 𝑦𝑖
𝑀𝐴(𝑡) = 𝑐 + 𝜀𝑖(𝑡) + 𝛷1𝜀𝑖(𝑡 − 1) + ⋯ + 𝛷𝑞𝜀𝑖(𝑡 − 𝑞),  (9) 

where 𝜙1,…,𝑞 are the regression weights of the MA model. 

Since the traffic data might hold an upward or downward 

trend, the ARIMA model is obtained when the time series is 

differenced by a degree of 𝑑 to develop a stationary time 

series with a constant mean for the AR regression equation. 

The differenced traffic demand time series of the user 𝑖 is 

therefore written as 

𝑦𝑖
′(𝑡) = 𝑐 + 𝛽1𝑦𝑖

′(𝑡 − 1) + ⋯ + 𝛽𝑝𝑦𝑖
′(𝑡 − 𝑝) +

                𝛷1𝜀𝑖(𝑡 − 1) + ⋯ + 𝛷𝑞𝜀𝑖(𝑡 − 𝑞) + 𝜀𝑖(𝑡),

  (10) 

where 𝑦𝑖
′(𝑡) is the differenced time series representing the 

change between the consecutive data points by a degree of 

𝑑. This differenced time series can then be written as 

𝑦𝑖
′(𝑡) = 𝑦𝑖(𝑡) − 𝑦𝑖(𝑡 − 1) − ⋯ − 𝑦𝑖(𝑡 − 𝑑 − 1) −

                         𝑦𝑖(𝑡 − 𝑑),  (11) 

If the time series holds a seasonality trend of the observation 

data, the ARIMA model degrees (𝑝, 𝑑, 𝑞) are repeated 

considering the seasonality trend of degrees (𝑃, 𝐷, 𝑄)𝓈 

where 𝓈 is the degree at which the data trend is repeated. The 

overall ARI A model that is used to predict each user’s 

traffic demands 𝑦𝑖(𝑡) from the prior observations that are 

known about the mixed users’ traffic demands can be 

represented as ARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝓈. 

Based on the quantified traffic demands of the ARIMA 

model, the UAV deployment problem is formulated. The 

objective function of this problem is to minimize the total 

number of deployed UAVs to provide communication 

services to the anticipated excess traffic demands. The 

optimization problem can therefore be written as 

 min
𝑋𝑥,𝑌𝑥,𝐻𝑥,𝑢

|𝑈| , ∀𝑥 ∈ 𝑈, (12) 

𝑠. 𝑡. 𝐵𝑖
𝑥(𝑡) ≤ 𝑟𝑥(𝑡), ∀𝑖 ∈ 𝐸, (12a) 

 𝑅𝑖
𝑥(𝑡) ≥ 𝑦𝑖(𝑡), ∀𝑖 ∈ 𝐸, (12b) 

 Γ𝑖
𝑥(𝑡) ≥ Γ𝑚𝑖𝑛 , ∀𝑖 ∈ 𝐸, (12c) 
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 𝑢 ≤ 𝑢𝑚𝑎𝑥 , 𝑢 ∈ ℕ, (12d) 

 𝑫𝑚𝑖𝑛 ≤ [𝑋𝑥, 𝑌𝑥 , 𝐻𝑥] ≤  𝑫𝑚𝑎𝑥 ∈ ℝ3, (12e) 

where |𝑈| is the length of the set of UAVs such that 𝑈 =
{1,2, … , 𝑢}, 𝑢𝑚𝑎𝑥 is the maximum allowable number of 

UAVs that can be deployed, 𝑋𝑥 and 𝑌𝑥  are the two-

dimensional (2D) coordinates of the serving BS 𝑥 in 𝑈, 𝑟𝑥 is 

the ground coverage cell radius of the associated BS 𝑥 in 𝐺, 

Γ𝑚𝑖𝑛 is the SINR minimum threshold and 𝑫𝑚𝑖𝑛  and 𝑫𝑚𝑎𝑥  

are the boundaries of the deployment area. The constraint in 

(12a) defines the user associations to the BSs to ensure that 

all users are covered by at least one BS. Then, the constraint 

in (12b) controls the UAVs deployment using the 

instantaneous achievable data rate to cover the estimated 

overall traffic demand 𝑦𝑖(𝑡) at each time instant 𝑡 for all 

users in 𝐸. Finally, the constraint in (12c) limits the air-to-

ground channel attenuation and the possible interferences 

among the deployed BSs. 

III. PROPOSED UAV DEPLOYMENT APPROACHES  

In this section, we introduce a novel ML-based technique to 

address the uplink traffic sizing problem that properly 

deploys the UAV-mounted BSs to satisfy the excess traffic 

loads. The objective is to deploy the minimum possible 

number of UAVs to achieve this purpose at a cost close to 

the optimal minimum value. In order to calculate the optimal 

bound of this deployment, we also introduce an 

optimization-based algorithm that establishes this bound. 

