
American University in Cairo American University in Cairo 

AUC Knowledge Fountain AUC Knowledge Fountain 

Faculty Journal Articles 

7-25-2023 

Enhanced SparseEA for large-scale multi-objective feature Enhanced SparseEA for large-scale multi-objective feature 

selection problems selection problems 

Shu-Chuan Chu 

Zhongjie Zhuang 

Jeng-Shyang Pan 

Ali Wagdy Mohamed 

Follow this and additional works at: https://fount.aucegypt.edu/faculty_journal_articles 

Recommended Citation Recommended Citation 

APA Citation 
Chu, S. Zhuang, Z. Pan, J. & Mohamed, A. (2023). Enhanced SparseEA for large-scale multi-objective 
feature selection problems. Complex & Intelligent Systems, 10.1007/s40747-023-01177-2 
https://fount.aucegypt.edu/faculty_journal_articles/5508 

MLA Citation 
Chu, Shu-Chuan, et al. "Enhanced SparseEA for large-scale multi-objective feature selection problems." 
Complex & Intelligent Systems, 2023, 
https://fount.aucegypt.edu/faculty_journal_articles/5508 

This Research Article is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted 
for inclusion in Faculty Journal Articles by an authorized administrator of AUC Knowledge Fountain. For more 
information, please contact fountadmin@aucegypt.edu. 

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/faculty_journal_articles
https://fount.aucegypt.edu/faculty_journal_articles?utm_source=fount.aucegypt.edu%2Ffaculty_journal_articles%2F5508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s40747-023-01177-2
https://fount.aucegypt.edu/faculty_journal_articles/5508?utm_source=fount.aucegypt.edu%2Ffaculty_journal_articles%2F5508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/faculty_journal_articles/5508?utm_source=fount.aucegypt.edu%2Ffaculty_journal_articles%2F5508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fountadmin@aucegypt.edu


Complex & Intelligent Systems
https://doi.org/10.1007/s40747-023-01177-2

ORIG INAL ART ICLE

Enhanced SparseEA for large-scale multi-objective feature selection
problems

Shu-Chuan Chu1,2 · Zhongjie Zhuang1 · Jeng-Shyang Pan1,3 · Ali Wagdy Mohamed4,5 · Chia-Cheng Hu6

Received: 4 September 2022 / Accepted: 22 January 2023
© The Author(s) 2023

Abstract
Large-scale multi-objective feature selection problems are widely existing in the fields of text classification, image processing,
and biological omics.Numerous features usuallymeanmore correlation and redundancy between features, so effective features
are usually sparse. SparseEA is an evolutionary algorithm for solving Large-scale Sparse Multi-objective Optimization
Problems (i.e., most decision variables of the optimal solutions are zero). It determines feature Scores by calculating the
fitness of individual features, which does not reflect the correlation between features well. In this manuscript, ReliefF was
used to calculate the weights of features, with unimportant features being removed first. Then combine the weights calculated
by ReliefF with Scores of SparseEA to guide the evolution process. Moreover, the Scores of features remain constant
throughout all runs in SparseEA. Therefore, the fitness values of excellent and poor individuals in each iteration are used to
update the Scores. In addition, difference operators of Differential Evolution are introduced into SparseEA to increase the
diversity of solutions and help the algorithm jump out of the local optimal solution. Comparative experiments are performed
on large-scale datasets selected from scikit-feature repository. The results show that the proposed algorithm is superior to the
original SparseEA and the state-of-the-art algorithms.
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Introduction

Feature engineering is an important and critical part of
machine learning [1]. Essentially, feature engineering is a
process of representing data. In practice, feature engineer-
ing aims to remove defects and redundancy in the raw data
and design more efficient features to describe the relation-
ship between the solved problem and the prediction model.
It is generally accepted that data and features determine the
upper bound of the performance of machine learning, and
the models and algorithms can only approximate this bound
as best they can. Thereby, it can be seen that good data and
features are the premise for models and algorithms to play an
essential role. In detail, feature engineering usually includes
feature availability assessment, feature cleaning, feature stor-
age, feature selection, feature extraction, and so on. Among
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them, feature selection is an important part of feature engi-
neering [2, 3]. Themain application fields of feature selection
include text classification [4, 5], image recognition [6], bio-
information analysis [7], time series [8], intrusion detection
[9], and software defect prediction [10].

The main idea of feature selection is to select the most
valuable feature subsets by deleting irrelevant and redun-
dant features from the feature space of the original dataset
to improve the prediction accuracy, robustness, and inter-
pretability of the models. The feature selection method was
first proposedbyDash andLiu [11]. It can be divided into four
steps: generating feature subset, evaluating feature subset,
setting stop criterion and judging whether stop is sufficient,
and verifying the final result. Suppose there are n features,
each of which can be selected or not, then there are 2n cases
of the feature subset. When n is very large, it is obviously not
feasible to obtain the optimal subset of features by exhaus-
tive selection due to the time complexity. Therefore, it is an
important problem that must be considered and solved to
find the optimal feature from the feature space quickly and
effectively [12].

Feature selection algorithms can be divided into differ-
ent categories according to different separability criteria.
According to the classification features, it can be divided into
supervised and unsupervised feature selection algorithms.
In terms of search strategies, feature selection algorithms
can be categorized into global search, sequential search, and
random search. Depending on the combination form of fea-
ture selection and machine learning algorithms, it includes
four types [13]: filter, wrapper, embedded, and ensemble.
With different evaluation criteria, feature selection algo-
rithms can be divided into several categories: based on
distance measurement [14, 15], dependency measurement
[16, 17], information measurement [18], and accuracy/error
rate measurement [19]. In detail, the core of distance mea-
surement is distance formula, and commonly used distances
are Euclidean distance, Hamming distance, Probability dis-
tance, and so on. Algorithms based on dependency measures
use statistical principles to evaluate the correlation between
features and categories, such as T test, Pearson correla-
tion coefficient, and Fisher scores. The information metrics
include mutual information, information gain, minimum
description length, etc. In particular, the algorithms based on
the measurement of accuracy/error rate have the best over-
all performance. They train the classifier using the selected
feature subset and measure the performance of the feature
subset by the accuracy/error rate.

Meta-heuristic algorithm is widely used because of its
simplicity and generality [20, 21]. In recent years, more
and more feature selection algorithms using meta-heuristic
algorithms have been proposed, which are based on the mea-
surement of accuracy/error rate [22]. The feature selection
algorithms can be divided into single-objective feature selec-

tion and multi-objective feature selection according to the
number of evaluation criteria. For a long time in the past, fea-
ture selection was regarded as a single objective optimization
problem, which optimized the weighted sum of the accu-
racy/error rate and the number of selected features, or only
optimized the accuracy/error rate. There are many excellent
studies for solving single-objective feature selection problem
by meta-heuristic algorithms. In 2020, the improved Binary
Grey Wolf Optimizer was proposed and achieved good per-
formance on the single-objective feature selection problem
[23]. A surrogate-assisted evolutionary algorithm was pro-
posed in paper [24]. The single-objective feature selection
problem is solved by decomposing the large-scale original
problem into several small subproblems and establishing a
surrogate-assisted model for each subproblem. In paper [25],
a hybrid version of SimulatedNormalDistributionOptimizer
with Simulated Annealing is proposed for feature selec-
tion which uses Simulated Annealing as a local search to
achieve higher classification accuracy. Whale Optimization
Algorithm is used for feature selection of high-dimensional
data based on spatial boundary strategy in [26]. The time-
varying transfer function was used on Binary Dragonfly
Algorithm for feature selection to balance the exploration
and exploitation and obtained excellent results [27]. Hybrid
feature selection based on Chi-square and binary Particle
Swarm Optimization algorithm was designed and applied
for Arabic email authorship analysis in 2021 [28].

If the fitness value of the single-objective feature selec-
tion algorithms is set to the weighted sum, and the weights
are usually predetermined, then the algorithms are not flexi-
ble enough. For the algorithms only consider accuracy/error
rate, the sparsity of selected features is ignored. As a con-
sequence, like most engineering and scientific problems in
practice, feature selection can also be regarded as a multi-
objective optimization problem [29, 30]. Multi-objective
optimization algorithms are usually to optimize multiple
conflicting objectives simultaneously [31, 32]. Evolution-
ary multi-objective optimization algorithms have gained
popularity in the past decade and beyond [33, 34]. The multi-
objective feature selection problems mainly optimize two
objectives: maximizing the classification accuracy and mini-
mizing the number of features. For themulti-objective feature
selection algorithms, it can provide a series of relative opti-
mal solutions for users to choose, instead of a single solution.
There are relatively few studies on multi-objective feature
selection problem. Two variants using the angle competitive
mechanism and Euclidean distance competitive mechanism
of differential evolution (DE) algorithmare proposed in paper
[35], and are applied to the feature selection problem. In [36],
a binary multi-objective grey wolf algorithm was proposed
and a wrapper-based Artificial Neural Network is used to
assess the classification performance of the selected features
for the multi-objective feature selection. Paper [37] studies
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a new multi-objective feature selection approach based on
the Binary DE with self-learning for solving feature selec-
tion and achieves a trade-off between local exploitation and
global exploration. A fast multi-objective evolutionary fea-
ture selection algorithm is proposed in [38] by embedding
an improved Artificial Bee Colony algorithm [39] based on
the particle update model. The authors of paper [40] com-
bine binary encoding with real value encoding to utilize the
advantages of Genetic Algorithm and Direct Multi-Search to
solvemulti-objective feature selection of unbalanced produc-
tion data and obtain significantly good search performance.
A multi-objective evolutionary algorithm is proposed for
feature selection in learning to rank in paper [41] and get
excellent performance.

In large-scale data, because of the large number of fea-
tures, the efficiency of traditional feature selection algorithms
is reduced or even cannot be processed. However, there are
many application scenarios of Large-scale Sparse Multi-
Objective Feature Selection Problems (LSMFSPs) in real
life. For example, in the field of text classification [5], the
number of words commonly used in everyday life is about
order ofmagnitude 104. In the field of image processing [42],
if the image features are pixels, the number of features of a
picture with a resolution of 1024 × 1024 will easily reach
the order of 106. Biological omics data also usually have
large-scale features: DNA microarray chip can detect and
obtain thousands of gene expression values at the same time
[43]; There are hundreds of protein mass spectrum peaks and
related biomarkers in protein mass spectrum data [44]; there
are often hundreds of chromatographic peaks in metabolic
mass spectrometry data.

Large-scale data usually have a lot of redundancy and
require special research. However, there are few studies that
are specifically used to deal with LSMFSPs. LSMFSPs is one
of Large-scale Multi-Objective Problems (LMOPs). Evo-
lutionary algorithms for solving LMOPs can generally be
divided into three categories: the divide-and-conquer, dimen-
sionality reduction, and enhanced search-based approaches.
A similar method based on random decomposition is pro-
posed in [45], which improves the MOEA/D framework
to enable it to handle LMOPs. Paper [46] proposes a cus-
tomized evolutionary algorithm based on decision variable
clustering method. It uses k-means to divide decision vari-
ables into convergence-related variables anddiversity-related
variables, and optimizes the two variables, respectively. A
general, theoretically grounded yet simple approach was
proposed in paper [47], which can scale current derivative-
free multi-objective algorithms to the high-dimensional
non-convex multi-objective functions with low effective
dimensions, using random embedding. Based on dimension
reduction, it transforms the original decision space into a
low-dimensional subspace. In paper [48], an enhanced large-
scale multi-objective algorithm based on search is proposed,

which incorporates a new solution generator with an external
archive, thus forcing the search toward different subregions
of thePareto front using a dual local searchmechanism. Paper
[49] proposes a novel multi-objective large-scale cooperative
co-evolutionary algorithm for three-objective feature selec-
tion, and it designs a cooperative searching framework for
seeking the optimal feature subset efficiently and effectively.