This optimal algorithm cannot produce its results in real-time 

fashion in such dynamic environments due to its high 

complexity. Hence, our proposed ML technique, based on 

the reinforcement learning methodology, is devised to 

produce real-time results at a near-optimal deployment cost. 

A. THE OPTIMAL BOUND OF THE SOLUTION  

The optimization problem formulated in (12) is found to be 

a mixed-integer nonlinear programming (MINLP) problem 

that becomes intractable in high-dimensional spaces. 

Therefore, the optimal bound of the solution can be obtained 

using the branch and bound (BnB) algorithm [20] that 

branches along the integer variable of the problem. This 

integer variable represents the number of the deployed UAV 

BSs. The resulting subproblem is adopted to be a nonlinear 

programing (NLP) problem that can be solved using a non-

differentiable optimization technique since the derivatives of 

the constraint functions cannot always be guaranteed along 

the search space dimensions. Hence, we utilize the particle 

swarm optimization (PSO) algorithm [21] to add some 

heuristics in the search for a suboptimal solution for the 

nonlinear subproblem. These added heuristics allow the 

problem to be solved within the class of NP-complete 

problems that use polynomial algorithms to find near-

optimal solutions. Otherwise, the optimization problem 

becomes exponentially intractable with high dimensional 

spaces when we solve with highly dense network 

deployments. 

To implement this optimization algorithm, the penalty 

method proposed in [22] is used to formulate an 

unconstrained objective function that represents the 

constraints of the problem in (12). Then, the NLP 

subproblem is reformulated as follows. 

min
𝑋𝑥,𝑌𝑥,𝐻𝑥

𝑓(𝑋𝑥 , 𝑌𝑥 , 𝐻𝑥) =

                        min
𝑋𝑥,𝑌𝑥,𝐻𝑥

∑ 𝜓𝑖𝐶𝑖(𝑋𝑥, 𝑌𝑥 , 𝐻𝑥)𝑖∈𝐸 ,   ∀𝑥 ∈ 𝑈, (13) 

where 𝑓(𝑋𝑥 , 𝑌𝑥 , 𝐻𝑥) is the exact penalty function and 𝜓𝑖 > 0 

is the penalty coefficient that is chosen to give some 

priorities and tolerances to the infeasible constraints of the 

original problem in (12) and control the constraint penalties 

𝐶𝑖(𝑋𝑥 , 𝑌𝑥 , 𝐻𝑥). These priorities and tolerances are given with 

respect to each user’s traffic demands such that the e    

traffic is given the highest priority to access the deployed 

network since the eMBB is associated with the most urgent 

traffic transmissions in our network configuration. The 

constraint penalties are given as 

𝐶𝑖(𝑋𝑥 , 𝑌𝑥 , 𝐻𝑥) = max(0, 𝐵𝑖
𝑥(𝑡) − 𝑟𝑥(𝑡))

2
+ max(0, 𝑦𝑖(𝑡) −

𝑅𝑖
𝑥(𝑡))

2
+ max(0, 𝛾𝑡ℎ − 𝛾𝑖

𝑥(𝑡) )2 , ∀𝑖 ∈ 𝐸, 𝑥 ∈ 𝐺, (14) 

These constraint penalties will be driven to zero if the 

locations of the serving UAV BSs satisfy the constraints of 

the problem in (12). Accordingly, each particle of the PSO 

algorithm represents a potential location of the UAVs. The 

heuristic learning exemplars of this technique utilize the 

information gathered by the global, local, and personal best 

positions obtained by the whole swarm particles. Algorithm 

1 provides the details of the PSO procedures while the 

number of the UAV-BSs is obtained according to the 

branching rule of the BnB algorithm, as illustrated in the 

procedures of Algorithm 2. 

B. THE MACHINE LEARNING-BASED SOLUTION  

This algorithm is based on the Q-learning [23] technique 

which is an ML-based technique under the category of 

reinforcement learning. The algorithm is used to find the 

optimal policy that maximizes the total reward in successive 

steps. Q-learning is quite suitable for our dynamic UAV 

deployment problem because it mainly seeks to find the best 

set of UAV deployment actions by predicting the level of 

fulfillment of the excess traffic demands in successive 

algorithm iterations. Our adopted ML model aims to speed 

up reaching the best deployment scenario to meet the excess 

traffic demands (i.e., maximize the reward) of the UAV 

deployment calculator (i.e., agent) over the course of the 

progress of the algorithm. The adopted Q-learning model 

consists of four elements: the Q-value, the state space, the 

action space, and the reward [23], [24]. At each time slot t, 

the deployment agent chooses a UAV positioning action 

according to the Q-value to maximize the long-term reward. 
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Q-value: As the UAVs’ positions change to a given state 

𝑠 by a given deployment action 𝑎, the state-action value 

function 𝑄𝜋(𝑠, 𝑎) represents the expected demand-

fulfillment reward for selecting the action 𝑎 in state 𝑠 and 

then the following deployment policy 𝜋. The optimal Q-

value function can be calculated for 𝑠𝑡 and 𝑎𝑡 by 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡) −

                          𝑄(𝑠𝑡 , 𝑎𝑡)],       (15) 

where 𝛼 is the learning rate and 𝛾 is the discount factor. The 

deployment agent observes a UAV positioning state 𝑠𝑡 from 

a state space 𝑆. The agent carries out a deployment action 𝑎t 

from the discrete action space 𝐴. The taken action 𝑎t at the 

time instant 𝑡 updates the current state 𝑠𝑡 to a new 

deployment state 𝑠𝑡+1. The Q-value is updated 𝑄(𝑠𝑡+1, 𝑎𝑡) 

and the agent receives a traffic demand fulfillment reward 𝑟𝑡.  

Algorithm 1: Heuristic solution of the NLP subproblem 

Input: 𝑓(𝑋𝑥, 𝑌𝑥 , 𝐻𝑥), 𝑫𝑚𝑖𝑛 , 𝑫𝑚𝑎𝑥  

Output: 𝑋𝑥
∗, 𝑌𝑥

∗, 𝐻𝑥
∗, ∀𝑥 ∈ 𝑈 

1. set PSO parameters  

//swarm size, unification factor, inertia and acceleration 

constants, neighbors ring size, the maximum iterations 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

2. initialize a swarm 𝒮 of size |𝒮|  
//uniformly distributed swam with upper and lower 

bounds  𝑫𝑚𝑖𝑛, 𝑫𝑚𝑎𝑥  of 𝑷𝔰 ∶ 𝑷𝔰 = [𝑋𝑥, 𝑌𝑥 , 𝐻𝑥], ∀𝑥 ∈ 𝑈, 𝔰 ∈
𝒮 

3. initialize stagnant counters 𝑠𝑡 = 0 and 𝑐𝑛𝑡 = 0 
4. initialize refresh cycle 𝑟𝑐 = 0.05 × 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 
5. calculate 𝑓(𝑷𝔰 ), ∀𝔰 ∈ 𝒮 
6. obtain the global, local and personal best locations of each 

particle in 𝒮  
//let the global best position be denoted as 𝑷𝑔 

7. set the maximum penalty bound of  𝑓(𝑋𝑥, 𝑌𝑥 , 𝐻𝑥)  

//such that 𝑓𝑚𝑎𝑥 = 𝑓(𝑷𝑔 ) 

8. initialize random particle velocities 𝑽𝔰 = 𝑟𝑎𝑛𝑑, ∀𝔰 ∈ 𝒮 
9. for 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 
10. if 𝑐𝑛𝑡 > 𝑟𝑐, then 
11. if 𝑠𝑡 == 0, then 
12. set 𝑠𝑡 and reset 𝑐𝑛𝑡 
13. reinitialize 𝑽𝔰 = 𝑟𝑎𝑛𝑑, ∀𝔰 ∈ 𝒮 
14. else  
15. break 
16. end if 
17. end if  

18. update 𝑷𝔰 ∶ 𝑷𝔰 ∈ [𝑫𝑚𝑖𝑛 , 𝑫𝑚𝑎𝑥] given 𝑽𝔰, ∀𝔰 ∈ 𝒮 

19. compute 𝑓(𝑷𝔰 ), ∀𝔰 ∈ 𝒮 
20. update the global, local and personal best positions of 𝒮  
21. update particles’ velocities 𝑽𝔰, ∀𝔰 ∈ 𝒮 

22. if 𝑓(𝑷𝑔 ) == 𝑓𝑚𝑎𝑥, then  

   particles’ stagnation detection 
23. increment 𝑐𝑛𝑡 
24. else 

// update the penalty bound 
25. reset 𝑠𝑡, 𝑐𝑛𝑡 

26. 𝑓𝑚𝑎𝑥 = 𝑓(𝑷𝑔 )  

27. end if 
28. end 
29. [𝑋𝑥

∗, 𝑌𝑥
∗, 𝐻𝑥

∗], ∀𝑥 ∈ 𝑈 = 𝑷𝑔 

Algorithm 2: BnB technique for the optimal bound 

Input: 𝑓(𝑋𝑥, 𝑌𝑥 , 𝐻𝑥), 𝑫𝑚𝑖𝑛 , 𝑫𝑚𝑎𝑥  

Output: 𝑋𝑥
∗, 𝑌𝑥

∗, 𝐻𝑥
∗, 𝑢∗, ∀𝑥 ∈ 𝑈 

1. set an upper bound to the constraint penalty function 𝑓𝑚𝑎𝑥  
2. branch to the first node 𝑢 = 1 //start at the first branch 
3. while 𝑢 ≤ 𝑢𝑚𝑎𝑥  
4. formulate the unconstrained objective function in (13) 
5. solve the resulting NLP subproblem at 𝑢 
6. get 𝑋𝑥