Paper [50] puts forward the concept of Large-scale Sparse
Multi-objective Optimization Problems (LSMOPs) in 2019,
which means that most decision variables of these solutions
are zero. In this paper, an evolutionary algorithm named
SparseEA is designed, which solves the LSMOPs problem
by constructing sparse solutions. In particular, LSMFSPs
are specific applications of LSMOPs. The experimental
results show that SparseEA performs excellent in solv-
ing LSMOPs. At present, there are few papers dedicated
to dealing with LSMOPs. The authors of paper [51] uses
two unsupervised neural networks, a restricted Boltzmann
machine and a denoising autoencoder to learn a sparse distri-
bution and a compact representation of the decision variables
for LSMOPs. The proposed algorithm in paper [52] sug-
gests an evolutionary pattern mining approach to detect the
maximum and minimum candidate sets of the nonzero vari-
ables in the Pareto optimal solutions, and uses them to
limit the dimensions in generating offspring solutions for
LSMOPs. An improved SparseEA was proposed in paper
[53] to enhance the connection between real variables and
binary variables within the two-layer encoding scheme with
the assistance of variable grouping techniques for LSMOPs.

Therefore, thismanuscript proposes an enhancedSparseEA
algorithm based on ReliefF with difference operators for
solving the LSMFSPs. The main contributions of this paper
are concluded as follows:

1. It combines a filtering feature selection method with
SparseEA. ReliefF was used to calculate the weights of
features, with unimportant features being removed first.

2. Combine the weights calculated by ReliefF with Scores
of SparseEA to guide the evolution process. Meanwhile,
an adaptive score update strategy is designed for solv-
ing the Scores of decision variables remains constant
throughout all iteration.

3. Difference operators of DE are introduced into SparseEA
to increase the diversity of solutions and help the algo-
rithm jump out of the local optimal solution.

4. SparseEA with hybrid difference operators is proposed
to balance the exploration and exploitation.

5. The proposed algorithm is compared with the excellent
algorithms proposed in recent 3 years to solve the LSMF-
SPs. The experimental results verify the superiority of the
proposed algorithm.
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The rest of the paper is organized as follows. “SparseEA”
shows the original SparseEA algorithm. “SparseEA based
on reliefF” depicts the proposed SparseEA based on ReliefF
strategy. It describes the details of the SparseEA with binary
difference operators in “RA-SparseEA with difference oper-
ator”. “Experiments” is experimental results and analysis.
“Conclusion” depicts the main work of the paper and gives
some suggestions for further work.

SparseEA

SparseEA is an evolutionary algorithm for solving large-
scale sparse multi-objective optimization problems. In
SparseEA, a solution x consists of two components, i.e.,
a real vector (denoted as Dec) can record the best deci-
sion variables found so far, and a binary vector (denoted
as Mask) can record the decision variables that should be
set to zero. For instance, the number of variable is D = 5,
Dec = (0.5, 0.3, 0.2, 0.8, 0.1), and Mask = (1, 0, 0, 1, 0).
Then, x can be obtained by Eq. (1). Therefore, the final solu-
tion is x = (0.5, 0, 0, 0.8, 0)

(x1, x2, . . . , xD)

= (Dec1 × Mask1, Dec2 × Mask2, . . . , DecD × MaskD).

(1)

The framework of SparseEA is very similar to NSGAII
which is shown in Algorithm 1. However, the strategies to
generate the initial population and offsprings are different
from NSGAII, and those can ensure the sparsity of the gen-
erated solutions. To begin with, the Scores of each variable
are got by the fitness value and the population P with size
N is initialized, which is described in Algorithm 2 particu-
larly. After that, fast non-dominated ordering and crowding
calculation are performed on P . In the main loop, the binary
tournament selection is used to obtain 2N parents solutions.
Then, N offsprings are generated from 2N parents solutions
by the new genetic operation which is shown in detail in
Algorithm 3. At the last, the environmental selection is exe-
cuted based on front number and crowding distance.

The initialization process of SparseEA includes calculate
the Scores of variables and generate the initial population.
In the first step, for real variables, a D× D random matrix is
generated as Dec and a D×D identity matrix is set toMask.
The solutions can be got by Eq. (1). Then, the fitness values
of each solution can be calculated and the non-dominated
sorting can be executed to obtain the Scores of each variable.
However, for the binary problem, the Dec is a D× D matrix
of ones and the Mask is a also D× D identity matrix. Then,
the solutions are also a D× D identity matrix which is equal
to the Mask. For the ith solution xi , all elements are 0 except
for the ith element is 1. Therefore, the fitness of xi can be

Algorithm 1 Framework of the SparseEA
Require: N (population size)
1: [P, Scores] ← Initialization(N ); \\ Algorithm 2
2: F = [F1, F2, ...] ← Do non-dominated sorting on P;
3: CrowdDis ← CrowdingDistance(F);
4: while termination cri terion not f ul f illed do
5: P ′ ← Select 2N parents via binary tournament selection accord-

ing to the non-dominated front number and CrowdDis of solutions
in P;

6: P ← P ∪ GeneticOperator(P ′, Scores);\\ Algorithm 3
7: Execute environmental selection base on front number and

crowding distance;
8: end while
9: return P(final population).

Algorithm 2 Initialization strategy of SparseEA
Require: N (population size)
1: \\ Calculate the scores of variables
2: D ← Number of decision variables;
3: if the decision variables are real numbers then
4: Dec ← D × D random matrix;
5: elsethe decision variables are binary numbers
6: Dec ← D × D matrix of ones;
7: end ifMask ← D × D identity matrix;
8: Q ←A population whose i-th solution is generated by the i-th rows

of Dec and Mask;
9: [F1, F2, ...] ← Do non-dominated sorting on Q;
10: for i = 1 to D do
11: Scoresi ← k, s.t . Qi ∈ Fk ; \\ Qi denotes the i-th solution in

Q
12: end for
13: \\ Generate the initial population
14: if the decision variables are real numbers then
15: Dec ← Uniformly randomly generate the decision variables of

N solutions;
16: else the decision variables are binary numbers
17: Dec ← N × D matrix of ones;
18: end if
19: Mask ← N × D matrix of zeros;
20: for i = 1 to N do
21: for j = 1 to rand() × D do
22: [m, n] ← Randomly select two decision varaibles;
23: if Scoresm < Scoresn then
24: Set the m-th element in the i-th binary vector in Mask to

1;
25: else
26: Set the n-th element in the i-th binary vector in Mask to 1;
27: end if
28: end for
29: end for
30: P ←A population whose i-th solution is generated by the i-th rows

of Dec and Mask.
31: return P(initial population),Scores(scores of decision variables).

viewed as the importance of the ith variable. In SparseEA, the
Pareto front number of xi is used as the Scores. In the next
step, a initial population can be got by a N × D Dec and a
N ×D Mask. The Dec is uniformly randomly generated for
the real variables, while, it is a matrix of ones for the binary
problem. For every solution of Mask, rand() × D times
binary tournament selection is performed on the variables
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and the variable with lower Scores value will be set to 1.
Thereby, at most rand() × D variables are set to 1 for a
solution. This strategy ensures the sparsity of the population.

Algorithm 3 Genetic Operator of SparseEA
Require: P ′(parent individuals), Scores(scores of decision variables).
1: O ← Null;
2: while P ′ is not empty do
3: [p, q] ←Randomly select two parents from P ′ and remove them

from P ′; \\ Generating the mask of offspring o;
4: o.Mask ← p.Mask;
5: \\ Crossover of mask
6: if rand() < 0.5 then
7: Randomly select two decision variables from the nonzero ele-

ments in p.Mask ∩ q.Mask;
8: Set the element with bigger fitness in o.Mask to 0;
9: else
10: Randomly select two decision variables from the nonzero ele-

ments in p.Mask ∩ q.Mask;
11: Set the element with smaller fitness in o.Mask to 1;
12: end if
13: \\ Mutation of mask
14: if rand() < 0.5 then
15: Randomly select two decision variables from the nonzero ele-

ments in o.Mask;
16: Set the element with bigger fitness in o.Mask to 0;
17: else
18: Randomly select two decision variables from the nonzero ele-

ments in o.Mask;
19: Set the element with smaller fitness in o.Mask to 1;
20: end if
21: \\ Generate the Dec of offspring o
22: if the decision variables are real numbers then
23: o.Dec ←Perform simulated binary crossover and polyno-

mial mutation based on p.Dec and q.Dec;
24: else
25: o.Dec ←Vector of ones;
26: end if
27: O ← O ∪ o;
28: end while
29: return O(offspring individuals).

The genetic operator is another key component that makes
SparseEA different from NSGAII. As shown in Algorithm
3, it is composed of generating the Mask of offsprings and
generating the Dec of offsprings. The SparseEA adopts the
existing genetic operators for the Dec of offsprings. To be
specific, if the decision variables are real numbers, the Dec
is got by performing simulated binary crossover and poly-
nomial mutation. And it is simply set to matrix of ones
if the decision variables is binary. The main contribution
of the genetic operator of SparseEA is the crossover and
mutation operator of binary mask. Two parents p and q are
randomly selected from P ′ to generate an offspring o each
time. Then, the binary vector mask of o is first set to the
same to that of p. The crossover of mask is to select one
variable which is different in p.Mask and q.Mask to flip.
In detail, a random number is used to determine the variable

is selected from the zero elements or the nonzero elements
in the binary vector Mask with the same probability. If the
random number is less than 0.5, two decision variables are
randomly selected from p.Mask ∩ q.Mask and the element
with bigger fitness is set to 0. Else, two decision variables
are chosen from p.Mask ∩ q.Mask and the element with
bigger fitness is flipped. In the mutation operator, it is also
one variable is selected to be flipped. Similarly, randomly
select two decision variables from the nonzero elements in
o.Mask or o.Mask, and the element with more contribution
is set to 1 or with smaller fitness is set to 0.

SparseEA based on reliefF

It can be observed from line 11 inAlgorithm2 that the Scores
in SparseEA is the non-domination Pareto front number of
the corresponding solution. For feature selection problem,
the Score of the ith feature is the front number of the solu-
tion where only the ith element is 1 and the rest are all 0. The
fitness of the solution for feature selection problem consists
of sparsity and error rate. Since the sparsity of each solution
is 1/D, the Pareto front number of the solution is uniquely
determined by the error rate. That is, the Score of the ith
feature is only decided by the error rate in SparseEA.What’s
more, this Scores value remain constant throughout all iter-
ation. Due to the correlation between features, calculating
the fitness of a single feature only in the initial stage cannot
well reflect the importance of features. However, computing
all possible combinations of features is a NP-hard problem.
Therefore, in this manuscript, the fitness values of excellent
and poor individuals in each iteration are used to update the
Scores of features.

In addition, the fitness value of the solution can only reflect
the importance of the features from one view. Many tradi-
tional feature selection methods evaluate the importance of
features based on different criteria. Therefore, in this sec-
tion, we combine the traditional feature selection method
with SparseEA algorithm. Relief is a filtering feature selec-
tion algorithm that updates feature weights by looking for
the nearest neighbour of each sample. It evaluates the corre-
lation and redundancy of features by calculating adjacent
samples of the same and different classes. However, the
Relief algorithm was designed to handle only dichotomies,
so Kononenko expanded on Relief in 1994 to design ReliefF
algorithm that could handle multiple types of data with better
performance. The ReliefF algorithm determines the size of
feature weights in each sample according to certain weight
measures between samples in the original sample set, simi-
lar samples, and different samples. Then, according to certain
evaluation criteria to distinguish the strong correlation, weak
correlation, and no correlation of the sample features. For
sparse large-scale feature selection problem, there are a lot
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of redundant features. Therefore, in this manuscript, ReliefF
algorithm is used first to eliminate unimportant features and
build feature subsets. At the same time, the number of fea-
tures is reduced and the running speed of the algorithm can
be accelerated. To some extent, this can offset the time spent
in calculating the Relief algorithm. Furthermore, the weights
calculated by ReliefF algorithm are combined with Scores
of SparseEA to guide the evolution process.

Algorithm 4 Framework of the RA-SparseEA for Feature
Selection
Require: N (population size), FE (number of consumed function

evaluations),MaxFE (maximum number of function evaluations).
1: Wrl f ← Do ReliefF algorithm to obtain the Weights of each fea-

ture;
2: Remove features with low Weights; ← The number of features is

reduced from D to D′
3: [P, Scores = [s1, ..., sD′ ]] ← Initialization(N )\\ Algorithm 2,

Scores is set to fitness values;
4: si = si + τ ← For the good features in Wrl f ;
5: si = si − τ ← For the bad features in Wrl f ;
6: [F1, F2, ...] ← Do non-dominated sorting on P;
7: CrowdDis ← CrowdingDistance(F);
8: while termination cri terion not f ul f illed do
9: P ′ ← Select parents via binary tournament selection according

to the non-dominated front number and CrowdDis of solutions in P;
10: P ← P ∪ GeneticOperator(P ′, Scores); \\ Algorithm 3
11: Delete duplicated solutions from P;
12: [F1, F2, ...] ← Do non-dominated sorting on P;
13: ε = t × α × (FE/MaxFE); t is the number of times a feature

is selected in all non-dominated solutions;
14: si = si + ε ← For the features selected in F1;
15: si = si − ε ← For the features selected in Flast ;
16: CrowdDis ← CrowdingDistance(F);
17: k ← argmini‖F1 ∪ ... ∪ Fi‖ ≥ N ;
18: Delete ‖F1 ∪ ... ∪ Fk‖ − N solutions from Fk with the smallest

CrowdDis;
19: P ← F1 ∪ ... ∪ Fk ;
20: end while
21: return P(final population).

The framework of the RA-SparseEA for feature selection
is shown in Algorithm 4. First of all, the ReliefF algo-
rithm is first executed to get the weights of the feature Wrl f .
Remove features with low Wrl f values, and the number of
features is reduced from D to D′. In this manuscript, we set
D′ = 0.5 ∗ D for datasets with more than 1000 features;
otherwise, D′ = D. Then, same as SparseEA, Algorithm
2 is used to initialize population in D′ dimension, and the
Scores = [s1, ..., sD′ ] are obtained. The difference is that
the Scores is set to not the Pareto front number but the fit-
ness values. Then, the Wrl f is used to guide the updating of
the Scores. For the good features in Wrl f , the scores si are
add a value τ . And for the poor features, si = si −τ is calcu-
lated. After that, fast non-dominated ordering and crowding
calculation are performed on P . In the main loop, selecting
parents’ individuals P ′ and genetic operator is the same as

SparseEA. In the subsequent environmental selection stage,
delete duplicated solutions and do non-dominated on P first.
The features selected in every non-dominated solution are
considered to have higher Scores, while the features selected
in the solutions of last Pareto front should have lower Scores.
Then, si = si + ε and si = si − ε is done for the features
selected in F1 and Flast , respectively. Where Flast is the last
Pareto front. To balance the exploration and exploitation at
different evolution stages, ε is designed as a linearly increas-
ing function which is shown in Eq. (2), where t is the number
of times a feature is selected in all non-dominated solutions,
α is the step parameter which usually set to 0.01, FE is the
number of consumed function evaluations, and MaxFE is
the maximum number of function evaluations

ε = t × α × (Iter/MaxIter). (2)

The rest are the same as the environment selection in
SparseEA and will not be repeated.

RA-SparseEA with difference operator

In this section, the SparseEA with difference operator (RA-
SparseDO) will be described in detail. As shown in the
previous section, the RA-SparseEA reverses only one ele-
ment per particle in mutation and crossover operations,
respectively, in each turn. This limits the diversity of the
population and makes the algorithm easily fall into the local
optimal solution. What’s more, the Mask of offspring is first
assigned to that of one parent (o.Mask = p.Mask); there-
fore, the parent p has a great influence on the offspring, while
the parent q not. The difference operator proposed in DE can
obtain genetic information from multiple parents [54–56].

Feature selection is a binary problem, and there are some
important binary variants of the DE. In paper [57], sigmoid
transfer function is used to convert the mutation operator
into binary form. A new Taper-shaped transfer function was
proposed and used to transform the continuous DE algorithm
into binary form in [58]. Paper [59]makes use of binary oper-
ators such as xor, and, or, and not operators to generate trial
solutions. An adaptive quantum-inspiredDEwas designed in
[60] for solving 0–1 Knapsack Problem. Pampara et al. [61]
presented angle-modulatedDE,which uses anglemodulation
to evolve the coefficients of the trigonometric function, thus
allowing mapping from continuous space to binary space.
For multi-objective binary algorithm, scholars also have
done some excellent work. A binary differential evolution
algorithm with a self-learning strategy for multi-objective
feature selection problems was designed in paper [37]. Non-
dominated sorting binary differential evolutionwas proposed
for cascading failures protection in complex networks in Ref.
[62]. Paper [63] proposed a binary version of generalized
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differential evolution for multi-label feature selection based
on majority voting of solutions and opposition-based learn-
ing. There are not many studies on using binary differential
evolution to solve large-scale problems. A new self-adaptive
binary variant of a differential evolution algorithm based on
measure of dissimilarity was proposed in [64], and used for
solving high-dimensional knapsack problems.

Therefore, DE is effective for solving binary problems.
Thus, this manuscript attempts to introduce the difference
operator into SparseEA to increase the diversity of solu-
tions for solving LSMFSPs. SparseEA selects parents via
binary tournament selection and then produces offsprings.
Then, we introduce four commonly used difference oper-
ators of DE (“DE/rand/1", “DE/rand/2", “DE/best/1", and
“DE/beset/2") to SparseEA. Table 1 shows the details of
the four difference operators. In the DE algorithm, mutation
is done first, and then is crossover, which is different from
GA. This manuscript takes “DE/rand/2" and “DE/beset/2" as
examples to introduce the difference operator for SparseEA
in detail.

Algorithm 5 Difference Operator of SparseDO(Rand/2)
Require: P ′(6N parent individuals), Scores(scores of decision vari-

ables).
1: O ← Null;
2: while P ′ is not empty do
3: \\ Differential mutation of mask
4: [xr1, xr2, xr3, xr4, xr5] ← Randomly select five particles from

P ′ and remove them from P ′;
5: o.Mask = xr1.Mask; \\ Generating the Mask of offspring o;
6: R1 = XOR(xr2.Mask, xr3.Mask); \\ Do XOR on the mask of

xr2 and xr3;
7: R2 = XOR(xr4.Mask, xr5.Mask); \\ Do XOR on the mask of

xr4 and xr5;
8: R = R1 + R2; \\ Do AND on R1 and R2;
9: for each nonzero element in R do
10: if rand() < 0.5 then
11: Set the element in o.Mask to 0;
12: else
13: Set the element in o.Mask to 1;
14: end if
15: end for
16: \\ Crossover of mask
17: [p] ← Randomly select one parent from P ′ and remove it from

P ′;
18: if rand() < 0.5 then
19: Randomly select two decision variables from the nonzero ele-

ments in o.Mask ∩ p.Mask;
20: Set the element with bigger fitness in o.Mask to 0;
21: else
22: Randomly select two decision variables from the nonzero ele-

ments in o.Mask ∩ p.Mask;
23: Set the element with smaller fitness in o.Mask to 1;
24: end if
25: \\ Generate the Dec of offspring o
26: o.Dec ←Vector of ones;
27: O ← O ∪ o;
28: end while
29: return O(offspring individuals).

Algorithm 5 describes the pseudo-code of “DE/rand/2"
difference operator of SparseDO. First of all, randomly select
five particles xr1, xr2, xr3, xr4, xr5 from P ′ and remove them
from P ′. The Mask of the offspring o is first set to that of
the xr1. Then, the elements with different values in xr2 and
xr3 are marked in R1. Similarly, the elements with differ-
ent values in xr4 and xr5 are marked in R2. Then, R can be
obtained by R = R1+ R2. Calculate the marked elements in
R, and then, the candidate variables need to change are cho-
sen. In paper [59], the OR operator are used on the produced
R and x1. However, in this manuscript, to increase the spar-
sity and randomness of the offspring, the nonzero elements
in R are directly replace the elements in o.Mask according
to a random number. That is, the random number is used to
determine the candidate variables of o.Mask is set to 0 or
1 with the same probability for each nonzero element in R.
After mutating, crossover operations are performed to deter-
mine whether the mutated gene will eventually be passed on
to the offspring. In this algorithm, one particle is randomly
selected from P ′ as the parent in the crossover step. Two
decision variables are randomly selected from the nonzero
elements in o.Mask ∩ p.Mask, and the one with bigger fit-
ness is set to 0; or selected from o.Mask ∩ p.Mask, and the
one with smaller fitness is set to 1. The Dec of the offspring
are generated in the same way as SparseEA. Due to the fea-
ture selection is a binary problem, the Dec of offspring is set
to vector of ones.

Similarly, Algorithm 6 describes the “DE/best/2" differ-
ence operator of SparseDO. The main difference is the line 5
and line 6 in Algorithm 6. Execute environmental selection
based on front number and crowding distance, and then, the
mask of the offspring is initialized through a randomly select
non-dominant solution. The rest are similar to Algorithm 5
and will not be repeated.

The difference operator “DE/rand/2" is good for explo-
ration and “DE/best/2" is good for exploitation. Then, to
balance the exploration and exploitation, SparseEA with
hybrid difference operators based on ReliefF for feature
selection which named RA-HSparseDO was described in
Algorithm 7. It can be seen from Line 11 to 15 in Algo-
rithm 7, do the Algorithm 5 in the early half iteration, while
do the Algorithm 6 in the later half iteration.

Experiments

Experiments’ settings

In this section, some experiments are designed to test the per-
formance of the proposed algorithms.All the experiments are
conducted on the evolutionary multi-objective optimization
platform PlatEMO [65].
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Table 1 The different mutation
schemes of DE

Number Scheme Equation

1 DE/rand/1 vm = xr1 + f ∗ (xr2 − xr3)

2 DE/rand/2 vm = xr1 + f ∗ (xr2 − xr3) + f ∗ (xr4 − xr5)

3 DE/best/1 vm = xgbest + f ∗ (xr1 − xr2)

4 DE/best/2 vm = xgbest + f ∗ (xr1 − xr2) + f ∗ (xr3 − xr4)

Algorithm 6 Difference Operator of SparseDO(Best/2)
Require: P ′(5N parent individuals), Scores(scores of decision vari-

ables).
1: O ← Null;
2: while P ′ is not empty do
3: \\ Differential mutation of mask
4: [xr1, xr2, xr3, xr4] ← Randomly select three particles from P ′

and remove them from P ′;
5: Execute environmental selection base on front number and

crowding distance;
6: o.Mask = xF1.Mask; \\Randomly select a non-dominant solu-

tion xF1;
7: R1 = XOR(xr1.Mask, xr2.Mask); \\ Do XOR on the mask of

xr1 and xr2;
8: R2 = XOR(xr3.Mask, xr4.Mask); \\ Do XOR on the mask of

xr3 and xr4;
9: R = R1 + R2; \\ Do AND on R1 and R2;
10: for each nonzero element in R do
11: if rand() < 0.5 then
12: Set the element in o.Mask to 0;
13: else
14: Set the element in o.Mask to 1;
15: end if
16: end for
17: \\ Crossover of mask
18: [p] ← Randomly select one parent from P ′ and remove it from

P ′;
19: if rand() < 0.5 then
20: Randomly select two decision variables from the nonzero ele-

ments in o.Mask ∩ p.Mask;
21: Set the element with bigger fitness in o.Mask to 0;
22: else
23: Randomly select two decision variables from the nonzero ele-

ments in o.Mask ∩ p.Mask;
24: Set the element with smaller fitness in o.Mask to 1;
25: end if
26: \\ Generate the Dec of offspring o
27: o.Dec ←Vector of ones;
28: O ← O ∪ o;
29: end while
30: return O(offspring individuals).