∗, 𝑌𝑥
∗, 𝐻𝑥

∗, ∀𝑥 ∈ 𝑈 by calling the function detailed in 
Algorithm 1 

7. calculate 𝑓(𝑋𝑥 , 𝑌𝑥, 𝐻𝑥): 𝑋𝑥 , 𝑌𝑥, 𝐻𝑥, ∀𝑥 ∈ 𝐺 
8. if 𝑓(𝑋𝑥, 𝑌𝑥 , 𝐻𝑥)  < 𝑓𝑚𝑎𝑥 , then //optimal solution is 

found 
9. break 
10. else 
11. bound the branch 𝑢 
12. go to branch 𝑢 + 1 
13. end if 
14. end 
15. [𝑋𝑥

∗, 𝑌𝑥
∗, 𝐻𝑥

∗, 𝑢∗] = [𝑋𝑥 , 𝑌𝑥, 𝐻𝑥, 𝑢]: 𝑋𝑥 , 𝑌𝑥, 𝐻𝑥, ∀𝑥 ∈ 𝑈  

The optimal policy 𝜋 is the epsilon-greedy action selection 

policy [25] which discovers the next best action, according 

to the current state, to maximize the Q-function at each step. 

The selection policy has a decision parameter 𝜖 such that 𝜖 ∈
[0,1]. The agent sometimes picks random actions in order to 

visit new states and actions to explore the environment. The 

epsilon-greedy action is determined as  

 𝑎𝑡 = {
𝑟𝑎𝑛𝑑,                        𝑖𝑓 𝛿 > 𝜖

arg max
𝑎∈𝐴

𝑄𝜋(𝑠𝑡 , 𝑎),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , (16) 

where  δ  is a uniform random variable updated at each step 

from the range 0 ≤ δ ≤ 1. 

State Representation: The state of the environment is 

represented by the positions of UAVs defined as [𝑋𝑥, 𝑌𝑥 , 𝐻𝑥],
∀𝑥 ∈ 𝑈. The boundaries of the state space of each UAV are 

defined in 𝑫𝑚𝑖𝑛 and 𝑫𝑚𝑎𝑥. 

Action Space: At each time step, the agent carries out an 

action 𝑎t where 𝑎𝑡 ∈ 𝐴, which involves picking a direction 

for each UAV. The action space has all the combinations for 

the possible directions for the UAVs to take which could be 

either an incremental or a decremental step in any of the 3D 

directions. 

Reward: The reward function is formulated in terms of the 

constraints in (12), representing the ratio of active users 

within the coverage of the associated cell and the ratio of 

users with satisfied data rates and the SINR. When the 

number of satisfied active users increases, the reward 

increases, indicating that the solution converges. The 

increase in the number of UAVs causes a negative reward 

because we aim at minimizing the number of deployed 

UAVs. The reward function is adapted from the exact 

penalties given in (14) such that 

 𝑟𝑡 = ∑ −𝐶𝑖(𝑋𝑥, 𝑌𝑥 , 𝐻𝑥)𝑖∈𝐸 , ∀𝑥 ∈ 𝐺 . (17) 

The max function in (14) allows the summation of the 

differences between the served traffic and the demand to be 

unbiased towards the users with satisfied requests. 
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Algorithm 3 shows the steps of the proposed technique to 

obtain the minimum number of required UAVs and their 

respective positions. Based on the value of 𝑢𝑚𝑎𝑥, the agent’s 

discrete action space is defined. Initially, only one UAV is 

deployed with its state (3D position) that is determined 

randomly. On each episode, the agent takes actions to place 

the UAV in the deployment area while observing the value 

of the reward which indicates the fulfillment of the 

constraints in (12). The agent starts by exploring the 

environment. After several iterations, it would have 

improved its knowledge about the environment, allowing it 

to choose the next action that maximizes the reward. This 

process is iterated until the agent reaches the locations with 

the maximum reward in the deployment area. If the users are 

not satisfied after a defined number of episodes 𝑒𝑝𝑚𝑎𝑥, the 

number of UAVs is increased by one, and the agent starts 

trying to satisfy the constraints with the new set of UAVs. 

Once the constraints are met, the agent returns the number of 

UAVs, which is the minimum possible number along with 

their 3D locations. The algorithm returns the solution with 

the highest reward if the constraints are not met. 

C. COMPUTATIONAL COMPLEXITY ANALYSIS 

In the following, we analyze the computational complexity 

of the optimal algorithm as well as that of the Q-learning 

based algorithm that we introduced earlier in this section. 

1) COMPLEXITY OF THE OPTIMAL SOLUTION 

The optimal solution is obtained by the procedures 

implemented in Algorithm 2. The worst-case complexity of 

the algorithmic steps can be analyzed using the big-𝑂 

notation, and the overall complexity of Algorithm 2 can be 

expressed by summing up each step time complexity as: 

• The parameter setting functions in the steps from 1 to 3 

need a constant time complexity 𝑂(1). 