Datasets’ description

The scikit-feature repository is selected for LSMFSPs, which
is an open-source feature selection repository developed at
Arizona State University (https://jundongl.github.io/scikit-
feature/index.html). It serves as a platform for facilitat-
ing feature selection application, research, and comparative
study. The dataset name, number of instances, number of
features, number of classes, and the keyword description

Algorithm 7 Framework of the RA-HSparseDO(Rand/2-
Best/2) for Feature Selection
Require: N (population size), FE(number of consumed function

evaluations),MaxFE(maximum number of function evaluations).
1: Wrl f ← Do ReliefF algorithm to obtain the Weights of each fea-

ture;
2: Remove features with low Weights; ← The number of features is

reduced from D to D′
3: [P, Scores = [s1, ..., sD′ ]] ← Initialization(N )\\ Algorithm 2,

Scores is set to fitness values;
4: si = si + τ ← For the good features in Wrl f ;
5: si = si − τ ← For the bad features in Wrl f ;
6: [F1, F2, ...] ← Do non-dominated sorting on P;
7: CrowdDis ← CrowdingDistance(F);
8: while termination cri terion not f ul f illed do
9: P ′ ← Select parents via binary tournament selection according

to the non-dominated front number and CrowdDis of solutions in P;
10: if FE < 0.5 × MaxFE then
11: P ← P ∪ Di f f erenceOperator(Rand/2); \\ Algorithm

5
12: else
13: P ← P ∪ Di f f erenceOperator(Best/2); \\ Algorithm 6
14: end if
15: Delete duplicated solutions from P;
16: [F1, F2, ...] ← Do non-dominated sorting on P;
17: ε = t × α × (FE/MaxFE); t is the number of times a feature

is selected in all non-dominated solutions;
18: si = si + ε ← For the features selected in F1;
19: si = si − ε ← For the features selected in Flast ;
20: CrowdDis ← CrowdingDistance(F);
21: k ← argmini‖F1 ∪ ... ∪ Fi‖ ≥ N ;
22: Delete ‖F1 ∪ ... ∪ Fk‖ − N solutions from Fk with the smallest

CrowdDis;
23: P ← F1 ∪ ... ∪ Fk ;
24: end while
25: return P(final population).

are shown in Table 2. These datasets include 4 face image
data (ORL,warpAR10P,warpPIE10P, andYale), 6 biological
data (lung, lung-discrete, lymphoma, nci9, Prostate-GE, and
TOX-171), and 2 text data (BASEHOCK and RELATHE).
It can be seen that the dataset with the largest number of
features is Prostate-GE, and the number of features is up to
9712. The least number of features is lung-discrete, which
still has 325 features.

To verify the effect of the proposed algorithm on small-
scale datasets, UCI datasets with less than 500 features
(http://archive.ics.uci.edu/ml/index.php) are selected in this
manuscript. Table 3 details the dataset name, number of
instances, number of features, number of classes, and the
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Table 2 The datasets of
scikit-feature repository

Dataset name Instances Features Classes Keywords

BASEHOCK 1993 4862 2 Discrete, binary

RELATHE 1427 4322 2 Discrete, binary

Lung 203 3312 5 Continuous, multi-class

Lung-discrete 73 325 7 Discrete, multi-class

Lymphoma 96 4026 9 Discrete, multi-class

nci9 60 9712 9 Discrete, multi-class

ORL 400 1024 40 Continuous, multi-class

Prostate-GE 102 5966 2 Continuous, binary

TOX-171 171 5748 4 Continuous, multi-class

warpAR10P 130 2400 10 Continuous, multi-class

warpPIE10P 210 2420 10 Continuous, multi-class

Yale 165 1024 15 Continuous, multi-class

keyword description of these datasets, i.e., iris, Lung Cancer,
Person-Classification, MUSK1, heart, ionosphere, Parkin-
son, and COVID-19 Surveillance. It can be found that data
types include integer, real, and category.

Stopping condition and performance metrics

For the sake of efficient and fair experiments, the maximum
number of function evaluations is adopted as the stopping
criteria.

There are two objectives used in the manuscript for multi-
objective feature selection problems, that is, the validation
error and the ratio of selected features. Since the Pareto fronts
of the MOPs in applications are unknown, the hypervolume
(HV) is adopted to measure each obtained solution set. The
HV index was first proposed by zitzler et al., and it represents
the volume of the hypercube surrounded by the individuals
and reference points in the solution set in the target space.
The reference point for calculating HV in this manuscript is
set to (1,1).

Experiment on SMOP test suite

In this section, the performance of SparseDO in generat-
ing offspring solutions of real variables will be tested. The
sparse multi-objective test suite [50] is adopted in this exper-
iment, which is widely used in assessing the performance of
existingmulti-objective evolutionary algorithms in obtaining
sparse Pareto optimal solutions. The test suite contains eight
benchmark problems SMOP1–SMOP8 with scalable num-
ber of decision variables. In the experiments, the number of
objectives of these problems is set to 2, and the number of
decision variables is set to 500, 1000, and 1500.

The algorithms used in this experiment are the origi-
nal SparseEA, SparseDO with “DE/best/1" which denoted
as SparseDO (Best1), SparseDO with “DE/best/2" which

denoted as SparseDO (Best2), SparseDO with “DE/rand/1"
whichdenoted asSparseDO(Rand1), SparseDOwith “DE/rand/2"
which denoted as SparseDO (Rand2),Hybird SparseDOwith
“DE/best/1" and “DE/rand/1" which denoted as HSparseDO
(Rand1Best1), and Hybird SparseDO with “DE/best/2" and
“DE/rand/2" which denoted as HSparseDO (Rand2Best2).
Each algorithm performs 1000 function evaluations on each
function, the population size is set to 10, and the HV index
is used to measure the results. The experiments all runs 30
times, and the mean and standard deviation are used to mea-
sure the results. The experimental results are shown in Table
4.

The results of the proposed SparseDO (Best1), SparseDO
(Best2), SparseDO(Rand1), SparseDO(Rand2),HSparseDO
(Rand1Best1), and HSparseDO (Rand2Best2) are compared
with those of SparseEA. The number marked in red indi-
cates that the proposed algorithm is better than the original
SparseEA. The last row in Table 4 shows the times of the
proposed algorithm obtains better results than SparseEA. As
can be seen in Table 4, SparseDO (Best1), SparseDO (Best2),
SparseDO (Rand1), and SparseDO (Rand2) get better results
on 17, 19, 16 and 13 functions than SparseEA, respectively.
Hence, the four SparseDO in generating offspring solutions
of real variables are effective. TheHSparseDO (Rand1Best1)
and HSparseDO (Rand2Best2) obtain 19 and 16 better val-
ues, respectively. Therefore, the proposed HSparseDO can
also improve the performance of the original SparseEA algo-
rithm.

Experiments of diversity

In this section, the effect of binary differential operators on
solution diversity will be tested. The most intuitive measure
of diversity is the degree of difference between individuals
in a population. Since the increase or decrease of individ-
ual diversity within a population is caused by the change
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Table 3 The datasets of UCI
machine learning repository

Dataset name Instances Features Classes Data types

Iris 150 4 3 Real

Lung cancer 32 56 3 Integer

Person-classification 48 321 15 Real

MUSK1 476 166 2 Integer

Heart 270 13 2 Categorical, real

Ionosphere 351 34 2 Integer, real

Parkinson 240 46 3 Real

COVID-19 Surveillance 14 7 3 Integer

Table 4 The results of the
SparseEA and the proposed
SparseDO algorithms with
different DO on SMOP

SparseDO SparseDO SparseDO SparseDO HSparseDO HSparseDO
Dimension Datasets Measure SparseEA (Best1) (Best2) (Rand1) (Rand2) (Rand1Best1) (Rand2Best2)

SMOP1 AVG 3.40E-01 3.43E-01 3.59E-01 3.49E-01 3.42E-01 3.52E-01 3.37E-01
STD 4.10E-02 3.50E-02 3.65E-02 2.94E-02 4.56E-02 3.46E-02 4.13E-02

SMOP2 AVG 2.63E-01 2.55E-01 2.53E-01 2.47E-01 2.47E-01 2.39E-01 2.76E-01
STD 3.35E-02 3.59E-02 3.29E-02 4.33E-02 3.67E-02 6.48E-02 3.06E-02

SMOP3 AVG 3.55E-01 3.40E-01 3.52E-01 3.46E-01 3.42E-01 3.50E-01 3.37E-01
STD 3.26E-02 3.22E-02 3.97E-02 3.54E-02 6.07E-02 3.14E-02 6.30E-02

SMOP4 AVG 6.66E-01 6.79E-01 6.97E-01 6.80E-01 6.84E-01 6.81E-01 6.99E-01
STD 8.27E-02 5.82E-02 3.77E-02 4.80E-02 4.24E-02 6.99E-02 4.44E-02

500 SMOP5 AVG 6.33E-01 6.48E-01 6.42E-01 6.37E-01 6.40E-01 6.46E-01 6.15E-01
STD 5.18E-02 3.96E-02 3.44E-02 5.59E-02 3.08E-02 4.20E-02 5.74E-02

SMOP6 AVG 6.51E-01 6.52E-01 6.54E-01 6.53E-01 6.39E-01 6.55E-01 6.42E-01
STD 2.53E-02 3.34E-02 2.77E-02 3.68E-02 3.81E-02 3.19E-02 4.23E-02

SMOP7 AVG 4.42E-02 4.55E-02 5.01E-02 3.80E-02 4.41E-02 4.54E-02 4.59E-02
STD 1.46E-02 1.96E-02 1.52E-02 2.22E-02 1.88E-02 1.86E-02 2.06E-02

SMOP8 AVG 1.87E-05 9.07E-05 5.34E-05 8.25E-05 5.63E-05 4.54E-02 1.57E-04
STD 8.12E-05 2.13E-04 1.43E-04 1.93E-04 1.75E-04 2.05E-04 2.79E-04

SMOP1 AVG 3.56E-01 3.56E-01 3.61E-01 3.47E-01 3.46E-01 3.48E-01 3.53E-01
STD 3.47E-02 2.81E-02 2.52E-02 3.21E-02 4.28E-02 3.96E-02 2.40E-02

SMOP2 AVG 2.53E-01 2.60E-01 2.66E-01 2.63E-01 2.56E-01 2.74E-01 2.67E-01
STD 4.28E-02 3.48E-02 3.27E-02 2.92E-02 3.82E-02 1.88E-02 2.91E-02

SMOP3 AVG 3.33E-01 3.41E-01 3.46E-01 3.38E-01 3.43E-01 3.48E-01 3.40E-01
STD 5.96E-02 4.67E-02 3.81E-02 4.64E-02 4.02E-02 3.83E-02 4.17E-02

SMOP4 AVG 6.80E-01 6.88E-01 6.98E-01 7.07E-01 7.04E-01 7.04E-01 6.97E-01
STD 4.36E-02 6.57E-02 3.89E-02 2.31E-02 3.11E-02 3.48E-02 5.84E-02

1000 SMOP5 AVG 6.26E-01 6.43E-01 6.26E-01 6.04E-01 6.48E-01 6.38E-01 6.50E-01
STD 6.20E-02 5.61E-02 4.98E-02 7.71E-02 3.84E-02 4.36E-02 4.04E-02

SMOP6 AVG 6.47E-01 6.33E-01 6.56E-01 6.49E-01 6.39E-01 6.50E-01 6.47E-01
STD 3.64E-02 4.40E-02 2.59E-02 3.40E-02 3.86E-02 2.78E-02 3.57E-02

SMOP7 AVG 4.92E-02 4.11E-02 4.90E-02 3.50E-02 4.37E-02 3.75E-02 4.73E-02
STD 1.82E-02 2.26E-02 1.30E-02 2.40E-02 1.66E-02 2.15E-02 1.69E-02

SMOP8 AVG 6.48E-05 9.87E-05 1.24E-04 7.11E-05 3.68E-05 8.63E-05 9.11E-05
STD 1.72E-04 2.42E-04 2.40E-04 1.85E-04 1.47E-04 2.21E-04 2.25E-04

SMOP1 AVG 3.35E-01 3.41E-01 3.64E-01 3.48E-01 3.49E-01 3.49E-01 3.55E-01
STD 4.25E-02 3.94E-02 2.45E-02 3.21E-02 4.00E-02 3.74E-02 2.86E-02

SMOP2 AVG 2.49E-01 2.51E-01 2.65E-01 2.62E-01 2.67E-01 2.50E-01 2.61E-01
STD 7.52E-02 3.97E-02 3.47E-02 3.32E-02 2.05E-02 4.24E-02 3.87E-02

SMOP3 AVG 3.52E-01 3.53E-01 3.65E-01 3.55E-01 3.47E-01 3.63E-01 3.49E-01
STD 3.49E-02 3.15E-02 1.99E-02 4.28E-02 4.46E-02 2.53E-02 3.33E-02

SMOP4 AVG 6.70E-01 6.80E-01 6.98E-01 6.93E-01 6.85E-01 6.97E-01 6.95E-01
STD 7.35E-02 6.13E-02 3.75E-02 4.24E-02 5.01E-02 2.90E-02 4.59E-02

1500 SMOP5 AVG 6.36E-01 6.35E-01 6.41E-01 6.31E-01 6.35E-01 6.39E-01 6.44E-01
STD 5.52E-02 6.33E-02 5.07E-02 4.74E-02 6.29E-02 4.66E-02 5.50E-02

SMOP6 AVG 6.24E-01 6.27E-01 6.51E-01 1.50E+03 6.35E-01 6.35E-01 6.33E-01
STD 6.03E-02 5.11E-02 4.14E-02 3.80E-02 5.31E-02 4.25E-02 4.60E-02

SMOP7 AVG 4.13E-02 3.85E-02 3.62E-02 4.25E-02 4.73E-02 4.58E-02 4.25E-02
STD 2.17E-02 1.93E-02 2.04E-02 1.53E-02 1.75E-02 2.17E-02 2.01E-02

SMOP8 AVG 1.50E-04 1.13E-04 1.70E-04 5.98E-05 8.49E-05 1.45E-04 4.97E-05
STD 2.59E-04 2.15E-04 2.93E-04 1.86E-04 2.07E-04 3.00E-04 1.57E-04

Compare with SparseEA – 17 19 16 13 19 16

of individual gene loci, the diversity in terms of gene loci
should also be considered. In general, population diversity
can be considered from both macro- and micro-perspectives.
Therefore, both individual diversity and genetic diversity are
composed of internal diversity and external diversity [66].
Listed below are four definitions about diversity.

Population P is a set of N individuals which can be
denoted as P = [p1, p2, ..., pN ]T, where pi = [p1i , p2i , ...,
pDi ], is a D dimension vector. P is a N × D matrix, where

each row represents an individual and each column represents
a gene. The p j

i is the j th gene value of the i th individual.

Definition 1 The average of the population P is defined as

P̄ = 1

N × D

N∑

i=1

D∑

j=1

p j
i . (3)
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Definition 2 The overall diversity of the population P is
defined as

DP = 1

N × D

N∑

i=1

D∑

j=1

[p j
i − P̄]2. (4)

Definition 3 Genetic internal diversity is defined as

DGI = 1

N × D

N∑

i=1

D∑

j=1

[p j
i − Ḡ j ]2, where Ḡ j = 1

N

N∑

i=1

p j
i .

(5)

Genetic external diversity is defined as

DGE = 1

D

D∑

j=1

[Ḡ j − P̄]2. (6)

Genetic diversity is defined as

DG = DGI + DGE . (7)

Definition 4 Individual internal diversity is defined as

DII = 1

N × D

N∑

i=1

D∑

j=1

[p j
i − P̄i ]2, where P̄i = 1

D

D∑

j=1

p j
i .

(8)

Individual external diversity is defined as

DIE = 1

N

N∑

i=1

[P̄i − P̄]2. (9)

Individual diversity is defined as

DI = DII + DIE . (10)

In this manuscript, the overall diversity of the popula-
tion DP, genetic diversity DG, and individual diversity DI
are used as the evaluation indicators. The experiments are
performed on five scikit-feature datasets, that is lymphoma,
warpPIE10P, ORL, lung-discrete, and warpAR10P. Each
algorithm is executed for 5000 function evaluations on each
dataset and the HV index is used to measure the results. The
experiments all runs 30 times, and the mean and standard
deviation are used to assess the results. To test the influ-
ence of population size on the algorithm, two experiments
are conducted in this section, with 100 and 200 individuals,
respectively. The experimental results of population diver-
sity, gene diversity, and individual diversity with population
size set to 100 are shown in Table 5, where DP is popula-
tion diversity, DG is genetic diversity, and DI is individual

Table 5 Results of population diversity, gene diversity, and individual
diversity on scikit-feature repository (with population size set to 100)

SparseDO SparseDO SparseDO SparseDO HSparseDO HSparseDO
Diversity Dimension Datasets SparseEA (Best1) (Best2) (Rand1) (Rand2) (Rand1Best1) (Rand2Best2)

4026 lymphoma 6.50E-01 4.04E-01 7.13E-01 6.63E-01 1.13E+00 1.12E+00 1.60E+00
2420 warpPIE10P 2.00E-01 1.45E-01 2.45E-01 2.11E-01 5.40E-01 4.76E-01 8.53E-01

DP 1024 ORL 3.55E-01 2.94E-01 6.97E-01 4.20E-01 9.46E-01 5.92E-01 1.20E+00
325 lung-discrete 3.44E-01 2.98E-01 4.93E-01 3.98E-01 7.87E-01 4.59E-01 1.08E+00
2400 warpAR10P 2.35E-01 1.58E-01 3.89E-01 2.72E-01 7.17E-01 5.60E-01 1.07E+00

00+E03.100+E87.1LATOT 2.54E+00 1.96E+00 4.12E+00 3.20E+00 5.81E+00
4026 lymphoma 6.08E-01 3.71E-01 6.60E-01 6.12E-01 1.05E+00 1.03E+00 1.49E+00
2420 warpPIE10P 1.84E-01 1.30E-01 2.22E-01 1.93E-01 4.92E-01 4.35E-01 7.92E-01

DG 1024 ORL 3.10E-01 2.45E-01 6.15E-01 3.69E-01 8.48E-01 5.34E-01 1.11E+00
325 lung-discrete 3.07E-01 2.56E-01 4.38E-01 3.54E-01 7.10E-01 4.14E-01 9.89E-01
2400 warpAR10P 2.16E-01 1.41E-01 3.47E-01 2.48E-01 6.49E-01 5.10E-01 9.92E-01

00+E41.100+E36.1LATOT 2.28E+00 1.78E+00 3.75E+00 2.93E+00 5.37E+00
4026 lymphoma 5.72E-01 3.63E-01 6.65E-01 6.08E-01 1.05E+00 9.89E-01 1.40E+00
2420 warpPIE10P 1.77E-01 1.31E-01 2.29E-01 1.93E-01 5.08E-01 4.22E-01 7.70E-01

DI 1024 ORL 3.19E-01 2.73E-01 6.54E-01 3.92E-01 8.93E-01 5.46E-01 1.11E+00
325 lung-discrete 3.14E-01 2.85E-01 4.73E-01 3.79E-01 7.54E-01 4.34E-01 1.03E+00
2400 warpAR10P 2.06E-01 1.43E-01 3.66E-01 2.49E-01 6.78E-01 5.01E-01 9.75E-01

00+E91.100+E95.1LATOT 2.39E+00 1.82E+00 3.89E+00 2.89E+00 5.28E+00

diversity. The rows of TOTAL under the three diversities is
the sum of the values of each diversity in five datasets. The
value marked in red indicates that the proposed algorithm
performs better than the original SparseEA.

It can be found from Table 5, the population diversity
values of SparseDO (Best2), SparseDO (Rand1), SparseDO
(Rand2), HSparseDO (Rand1Best1), and HSparseDO
(Rand2Best2) on the five datasets are better than those of
SparseEA, so their Total values are also higher. However,
the values of SparseDO (Best1) on all five datasets are
less than those of SparseEA. Thus, the population diver-
sity of SparseDO (Best1) is worse than SparseEA at a
population size of 100. Meanwhile, compared with the val-
ues of SparseDO (Best1), the values of SparseDO (Best2)
are higher, and compared with the values of SparseDO
(Rand1), the values of SparseDO (Rand2) are higher. More-
over, the values of SparseDO (Rand1) are all higher than
those of SparseDO (Best1), and the values of SparseDO
(Rand2) are all higher than those of SparseDO (Best2). Thus,
random difference operators can increase the diversity of
solutions better than best difference operators. In addition,
the diversity value of HSparseDO (Rand1Best1) is higher
than SparseDO (Rand1) and SparseDO (Best1). Similarly,
the values of HSparseDO (Rand2Best2) are higher than
SparseDO (Rand2) and SparseDO (Best2). Therefore, the
HSparseDO algorithms is effective in population diversity.
The same conclusion can be reached for genetic diversity
and individual diversity.

Table 6 shows the results of population diversity, gene
diversity, and individual diversity on scikit-feature datasets
with population size set to 200. It can be seen from Table
6 that SparseDO (Best2), SparseDO (Rand1), SparseDO
(Rand2), HSparseDO (Rand1Best1), and HSparseDO
(Rand2Best2) are effective for increasing the diversity of
SparseEA. SparseDO (Best1) is worse than SparseEA with
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population size set to 200. Furthermore, comparing Tables
5 and 6, it is not difficult to find that the values in Table
6 are all greater than the corresponding values in Table 5.
Therefore, the diversity of solutions can be increased when
the population size is large.

Ablation study

There are two components in the algorithm, the relief-based
component and the difference operator-based component. In
this subsection, the influence of these two components on
the performance of the proposed algorithm for LSMFSPs is
tested and analyzed.

In this experiment, five datasets of the scikit-feature
repository are selected, which are BASEHOCK, RELATHE,
lymphoma, nci9, andwarpPIE10P. Similarly, to test the influ-
ence of population size on the algorithm, two experiments
are conducted in this section, with 10 and 30 individuals,
respectively. Each algorithm is executed for 5000 function
evaluations on each dataset. The population size and func-
tion evaluation times of each algorithm are the same. All
algorithms in the experiment run 30 times, and AVG and
STD are the mean and standard deviation of the results of 30
times, respectively.

Table 7 shows the experimental results of SparseEA, RA-
SparseEA, SparseDO (Best1), SparseDO (Best2), SparseDO
(Rand1), SparseDO (Rand2), HSparseDO (Rand1Best1),
and HSparseDO (Rand2Best2) on scikit-feature repository
with population size set to 10. The value marked in red indi-
cates that the performance of the algorithm is better than that
of the original SparseEA. The penultimate row of Table 7
(AVG TOTAL) represents the sum of the algorithm’s AVG
values over the five datasets. The last row (COUNT) of the
table indicates the number of times the algorithm is superior
to the SparseEA algorithm in five datasets.

It can be found from the last row of Table 7, RA-SparseEA
performs better than SparseEA on all five datasets. In par-
ticular, the value of RA-SparseEA is 0.083 higher than that
of SparseEA in BASEHOCK, 0.061 higher in RELATHE,
and 0.147 higher in nci9. Hence, the SparseEA based
on ReliefF is effective for LSMFSPs. SparseDO (Best1),
SparseDO (Best2), SparseDO (Rand1), SparseDO (Rand2),
HSparseDO (Rand1Best1), and HSparseDO (Rand2Best2)
are superior to SparseEA on 4, 4, 4, 5, 4, and 4 datasets,
respectively. In particular, the value of SparseDO (Rand1)
is at least 0.02 higher than that of SparseEA in data sets
BASEHOCK, RELATHE, and lymphoma. Therefore, the
difference operator is still valid for feature selection prob-
lems. From the perspective of AVG TOTAL, all proposed
algorithms are superior to the original algorithm, among
which RA-SparseEA has the best performance.