• The steps from 3 to 14 are iterated 𝑛 ≔ 𝑢𝑚𝑎𝑥 times. 

Then, the linear time complexity 𝑂(𝑛) is required for 

steps 3 to 14 except for step 5. 

• The complexity of step 5 that runs the PSO procedures 

of Algorithm 1 contributes to the following 

accumulative complexities in a loop of 𝑛 iterations 

𝑂(𝑛) + 𝑂(𝑛𝑚) + 𝑂(𝑛𝑚 log(𝑚)) + 𝑂(𝑛 log 𝑚) +
𝑂(𝑛𝑙) + 𝑂(𝑛𝑚𝑙) + 𝑂(𝑛𝑚𝑙 𝑙𝑜𝑔(𝑚)) + 𝑂(𝑛𝑙 𝑙𝑜𝑔 𝑚) 

such that 𝑚 ≔ |𝒮|, 𝑙 ≔ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥. 

The typical BnB algorithm runs in exponential time 

complexity 𝑂((𝑛 − 1)!) = 𝑂(2𝑛−1). Therefore, we adapted 

the solution of the optimal bound by utilizing the constraint 

that specifies a maximum number of UAVs to limit the BnB 

branches over the integer variable 𝑢 ≔ |𝑈|. Since the 

branching rule runs over a single variable only, the 

complexity of the BnB step can be reduced to linear time 

complexity, as stated in each algorithmic step complexity. 

However, the multiple iterations of step 5 in Algorithm 2 

derive the overall time complexity to be exponential due to 

the term of 𝑂(𝑛𝑚𝑙).  

Algorithm 3: Q-Learning method for the UAV deployment 

Input: 𝑓(𝑋𝑥, 𝑌𝑥 , 𝐻𝑥), 𝑫𝑚𝑖𝑛 , 𝑫𝑚𝑎𝑥  

Output: 𝑋𝑥
∗, 𝑌𝑥

∗, 𝐻𝑥
∗, 𝑢∗, ∀𝑥 ∈ 𝑈 

1. set an upper bound to the constraint penalty function 𝑓𝑚𝑎𝑥  
2. initialize state space 𝑆 and action space 𝐴 for 𝑢 = 1 
3. initialize 𝑄(𝑠, 𝑎), ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 
4. while 𝑢 ≤ 𝑢𝑚𝑎𝑥  
5. for  𝑒𝑝 ← 𝑒𝑝𝑚𝑎𝑥 
6. initialize state 𝑠𝑡 //place 𝑈 randomly in the deployment 
7. for 𝑡 ← 𝑡𝑚𝑎𝑥 //𝑡𝑚𝑎𝑥  is the maximum number of 

episode time steps 
8. find action 𝑎𝑡 from 𝑠𝑡 
9. apply the policy 𝜋 
10. execute the action 𝑎𝑡 
11. observe 𝑠𝑡+1 
12. calculate 𝑟𝑡 
13. update 𝑄(𝑠, 𝑎) 
14. save 𝑠𝑡 ← 𝑠𝑡+1 
15. end 
16. end 
17. if 𝑓(𝑋𝑥, 𝑌𝑥 , 𝐻𝑥)  < 𝑓𝑚𝑎𝑥 , then 
18. break 
19. elseif 𝑢 < 𝑢𝑚𝑎𝑥, then 
20. u = u + 1 //add one UAV to the set 𝑈 
21. increase the state-space 𝑆 and the action space 𝐴 
22. Update 𝑄(𝑠, 𝑎), ∀ 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 //add actions, states 
23. endif 
24. end 
25. [𝑋𝑥

∗, 𝑌𝑥
∗, 𝐻𝑥

∗, 𝑢∗] = [𝑋𝑥 , 𝑌𝑥, 𝐻𝑥, 𝑢]: 𝑋𝑥 , 𝑌𝑥, 𝐻𝑥, ∀𝑥 ∈ 𝑈 

Since the problem dimension 𝑛 is bounded by the 

constraint concerning the maximum number of UAVs and 

the other PSO parameters, 𝑚 and 𝑙, are also bounded, the 

overall complexity of this optimization algorithm is 

concluded to be exponentially bounded. 

2) COMPLEXITY OF THE Q-LEARNING-BASED 
SOLUTION 

The Q-learning time complexity analysis is also evaluated 

using the big-𝑂 notation for each step in the learning process 

given in Algorithm 3 in the worst-case scenario when all the 

learning episodes are executed. Therefore, the overall 

complexity of this solution can be stated as the augmentation 

of each step complexity as follows: 

• The parameters initialization steps from 1 to 3 require a 

constant time complexity 𝑂(1). 

• The episodes loop from step 4 to step 16 require linear 

time complexity 𝑂(𝑛𝑀𝐿) where 𝑀 ≔ 𝑒𝑝𝑚𝑎𝑥 and 𝐿 ≔
𝑡𝑚𝑎𝑥 that multiplies each step complexity within this 

loop. These steps within the learning iterations mainly 

perform in a constant time complexity 𝑂(1) except for 

steps from 8 to 14. 