The results ofSparseEA,RA-SparseEA,SparseDO(Best1),
SparseDO (Best2), SparseDO (Rand1), SparseDO (Rand2),

Table 6 Results of population diversity, gene diversity, and individual
diversity on scikit-feature repository (with population size set to 200)

SparseDO SparseDO SparseDO SparseDO HSparseDO HSparseDO
Diversity Dimension Datasets SparseEA (Best1) (Best2) (Rand1) (Rand2) (Rand1Best1) (Rand2Best2)

4026 lymphoma 1.43E+00 1.05E+00 1.45E+00 1.45E+00 1.70E+00 1.98E+00 1.96E+00
2420 warpPIE10P 5.05E-01 3.43E-01 8.30E-01 6.34E-01 1.21E+00 1.19E+00 1.42E+00

DP 1024 ORL 4.90E-01 4.72E-01 9.27E-01 6.89E-01 1.31E+00 9.78E-01 1.43E+00
325 lung-discrete 6.33E-01 5.55E-01 1.09E+00 8.95E-01 1.56E+00 1.07E+00 1.62E+00
2400 warpAR10P 5.16E-01 4.36E-01 9.02E-01 7.56E-01 1.38E+00 1.22E+00 1.53E+00

00+E68.200+E85.3LATOT 5.20E+00 4.42E+00 7.17E+00 6.43E+00 7.97E+00
4026 lymphoma 1.34E+00 9.72E-01 1.38E+00 1.35E+00 1.59E+00 1.98E+00 1.96E+00
2420 warpPIE10P 4.70E-01 3.16E-01 7.76E-01 5.91E-01 1.14E+00 1.10E+00 1.33E+00

DG 1024 ORL 4.48E-01 4.22E-01 8.65E-01 6.36E-01 1.23E+00 9.12E-01 1.34E+00
325 lung-discrete 5.90E-01 5.07E-01 1.02E+00 8.36E-01 1.47E+00 1.00E+00 1.52E+00
2400 warpAR10P 4.78E-01 3.97E-01 8.37E-01 7.05E-01 1.29E+00 1.12E+00 1.43E+00

00+E16.200+E23.3LATOT 4.88E+00 4.12E+00 6.71E+00 6.10E+00 7.59E+00
4026 lymphoma 1.27E+00 9.57E-01 1.28E+00 1.33E+00 1.56E+00 1.98E+00 1.96E+00
2420 warpPIE10P 4.47E-01 3.11E-01 7.85E-01 5.88E-01 1.14E+00 1.06E+00 1.32E+00

DI 1024 ORL 4.35E-01 4.28E-01 8.76E-01 6.41E-01 1.22E+00 8.99E-01 1.33E+00
325 lung-discrete 5.81E-01 5.27E-01 1.04E+00 8.52E-01 1.48E+00 1.01E+00 1.53E+00
2400 warpAR10P 4.59E-01 4.01E-01 8.55E-01 7.07E-01 1.29E+00 1.09E+00 1.42E+00

00+E26.200+E91.3LATOT 4.84E+00 4.11E+00 6.70E+00 6.03E+00 7.56E+00

Table 7 Results of ablation study on scikit-feature repository (with
population size set to 10)

SparseDO SparseDO SparseDO SparseDO HSparseDO HSparseDO
Dimension Datasets Measure SparseEA RA-SparseEA (Best1) (Best2) (Rand1) (Rand2) (Rand1Best1) (Rand2Best2)

4862 BASEHOCK AVG 8.37E-01 9.20E-01 8.46E-01 8.44E-01 8.62E-01 8.63E-01 8.45E-01 8.45E-01
STD 1.52E-02 1.41E-02 1.05E-02 1.25E-02 1.09E-02 1.50E-02 1.37E-02 1.43E-02

4322 RELATHE AVG 8.46E-01 9.07E-01 8.46E-01 8.49E-01 8.67E-01 8.63E-01 8.47E-01 8.44E-01
STD 1.28E-02 1.65E-02 1.00E-02 1.71E-02 1.46E-02 1.38E-02 1.33E-02 1.43E-02

4026 lymphoma AVG 9.36E-01 9.48E-01 9.50E-01 9.67E-01 9.56E-01 9.42E-01 9.61E-01 9.53E-01
STD 5.69E-02 4.70E-02 4.61E-02 3.59E-02 4.35E-02 6.33E-02 5.24E-02 4.76E-02

9712 nci9 AVG 5.80E-01 7.27E-01 5.88E-01 5.79E-01 5.62E-01 5.88E-01 5.83E-01 5.85E-01
STD 7.70E-02 9.34E-02 9.65E-02 7.49E-02 8.08E-02 9.86E-02 9.14E-02 7.12E-02

2420 warpPIE10P AVG 9.80E-01 9.93E-01 9.83E-01 9.84E-01 9.89E-01 9.87E-01 9.75E-01 9.83E-01
STD 1.93E-02 9.77E-03 1.96E-02 1.81E-02 1.23E-02 1.67E-02 2.83E-02 2.19E-02

AVG TOTAL 4.18E+00 4.49E+00 4.21E+00 4.22E+00 4.23E+00 4.24E+00 4.21E+00 4.21E+00
4454445TNUOC

HSparseDO (Rand1Best1), and HSparseDO (Rand2Best2)
with population size set to 30 are shown in Table 8. Simi-
larly, the performance of RA-SparseEA on all five datasets
is better than that of SparseEA, which is the best among all
algorithms. In particular, the value of RA-SparseEA is 0.065
higher than that of SparseEA in BASEHOCK, 0.046 higher
in RELATHE, and 0.140 higher in nci9. Compared with
SparseEA, SparseDO (Best1), SparseDO (Best2), SparseDO
(Rand1), SparseDO (Rand2), HSparseDO (Rand1Best1),
and HSparseDO (Rand2Best2) perform better on 4, 3, 5, 5,
4, and 4 datasets, respectively. On nci9 dataset, the values of
SparseDO (Best1), SparseDO (Best2), SparseDO (Rand2),
HSparseDO (Rand1Best1), and HSparseDO (Rand2Best2)
are at least 0.02 higher than that of SparseEA. As can be
seen from the penultimate row of Table 8, both the differ-
ence operator and ReliefF-based strategy can improve the
performance of the original SparseEA.
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Fig. 1 Obtained Pareto fronts of SparseEA, RA-SparseDO (Best1), RA-SparseDO (Best2), RA-SparseDO (Rand1), RA-SparseDO (Rand2),
RA-HSparseDO (Rand1Best1), and RA-HSparseDO (Rand2Best2)

Table 8 Results of ablation study on scikit-feature repository (with
population size set to 30)

SparseDO SparseDO SparseDO SparseDO HSparseDO HSparseDO
Dimension Datasets Measure SparseEA RA-SparseEA (Best1) (Best2) (Rand1) (Rand2) (Rand1Best1) (Rand2Best2)

4862 BASEHOCK AVG 8.43E-01 9.08E-01 8.48E-01 8.47E-01 8.60E-01 8.53E-01 8.52E-01 8.46E-01
STD 1.55E-02 1.28E-02 1.42E-02 1.44E-02 1.16E-02 8.97E-03 1.21E-02 1.21E-02

4322 RELATHE AVG 8.48E-01 8.95E-01 8.57E-01 8.45E-01 8.68E-01 8.57E-01 8.48E-01 8.40E-01
STD 1.44E-02 1.46E-02 1.24E-02 1.54E-02 1.14E-02 1.07E-02 1.30E-02 1.23E-02

4026 lymphoma AVG 9.41E-01 9.66E-01 9.48E-01 9.51E-01 9.68E-01 9.61E-01 9.62E-01 9.59E-01
STD 4.82E-02 3.98E-02 3.93E-02 5.09E-02 4.23E-02 3.91E-02 4.66E-02 4.43E-02

9712 nci9 AVG 5.79E-01 7.19E-01 6.06E-01 6.07E-01 5.85E-01 6.05E-01 6.03E-01 6.02E-01
STD 8.44E-02 1.15E-01 8.91E-02 7.93E-02 8.22E-02 8.51E-02 7.27E-02 9.87E-02

2420 warpPIE10P AVG 9.87E-01 9.94E-01 9.86E-01 9.78E-01 9.93E-01 9.92E-01 9.91E-01 9.88E-01
STD 1.76E-02 8.74E-03 1.84E-02 2.35E-02 1.16E-02 1.18E-02 1.06E-02 1.71E-02

AVG TOTAL 4.20E+00 4.48E+00 4.24E+00 4.23E+00 4.27E+00 4.27E+00 4.26E+00 4.23E+00
4455345TNUOC

Comparative experiments for large-scale sparse
multi-objective feature selection problems

In this subsection, comparative experiments for LSMFSPs
will be verified on scikit-feature repository.

Comparative experiments with 30 individuals

Each algorithm is executed for 5000 function evaluations on
each dataset. In these experiments, ten datasets from scikit-
feature repository are used to verify the effectiveness of the
proposed algorithm for LSMFSPs, that is lung, lung-discrete,
lymphoma, nci9, ORL, Prostate-GE, TOX-171, warpAR10P,
warpPIE10P, and Yale. The numbers of features on the ten
datasets are 3312, 325, 4026, 9712, 1024, 5966, 5748, 2400,
2420, and 1024, respectively. First of all, the SparseEA based
on ReliefF with different difference operator will be tested.
Then, the proposed algorithm will be compared with the
state-of-the-art algorithms.

Table 9 shows the HV values of the SparseEA, RA-
SparseDO (Best1), RA-SparseDO (Best2), RA-SparseDO
(Rand1),RA-SparseDO(Rand2),RA-HSparseDO(Rand1Best1),
and RA-HSparseDO (Rand2Best2) on scikit-feature repos-
itory with population size set to 30. Similarly, the values
marked in red indicate that the algorithm is better than the
original SparseEA. The penultimate row of Table 9 (AVG
TOTAL) represents the sum of the algorithm’s AVG values
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over the ten datasets. The last row (COUNT) of the table
indicates the number of times the algorithm is superior to the
SparseEA algorithm in ten datasets. As can be seen from the
last line of Table 9, RA-SparseDO (Rand2), RA-HSparseDO
(Rand1Best1), and RA-HSparseDO (Rand2Best2) all obtain
ten better results than SparseEA. Followed by algorithmRA-
SparseDO (Rand1), which performs better than SparseEA on
9 dataset. RA-SparseDO (Best1) and RA-SparseDO (Best2)
got higher HV values than SparseEA on 6 and 5 datasets,
respectively. From the values ofAVGTOTAL,we can see that
the most effective algorithm is RA-SparseDO (Rand2), fol-
lowed byRA-SparseDO (Rand1). RA-SparseDO (Best2) has
the worst effect of all the proposed algorithms. Specifically,
on Prostate-GE, the values of all six proposed algorithms are
at least 0.03 higher than that of SparseEA. On nci9, all six
proposed algorithms are improved by at least 0.04. On TOX-
171, all algorithms are improved by at least 0.09. What’s
more, the values of RA-SparseDO (Rand2) are at least 0.03
higher than those SparseEA on five datasets.

To show the non-dominated solutions of these algorithms,
the Pareto fronts on four datasets (nci9, ORL, TOX-171, and
warpPIE10P) that is obtained by SparseEA, RA-SparseDO
(Best1), RA-SparseDO (Best2), RA-SparseDO (Rand1),
RA-SparseDO (Rand2), RA-HSparseDO (Rand1Best1), and
RA-HSparseDO (Rand2Best2) are plotted in Fig. 1. It can be
observed from Fig. 1 that the non-dominated solutions of all
proposed algorithms are obviously superior to the original
SparseEA algorithm on nci9 and TOX-171. For ORL and
warpPIE10P, SparseEA can achieve low ratio of selected
features, while most proposed algorithms can achieve low
validation error.

Then, RA-SparseDO (Rand2), RA-HSparseDO
(Rand2Best2), and the original SparseEA are used to com-
pare with other algorithms. Four comparison algorithms
were selected in this subsection, i.e., ARMOEA [67], DAEA
[68], DEAGNG [69], and MOEAPSL [51]. All four com-
parison algorithms have been proposed in the past 3 years.
ARMOEA algorithm is an adaptive geometry estimation-
based many-objective evolutionary algorithm which was
proposed in 2019. In 2021, a duplication analysis-based
evolutionary algorithm (DAEA) was proposed for solving
bi-objective feature selection in classification. DEAGNG is
an decomposition-based evolutionary algorithm guided by
growing neural gas which was designed in 2020. MOEAPSL
is an evolutionary algorithm proposed in 2021 to solve sparse
large-scale multi-objective problems by learning Pareto opti-
mal subspace.

The experimental results are shown in Table 10. First,
compare SparseDO (Rand2) with ARMOEA, DAEA,
DEAGNG, MOEAPSL, and the original SparseEA. Among
the six algorithms, the one with the best performance
is marked in red, and the penultimate row of Table 10
indicates the number of optimal results obtained by the

algorithm. It can be found that SparseDO (Rand2) per-
forms best on seven datasets. Next is DAEA, which per-
forms best on three datasets. ARMOEA, DEAGNG, and
SparseEA have not obtained the optimal results. Similarly,
RA-HSparseDO (Rand2Best2) is used to compare with five
comparison algorithm, and the maximum HV values in all
algorithms are marked with bold. The last row of Table
10 represents the number of times the optimal value was
obtained. RA-HSparseDO (Rand2Best2) obtained optimal
values on 6 datasets, and DAEA obtained optimal values
on 4 datasets. Therefore, the proposed algorithm has the
best performance, and is significantly better than ARMOEA,
DEAGNG, MOEAPSL, and the original SparseEA.

Similarly, the Pareto fronts obtained by ARMOEA,
DAEA, DEAGNG, MOEAPSL, SparseEA, RA-SparseDO
(Rand2), and RA-HSparseDO (Rand2Best2) are plotted
in Fig. 2. As shown in Fig. 2, the solutions obtained by
ARMOEA and DEAGNG are not sparse enough and are
obviously worse than those obtained by other algorithms.
RA-SparseDO (Rand2) has obtained non-dominated solu-
tions on lymphoma, warpAR10P, and Yale with low val-
idation error than other algorithms. The non-dominated
solutions of DAEA have lower ratio of selected features than
RA-SparseDO (Rand2) and RA-HSparseDO (Rand2Best2)
on warpAR10P and Yale.

Comparative experiments with 50 individuals

The next experiment is to verify the effectiveness of the
proposed algorithm when the population size is 50. Sim-
ilarly, the performances of the proposed algorithms under
different difference operators are compared with the origi-
nal SparseEA. The HV values of SparseEA, RA-SparseDO
(Best1), RA-SparseDO (Best2), RA-SparseDO (Rand1),
RA-SparseDO (Rand2), RA-HSparseDO (Rand1Best1), and
RA-HSparseDO (Rand2Best2) are shown in Table 11.

It can be found from the last line of Table 11 that RA-
SparseDO (Rand2) performs better than SparseEA on all
ten datasets. Next are RA-SparseDO (Best1), RA-SparseDO
(Rand1), and RA-HSparseDO (Rand1Best1), all of which
have better results on nine datasets. RA-SparseDO (Best2)
and RA-HSparseDO (Rand2Best2) obtained 7 and 8 better
values, respectively. As can be seen from the penulti-
mate row of Table 11, the six proposed algorithms are
all superior to the original SparseEA. The highest AVG
TOTAL value is obtained by RA-SparseDO (Rand1), which
is 9.41E+00. Followed by RA-HSparseDO (Rand1Best1),
which is 9.38E+00. In detail, the values of all six proposed
algorithms are at least 0.03 higher than those of SparseEA
on lung-discrete, nci9, Prostate-GE, and TOX-171. Specif-
ically, all six proposed algorithms are improved at least
0.09 on TOX-171. On lung-discrete, RA-SparseDO (Rand1),
RA-SparseDO (Rand2), RA-HSparseDO (Rand1Best1), and
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Table 9 The comparison
between SparseEA and
RA-SparseDO(Best1),
RA-SparseDO(Best2),
RA-SparseDO(Rand1),
RA-SparseDO(Rand2),
RA-HSparseDO(Rand1Best1),
and
RA-HSparseDO(Rand2Best2)
on scikit-feature repository
(with population size set to 30)

RA-SparseDO RA-SparseDO RA-SparseDO RA-SparseDO RA-HSparseDO RA-HSparseDO
Datasets Measure SparseEA (Best1) (Best2) (Rand1) (Rand2) (Rand1Best1) (Rand2Best2)
lung AVG 9.93E-01 9.98E-01 9.92E-01 9.96E-01 1.00E+00 9.97E-01 9.98E-01

STD 1.04E-02 5.85E-03 1.38E-02 8.60E-03 1.52E-04 7.81E-03 5.78E-03
lung-discrete AVG 9.78E-01 9.77E-01 9.67E-01 9.91E-01 9.95E-01 9.84E-01 9.87E-01

STD 2.88E-02 3.72E-02 4.28E-02 1.64E-02 1.44E-03 2.96E-02 1.95E-02
lymphoma AVG 9.53E-01 9.52E-01 9.59E-01 9.50E-01 9.79E-01 9.68E-01 9.56E-01

STD 3.24E-02 4.35E-02 5.89E-02 4.06E-02 3.91E-02 3.40E-02 5.22E-02
nci9 AVG 6.54E-01 7.20E-01 6.99E-01 7.91E-01 7.56E-01 6.98E-01 7.15E-01

STD 1.03E-01 1.21E-01 9.67E-02 1.15E-01 8.51E-02 9.27E-02 9.47E-02
ORL AVG 9.31E-01 9.16E-01 9.19E-01 9.37E-01 9.52E-01 9.35E-01 9.46E-01

STD 2.44E-02 2.71E-02 2.83E-02 1.98E-02 1.87E-02 2.34E-02 2.12E-02
Prostate-GE AVG 9.59E-01 9.94E-01 9.89E-01 9.94E-01 9.94E-01 9.89E-01 9.89E-01

STD 2.47E-02 1.57E-02 1.95E-02 1.57E-02 1.57E-02 1.95E-02 1.95E-02
TOX-171 AVG 8.73E-01 9.77E-01 9.66E-01 9.97E-01 9.96E-01 9.80E-01 9.79E-01

STD 4.52E-02 2.55E-02 2.74E-02 9.77E-03 1.08E-02 2.74E-02 2.40E-02
warpAR10P AVG 9.14E-01 9.00E-01 8.95E-01 9.27E-01 9.61E-01 9.29E-01 9.35E-01

STD 4.46E-02 4.20E-02 5.37E-02 5.09E-02 3.54E-02 4.85E-02 3.60E-02
warpPIE10P AVG 9.90E-01 9.96E-01 9.97E-01 9.96E-01 9.97E-01 9.94E-01 9.98E-01

STD 1.57E-02 9.30E-03 5.51E-03 9.35E-03 5.43E-03 8.80E-03 3.89E-03
Yale AVG 7.91E-01 8.11E-01 7.90E-01 8.24E-01 8.42E-01 8.15E-01 8.36E-01

STD 5.44E-02 5.63E-02 5.70E-02 5.78E-02 4.55E-02 5.80E-02 4.60E-02
AVG TOTAL 9.04E+00 9.24E+00 9.17E+00 9.40E+00 9.47E+00 9.29E+00 9.34E+00

010101956TNUOC

Table 10 Comparisons of
different algorithms on
scikit-feature repository (with
population size set to 30)

RA-SparseDO RA-HSparseDO
Datasets Measure ARMOEA DAEA DEAGNG MOEAPSL SparseEA (Rand2) (Rand2Best2)

lung AVG 7.01E-01 9.95E-01 7.05E-01 9.68E-01 9.93E-01 1.00E+00 9.98E-01
STD 1.69E-02 9.25E-03 2.27E-02 7.55E-02 1.04E-02 1.52E-04 5.78E-03

lung-discrete AVG 9.49E-01 9.85E-01 9.67E-01 9.85E-01 9.78E-01 9.95E-01 9.87E-01
STD 4.03E-02 2.44E-02 2.42E-02 2.79E-02 2.88E-02 1.44E-03 1.95E-02

lymphoma AVG 6.66E-01 9.55E-01 6.61E-01 9.45E-01 9.53E-01 9.79E-01 9.56E-01
STD 2.99E-02 3.96E-02 4.04E-02 4.56E-02 3.24E-02 3.91E-02 5.22E-02

nci9 AVG 3.68E-01 8.53E-01 3.42E-01 7.77E-01 6.54E-01 7.56E-01 7.15E-01
STD 8.86E-02 1.03E-01 8.28E-02 2.15E-01 1.03E-01 8.51E-02 9.47E-02

ORL AVG 7.76E-01 9.50E-01 7.98E-01 9.45E-01 9.31E-01 9.52E-01 9.46E-01
STD 2.29E-02 1.95E-02 3.01E-02 3.55E-02 2.44E-02 1.87E-02 2.12E-02

Prostate-GE AVG 6.13E-01 9.98E-01 6.15E-01 9.85E-01 9.59E-01 9.94E-01 9.89E-01
STD 3.51E-02 8.29E-03 3.65E-02 3.78E-02 2.47E-02 1.57E-02 1.95E-02

TOX-171 AVG 5.94E-01 9.83E-01 5.93E-01 9.34E-01 8.73E-01 9.96E-01 9.79E-01
STD 3.07E-02 2.04E-02 3.38E-02 9.76E-02 4.52E-02 1.08E-02 2.40E-02

warpAR10P AVG 4.52E-01 9.40E-01 4.79E-01 8.69E-01 9.14E-01 9.61E-01 9.35E-01
STD 6.03E-02 3.91E-02 6.59E-02 1.59E-01 4.46E-02 3.54E-02 3.60E-02

warpPIE10P AVG 7.20E-01 9.98E-01 7.42E-01 9.79E-01 9.90E-01 9.97E-01 9.98E-01
STD 2.27E-02 3.94E-03 2.19E-02 4.01E-02 1.57E-02 5.43E-03 3.89E-03

Yale AVG 6.35E-01 8.03E-01 6.36E-01 8.06E-01 7.91E-01 8.42E-01 8.36E-01
STD 4.99E-02 5.46E-02 5.53E-02 6.51E-02 5.44E-02 4.55E-02 4.60E-02

SparseDO(Rand2) 0 3 0 0 0 7
600040)2tseB2dnaR(ODesrapSH-AR

Table 11 The comparison
between SparseEA and
RA-SparseDO(Best1),
RA-SparseDO(Best2),
RA-SparseDO(Rand1),
RA-SparseDO(Rand2),
RA-HSparseDO(Rand1Best1),
and
RA-HSparseDO(Rand2Best2)
on scikit-feature repository
(with population size set to 50)

RA-SparseDO RA-SparseDO RA-SparseDO RA-SparseDO RA-HSparseDO RA-HSparseDO
Datasets Measure SparseEA (Best1) (Best2) (Rand1) (Rand2) (Rand1Best1) (Rand2Best2)
lung AVG 9.87E-01 9.95E-01 9.94E-01 1.00E+00 9.99E-01 9.99E-01 9.97E-01

STD 1.27E-02 9.27E-03 9.49E-03 1.46E-04 2.50E-04 4.21E-03 5.89E-03
lung-discrete AVG 9.29E-01 9.77E-01 9.67E-01 9.91E-01 9.95E-01 9.84E-01 9.87E-01

STD 1.26E-02 3.72E-02 4.28E-02 1.64E-02 1.44E-03 2.96E-02 1.95E-02
lymphoma AVG 9.58E-01 9.56E-01 9.38E-01 9.56E-01 9.61E-01 9.69E-01 9.46E-01

STD 4.01E-02 5.37E-02 7.08E-02 5.23E-02 3.63E-02 2.95E-02 5.23E-02
nci9 AVG 6.33E-01 7.54E-01 7.24E-01 7.48E-01 6.84E-01 7.57E-01 7.19E-01

STD 8.22E-02 1.02E-01 8.60E-02 1.07E-01 9.28E-02 1.06E-01 9.05E-02
ORL AVG 9.32E-01 9.36E-01 9.06E-01 9.48E-01 9.37E-01 9.28E-01 9.26E-01

STD 2.48E-02 2.20E-02 2.49E-02 2.24E-02 2.48E-02 2.64E-02 2.83E-02
Prostate-GE AVG 9.53E-01 9.83E-01 9.86E-01 9.97E-01 9.98E-01 9.86E-01 9.93E-01

STD 3.25E-02 2.56E-02 2.42E-02 1.15E-02 8.29E-03 2.11E-02 1.96E-02
TOX-171 AVG 8.76E-01 9.78E-01 9.77E-01 9.97E-01 9.91E-01 9.94E-01 9.71E-01

STD 6.00E-02 2.41E-02 2.14E-02 6.77E-03 1.70E-02 1.23E-02 3.13E-02
warpAR10P AVG 9.07E-01 9.10E-01 8.89E-01 9.37E-01 9.43E-01 9.39E-01 9.10E-01

STD 5.84E-02 6.19E-02 5.46E-02 4.36E-02 3.98E-02 3.69E-02 5.62E-02
warpPIE10P AVG 9.93E-01 9.96E-01 9.94E-01 9.96E-01 9.98E-01 9.98E-01 9.97E-01

STD 9.78E-03 9.39E-03 8.69E-03 6.57E-03 3.88E-03 3.94E-03 3.96E-03
Yale AVG 8.01E-01 8.11E-01 8.01E-01 8.36E-01 8.39E-01 8.29E-01 8.13E-01

STD 4.68E-02 5.78E-02 4.25E-02 5.22E-02 5.61E-02 5.83E-02 5.78E-02
AVG TOTAL 8.97E+00 9.30E+00 9.17E+00 9.41E+00 9.35E+00 9.38E+00 9.26E+00

8901979TNUOC
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Fig. 2 ObtainedPareto fronts ofARMOEA,DAEA,DEAGNG,MOEAPSL, SparseEA,RA-SparseDO (Rand2), andRA-HSparseDO (Rand2Best2)

RA-HSparseDO (Rand2Best2) are improved at least 0.05.
On nci9, five proposed algorithms are improved at least 0.08.
What’smore, the values ofRA-SparseDO(Rand1) are at least
0.03 higher than those SparseEA on six datasets. Similarly,
RA-SparseDO (Rand2) and RA-HSparseDO (Rand1Best1)
are also at least 0.03 higher than those SparseEA on six
datasets.