• The search process that runs in step 9 requires 𝑂(𝑧 log 𝑧) 

as 𝑧 ≔ |𝐴| adding the looping complexity of 𝑂(𝑛𝑀𝐿). 

• The steps from step 17 to step 22 require a constant time 

complexity inside a loop producing a linear time 𝑂(𝑛). 

Hence, the highest complexity term is noticed in the 

execution of the steps from 6 to 13. These step complexities 

are expressed as 𝑂(𝑛𝑀𝐿) + 𝑂(𝑧 log 𝑧). This time 

complexity can be observed as linear in the bounded Q-

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3293148

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



                                                                                     A. F. Mostafa, M. Abdel-Kader, Y. Gadallah and O. Elayat: Preprint submitted to IEEE Access  

VOLUME XX, 20XX  8 

learning parameters, such as the episodes count 𝑒𝑝, the 

learning time steps 𝑡 and the action space size 𝑧. Therefore, 

the overall algorithmic complexity does not primarily 

depend on the formulated problem space size. This results in 

a much lower complexity than the optimization algorithm 

proposed in Section III.A, especially when solving in dense 

and large network deployments. 

IV. EVALUATION RESULTS  

In this section, we discuss the simulation results to evaluate 

the performance of the proposed optimal and ML solutions.  

A. NETWORK SETUP 

The deployed network consists of one TBS that is located at 

the center of the deployment area. Due to the excess traffic 

demand on the TBS, multiple UAV-mounted BSs are to be 

deployed within the area according to the functionality of the 

algorithm being evaluated. The network and algorithm 

parameters are given in Table I. The simulated traffic is a 

mix of eMBB, MTCD camera and monitoring sensors traffic 

types. Due to the unavailability of real traffic data, we 

modeled the transmission requests of the different traffic 

profiles using the random Poisson distributions with the 

parameters in Table II. For real network operations, the 

ARIMA model introduced in Section II can be used to 

anticipate the expected size of network users’ data traffic.  

The model parameters model can be determined following 

the analysis discussed in Section II.B. The available physical 

resource blocks are scheduled among the users according to 

a delay-based scheduler [27] in which the users with urgent 

deadline requirements have higher service priority. Because 

of the non-existence of any work in the literature concerning 

the deployment of multiple UAV-BSs serving in the uplink 

direction, we used a benchmark technique that has 

commonly been used in the literature [5]-[7] in which the 

UAVs are deployed along the cell edge of the TBS to serve 

the users with the worst channel quality conditions. In this 

setup, the UAVs fly in a circular trajectory with a constant 

speed equal to 30 m/sec at a fixed altitude of 100 m [7]. As 

the UAVs move, the users are associated with either the TBS 

or one of the UAVs according to the closest distance. This 

integrated deployment is named “the generic solution” in the 

rest of this discussion. 

B. PARAMETERS SELECTION FOR THE ML SOLUTION  

 he learning rate, α, is normally selected to assume a small 

value between 0.1 and 0.3 while the discount factor, γ, is 

selected to assume a large value between 0.7 to 0.9 [24]. In 

order to determine the combination of parameter values that 

best suits our setup, we conduct parameter selection 

experiments such that we fix the learning rate at 0.1, which 

indicates slow learning from the previous actions, and the 

discount factor at 0.9, which allows the agent to look for high 

rewards in the long term. The epsilon-greedy decision 

parameter, ϵ, which indicates the exploration index, is then 

varied until we get the highest possible average reward.  

TABLE I 

NETWORK AND ALGORITHM PARAMETERS 

Parameter Value 

Channel bandwidth (𝐵𝑊) 3 MHz 
Number of PRBs 15 
Carrier frequency (𝑓𝑐) 2 GHz 
Transmission and noise power 20, -110 dBm 
Environment parameters (𝜆1, 𝜆2) 1, 0.7329 
Path loss exponent (𝜎) 2 

SINR threshold (Γ𝑚𝑖𝑛)  2 dB 

PSO Parameters |𝒮|, αPSO, 𝑤, 𝑐1,   
𝑐2, 𝑟𝑐 

50, 0.1, 0.729, 1.494,        
1.494, 5 [26] 

Learning rate (𝛼), discount factor 
(𝛾), decision parameter (𝜖) 

0.1, 0.8, 0.2 

TABLE II 

TRAFFIC CONFIGURATIONS [17], [28] 

Traffic Profile eMBB Camera Sensor 

Arrival rate (pkt/s) 586 30 2 
Packet size (bytes) 1024 512 128 
Contribution percent % 50 30 20 
Delay bounds (msec) 10~20 125~250 800~900 

We then repeat this procedure by fixing the decision 

parameter at this obtained value and the learning rate at 0.1 

while trying different discount factor values. Finally, we 

repeat this procedure for the selection of the learning rate. 

Based on these experiments, the best combination is given in 

Table I. 

C. PERFORMANCE EVALUATION OF THE PROPOSED 
SOLUTIONS  

We now analyze the performance of the proposed optimal 

and ML solutions and compare their results against the 

generic solution. The evaluation metrics are mainly based on 

the cost of the solution in terms of the number of needed 

UAVs. Then, the network performance under this cost is 

represented in the deadline missing ratio and the network 

aggregate throughput. Therefore, we set the maximum 

allowed number of UAVs that can be used by the optimal 

and ML solutions to three, i.e., 𝑢𝑚𝑎𝑥 = 3, to represent the 

limitation of the available resources. Since the generic 

solution has no control on the number of deployed UAVs, 

the maximum number of three UAVs is used for all different 

network configurations under the deployment that places the 

UAVs at the cell edge of the TSB. The generic solution is 

simulated under the same network configurations and setup 

of the other proposed solutions. The network configurations 

include deploying the UAVs to serve an overloaded 

terrestrial network with different numbers of users, starting 

from 50 to 250 users that are uniformly distributed in the 

deployment area with a distribution density of 50 users/km2. 

The presented results are the average of several simulation 

runs. Hence, we indicate the 95% confidence interval limit 

bars with each of the result points. 

1) THE NUMBER OF DEPLOYED UAVS 

The average number of UAVs is an indication of the cost 

incurred by a solution to cover the excess traffic demand in 
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the different user deployment configurations. The average 

number of UAVs is presented in Figure 2 for the different 

deployment solutions. The generic solution has a fixed 

number of UAVs hovering along the edge of the main   S’s 

cell such that the number is always equal to three, as 

indicated earlier. In both the optimal and ML solutions, the 

average number of deployed UAVs increases as the number 

of users increases, but it does not reach the limit of three 

UAVs in the simulated scenarios. This is due to the objective 

stated in (12) that tries to get the minimum number of UAVs 

required to satisfy the excess traffic demands. Both the 

optimal and ML solutions apparently use two UAV-mounted 

base stations along with the overloaded TSB to handle the 

traffic requests of the network users. The solutions of the 

optimization and ML algorithms guarantee a minimal cost of 

the deployment since these approaches control the locations 

of the UAVs with respect to the traffic demands of the users 

quantified by the formulated ARIMA estimation model. 

2) THE DEADLINE MISSING RATIO 

Figure 3 shows the deadline missing ratio as a percentage of 

the transmissions that missed their deadlines to the total 

number of communication requests for the different traffic 

profiles. The optimal and ML solutions guarantee a reduced 

deadline missing percentage in all user configurations when 

compared to the generic solution although the generic 

solution incurs a higher deployment cost than the optimal 

and ML solutions. In Figure 3(a), the network deadline 

missing ratio is presented for the three solutions. The 

proposed techniques provide an approximately zero deadline 

missing ratio in the network deployments of 50 and 100 

users. The trend increases as the number of users increases 

since the proposed solutions maintain a minimum number of 

resources represented by the number of deployed UAV-BSs. 

Figure 3(b) shows the deadline missing trend for the eMBB 

traffic that exhibits a trend that is similar to the trend of 

Figure 3(a) since the eMBB traffic is 50 percent of the 

deployed network users.  

In addition, in the simulated scenario, we utilize the delay-

based scheduler that prioritizes the users with the lowest 

delay bound, such as the eMBB traffic, as given in the traffic 

characteristics of Table II. The camera traffic in Figure 3(c) 

has a deadline missing ratio trend that is comparable to that 

of the eMBB traffic although the camera traffic is more 

delay-tolerant than the eMBB traffic. The reason behind this 

performance is that the proposed solutions tend to serve the 

traffic with respect to the anticipated demand according to 

the constraints in (12), and only the delay-based scheduler 

considers the delay bounds of the users. It is worth 

mentioning that the sensor traffic has zero deadline missing 

percentage at all the configurations because the modeled 

scenarios simulate the sensor MTCDs with much smaller 

arrival rate traffic and tolerant delay bound, shown in Table 

II, depending on the features of sensors sending data within 

fixed time intervals. 

 

FIGURE 2.  Average number of deployed UAVs 

3) THE ACHIEVABLE THROUGHOUT 

Figure 4 shows the system aggregate throughput 

demonstrating that the optimal and ML solutions outperform 

the generic solution although a greater number of UAVs is 

deployed all the time in this generic setup. The overall 

network aggregate throughput, in Figure 4(a), shows that the 

3D UAV deployments of the optimal and ML solutions 

consider the measured traffic of the users. In addition, the 

proposed techniques prioritize the users with resources 

allocated by the delay-based scheduler. On the other hand, 

the generic solution might enhance the channel gains of the 

cell edge users without affecting the network throughput. 

The reason behind this behavior is that the generic algorithm 

only tries to maintain sufficient channel conditions 

regardless their traffic demands or even without considering 

whether there are physical resources assigned to the served 

users by the scheduler.  

This generic deployment of the UAV-BSs does not 

guarantee effective utilization of the overall network 

resource since three UAVs are used in such deployment. The 

achievable throughput of the eMBB users is indicated in 

Figure 4(b). This traffic profile is characterized by larger 

packet sizes than the     s’ traffic.  hus, the e  B traffic 

contributes more to the network aggregate throughput. The 

throughput of the camera traffic profile in Figure 4(c) 

demonstrates the insufficient utilization of the available 

resource of the generic solution. Although the camera 

throughput under the generic deployment is higher than that 

is obtained from the optimal and ML solutions, the deadline 

missing ratio increase has encountered for the same traffic 

profile under the generic solution, as shown in Figure 3(c). 

One can infer that the dynamic UAV deployment of the 

optimal and ML solutions accounts for the uncertain traffic 

demands and their associated data traffic measure using the 

minimum possible resources.  
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FIGURE 3.  The average percentage of deadline misses for (a) the overall network (b) eMBB users (c) camera MTCDs 

 

FIGURE 4.  The aggregate throughput of (a) the overall network (b) eMBB users (c) camera MTCDs (d) monitoring 
sensor MTCDs 
 

However, considering only the cell-edge users’ channel 

capacity is found to be inadequate, as in the case of the 

generic solution. This is because the other characteristics of 

the users’ traffic, such as delay bounds, data packet sizes and 

the available allocated resources, become congested in the 

access network requesting services. Similarly, the 

throughput of the monitoring sensor MTCDs, shown in 

Figure 4(d), has comparable rates along the different 

solutions since this traffic profile is characterized by low 

arrival rates, small packet sizes and relaxed delay bounds. 

These characteristics do not contend much for network 

resources unless there are high demands by the intolerant 

traffic. 

D. The Computational Complexities of the Proposed 
Solutions 

We now verify the complexity analysis of the optimal and 

ML solutions presented in Section III.C. This is done by 

examining the average simulation time of the experimental 

runs of each solution. Figure 5 shows the solutions’ running 

simulation time. The running time of the ML algorithm 

increases linearly with a relatively small slope. This slope is 

mainly controlled by a tolerant termination criterion that can 

be selected when no significant improvements are observed 

between the successive iterations of the ML algorithm. 
Hence the complexity term 𝑂(𝑛𝑀𝐿) can be easily bounded 

by the proper selection of the algorithm parameters and 

termination conditions.  

In addition, the linear time complexity of the ML solution 

can be considerably influenced by the discrete step sizes 

chosen to define the state space 𝑆 and the action space 𝐴. By 

regulating these discrete step sizes, the complexity term 

𝑂(𝑧 log 𝑧) of the search algorithm can be maintained at low 

levels. These two control conditions directly impact the 

speed of convergence of the ML algorithm which can lead to 

a real-time performance depending on the size of the 

involved network.  
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On the other hand, the time complexity of the optimal 

solution is found to be increasing exponentially. The reason 

behind this performance is that the algorithm solves a 

subproblem with a linear complexity of 𝑂(𝑛𝑚𝑙) at each 

branching node of the BnB algorithm. These observations of 

Figure 5 coincide with our analysis in Section III.C. To 

conclude this analysis, the advantage of the ML solution is 

that it allows for relatively fast convergence that can be used 

as a practical solution in real-time arrangements. For the 

different evaluation metrics, the results of the ML solution 

are found to be close to those of the optimal solution in all 

simulated network configurations. 

V. CONCLUSION 

In this paper, we proposed optimal and machine learning-

based UAV deployments as temporary BSs to offload the 

excess traffic demands that a terrestrial base station might 

encounter during certain events. For this purpose, uplink 

traffic sizing is carried out to determine the excess traffic that 

needs to be serviced by the UAV-mounted BSs. This excess 

traffic offloading goal is achieved by optimizing the number 

of deployed UAVs and their 3D positions in the area of 

interest. A traffic estimation technique was proposed based 

on the ARIMA model to estimate the excess traffic demands. 

We devised an optimal algorithm to determine the optimal 

bound of the solution and an ML algorithm to provide a 

practical implementation of the problem. Simulation 

experiments showed that the results obtained by the 

proposed ML solution are close to the optimal bounds while 

providing real-time performance. The resulting dynamic 

network outperforms that of the generic technique that 

deploys the UAV BSs at the cell edges when compared in 

terms of the achieved throughput and the traffic deadlines. A 

potential future direction for the field of traffic offloading 

using UAVs is to study the dynamic 3D UAV localization 

considering some other UAV deployment constraints that 

challenge flying UAVs in a given area such as the UAV 

transmission power constraints, and the effects of stormy 

weather/wind and some unreachable areas in the deployment 

space. In addition, there is an important future extension 

which is to consider the backhaul links of the deployed 

UAVs to the nearest sane infrastructure in the traffic 

offloading application. All these considerations should be 

included in the problem formulation as constraints or 

objectives of the UAV deployment problem. 
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