Next, RA-SparseDO (Rand2) and RA-HSparseDO (Rand
1Best1) are selected to compare with the comparison algo-
rithms. Table 12 shows the results of ARMOEA, DAEA,
DEAGNG, MOEAPSL, SparseEA, RA-SparseDO (Rand2),
and RA-HSparseDO (Rand1Best1) with population size set
to 50. The best results are marked in red. The results
of SparseDO (Rand2) compared with ARMOEA, DAEA,
DEAGNG, MOEAPSL, and SparseEA are shown in the
penultimate row of Table 12. It can be seen that RA-
SparseDO (Rand2) got 7 best values, and DAEA got three
best results. The last line of Table 12 is the result of
the comparison between RAHSparseDO (Rand1Best1) and
ARMOEA, DAEA, DEAGNG, MOEAPSL, and SparseEA.
The best results are marked in bold. In this comparison,
RAHSparseDO (Rand1Best1) won 6 times and DAEA won

4 times. Therefore, the proposed algorithm is slightly bet-
ter than DAEA, but significantly better than ARMOEA,
DEAGG, MOEAPSL and the original SparseEA for solving
LSMFSPs.

Comparative experiments with different population size

It is well known that different algorithms usually have dif-
ferent optimal settings of the population size. The third
experiment is to verify the effectiveness of the algorithms
with different population size. Each algorithm is executed for
5000 function evaluations on each dataset. Table 13 shows
the results of RA-SparseDO (Rand2) with different popula-
tion size set to 10, 30, 50, 70, 90, 110, 130, 150, 170, and
190. Similarly, the best results of different population size
are marked in red. The optimal population size is 30, and 6
red values are obtained. Next are 50 and 70, both with 2 best
results. When the population size is 10, the optimal solution
is obtained on 1 dataset. In particular, the algorithm gets the
same value on the lung-discrete dataset when the population
size is set to 30 and 50. When the population size is greater
than or equal to 90, the algorithm does not get the best result.
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Table 12 Comparisons of
different algorithms on
scikit-feature repository (with
population size set to 50)

RA-SparseDO RA-SparseDO
Datasets Measure ARMOEA DAEA DEAGNG MOEAPSL SparseEA (Rand2) (Rand1Best1)

lung AVG 7.18E-01 9.98E-01 7.24E-01 9.91E-01 9.87E-01 9.99E-01 9.99E-01
STD 2.58E-02 5.78E-03 1.95E-02 2.26E-02 1.27E-02 2.50E-04 4.21E-03

lung-discrete AVG 9.57E-01 9.93E-01 9.59E-01 9.85E-01 9.29E-01 9.95E-01 9.84E-01
STD 3.46E-02 1.16E-02 3.90E-02 2.27E-02 1.26E-02 1.44E-03 2.96E-02

lymphoma AVG 6.93E-01 9.49E-01 6.87E-01 9.59E-01 9.58E-01 9.61E-01 9.69E-01
STD 2.97E-02 4.85E-02 3.06E-02 4.32E-02 4.01E-02 3.63E-02 2.95E-02

nci9 AVG 3.82E-01 8.08E-01 3.64E-01 8.39E-01 6.33E-01 6.84E-01 7.57E-01
STD 8.73E-02 9.48E-02 8.81E-02 1.64E-01 8.22E-02 9.28E-02 1.06E-01

ORL AVG 7.81E-01 9.52E-01 7.92E-01 9.42E-01 9.32E-01 9.37E-01 9.28E-01
STD 1.94E-02 2.58E-02 3.36E-02 3.05E-02 2.48E-02 2.48E-02 2.64E-02

Prostate-GE AVG 6.22E-01 1.00E+00 6.42E-01 8.26E-01 9.53E-01 9.98E-01 9.86E-01
STD 4.87E-02 1.41E-05 4.20E-02 3.20E-01 3.25E-02 8.29E-03 2.11E-02

TOX-171 AVG 6.18E-01 9.88E-01 6.25E-01 9.75E-01 8.76E-01 9.91E-01 9.94E-01
STD 2.63E-02 2.18E-02 3.89E-02 6.38E-02 6.00E-02 1.70E-02 1.23E-02

warpAR10P AVG 4.84E-01 9.35E-01 4.93E-01 8.89E-01 9.07E-01 9.43E-01 9.39E-01
STD 6.22E-02 5.12E-02 6.44E-02 1.17E-01 5.84E-02 3.98E-02 3.69E-02

warpPIE10P AVG 7.36E-01 9.98E-01 7.53E-01 9.73E-01 9.93E-01 9.98E-01 9.98E-01
STD 2.12E-02 7.88E-03 2.80E-02 5.16E-02 9.78E-03 3.88E-03 3.94E-03

Yale AVG 6.36E-01 8.25E-01 6.73E-01 8.28E-01 8.01E-01 8.39E-01 8.29E-01
STD 5.36E-02 6.24E-02 5.03E-02 5.98E-02 4.68E-02 5.61E-02 5.83E-02

SparseDO(Rand2) 0 3 0 0 0 7
600040)1tseB1dnaR(ODesrapSH-AR

Table 13 RA-SparseDO
(Rand2) with different
population size on scikit-feature
repository

Datasets Measure 10 30 50 70 90 110 130 150 170 190
lung AVG 9.94E-01 1.00E+00 9.99E-01 9.98E-01 9.99E-01 9.97E-01 9.97E-01 9.92E-01 9.90E-01 9.92E-01

STD 1.18E-02 1.52E-04 2.50E-04 5.87E-03 6.82E-04 6.19E-03 4.22E-03 1.01E-02 1.10E-02 1.16E-02
lung-discrete AVG 9.59E-01 9.95E-01 9.95E-01 9.88E-01 9.78E-01 9.75E-01 9.75E-01 9.69E-01 9.66E-01 9.68E-01

STD 4.69E-02 1.44E-03 1.44E-03 2.79E-03 1.83E-02 2.67E-02 1.40E-02 1.60E-02 1.82E-02 1.37E-02
lymphoma AVG 9.52E-01 9.79E-01 9.61E-01 9.69E-01 9.37E-01 9.56E-01 9.57E-01 9.56E-01 9.47E-01 9.46E-01

STD 4.16E-02 3.91E-02 3.63E-02 3.87E-02 6.01E-02 3.81E-02 4.21E-02 4.23E-02 5.40E-02 5.45E-02
nci9 AVG 8.28E-01 7.56E-01 6.84E-01 7.30E-01 7.45E-01 7.35E-01 7.29E-01 7.37E-01 7.35E-01 7.60E-01

STD 7.85E-02 8.51E-02 9.28E-02 1.21E-01 9.66E-02 8.50E-02 9.38E-02 9.48E-02 8.47E-02 9.98E-02
ORL AVG 9.21E-01 9.52E-01 9.37E-01 9.29E-01 9.22E-01 9.16E-01 9.21E-01 9.10E-01 9.19E-01 9.07E-01

STD 3.11E-02 1.87E-02 2.48E-02 2.53E-02 2.61E-02 2.84E-02 2.73E-02 2.38E-02 2.82E-02 2.46E-02
Prostate-GE AVG 9.85E-01 9.94E-01 9.98E-01 9.88E-01 9.87E-01 9.91E-01 9.88E-01 9.78E-01 9.80E-01 9.76E-01

STD 2.76E-02 1.57E-02 8.29E-03 2.04E-02 2.04E-02 1.74E-02 2.29E-02 2.81E-02 2.19E-02 3.03E-02
TOX-171 AVG 9.86E-01 9.96E-01 9.91E-01 9.97E-01 9.84E-01 9.76E-01 9.70E-01 9.76E-01 9.62E-01 9.63E-01

STD 1.94E-02 1.08E-02 1.70E-02 8.84E-03 1.98E-02 2.75E-02 2.95E-02 2.90E-02 3.23E-02 3.10E-02
warpAR10P AVG 8.86E-01 9.61E-01 9.43E-01 8.98E-01 8.92E-01 8.88E-01 8.55E-01 8.50E-01 8.41E-01 8.27E-01

STD 5.23E-02 3.54E-02 3.98E-02 5.30E-02 6.42E-02 5.88E-02 5.77E-02 6.13E-02 6.70E-02 6.66E-02
warpPIE10P AVG 9.91E-01 9.97E-01 9.98E-01 9.98E-01 9.96E-01 9.92E-01 9.93E-01 9.91E-01 9.92E-01 9.90E-01

STD 1.18E-02 5.43E-03 3.88E-03 3.11E-03 5.53E-03 9.88E-03 7.31E-03 8.45E-03 7.09E-03 9.04E-03
Yale AVG 7.96E-01 8.42E-01 8.39E-01 8.08E-01 8.00E-01 7.82E-01 7.83E-01 7.96E-01 7.89E-01 7.64E-01

STD 4.89E-02 4.55E-02 5.61E-02 4.61E-02 6.30E-02 5.06E-02 4.63E-02 4.99E-02 4.93E-02 5.86E-02

Table 14 shows the results of SparseEA with different
population size. It can be seen that SparseEA has the best
results when the population size is set to 30, 50, 70, 90, 110.
The optimal population number is 70, and 3 red values are
obtained. Next are 90 and 110, both with 2 best results.When
the number of individuals is 30 and 50, only one optimal
solution can be obtained.

Similarly, Tables 15, 16, 17 and 18 are the HV results
of ARMOEA, DAEA, DEAGNG, and MOEAPSL with dif-
ferent population size. The optimal population number of
ARMOEA is 70, and 5 red values are obtained. This is fol-
lowed by 10 and 50, with 3 and 2 best values, respectively.
For DAEA, the optimal population number is 50, and four
red values are obtained. It also gets red values at 30, 70,
and 150. DEAGNG gets red values at 10, 70, 90, and 110.
When the population number is 70 and 90, three red values
are obtained, while when the population number is 10 and
110, two red values are obtained. MOEAPSL has obtained
the optimal value in seven population sizes, so the popula-

tion size has relatively little influence on it. MOEAPSL get
two red results with population size set to 50, 70, and 150. It
obtains one best value on 30, 90, 110, and 170 individuals.

Table 19 is the best results with different population size
of ARMOEA, DAEA, DEAGNG, MOEAPSL, SparseEA,
and RA-SparseDO (Rand2) on scikit-feature repository That
is, the red values of Tables 13, 14, 15, 16, 17 and 18 are
shown in Table 19. Among the six algorithms, the one with
the best performance is marked in red. It can be found form
Table 19, the proposed RA-SparseDO (Rand2) performs best
on 7 datasets. Next is DAEA, which performs best on three
datasets. ARMOEA, DEAGNG, MOEAPSL, and SparseEA
have not obtained the red results.

Comparative experiments for small-scale
multi-objective feature selection problems

In this subsection, the experimentswill be done to further ver-
ify the effectiveness of the proposed algorithm for small-scale
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Table 14 SparseEA with
different population size on
scikit-feature repository

Datasets Measure 10 30 50 70 90 110 130 150 170 190
lung AVG 9.90E-01 9.93E-01 9.87E-01 9.94E-01 9.88E-01 9.88E-01 9.83E-01 9.84E-01 9.85E-01 9.85E-01

STD 1.32E-02 1.04E-02 1.27E-02 1.33E-02 1.19E-02 1.38E-02 1.53E-02 1.87E-02 1.56E-02 1.70E-02
lung-discrete AVG 9.79E-01 9.78E-01 9.29E-01 9.79E-01 9.85E-01 9.95E-01 9.78E-01 9.81E-01 9.85E-01 9.75E-01

STD 2.86E-02 2.88E-02 1.26E-02 4.09E-02 2.40E-02 1.52E-03 2.95E-02 2.68E-02 2.32E-02 3.00E-02
lymphoma AVG 9.57E-01 9.53E-01 9.58E-01 9.52E-01 9.54E-01 9.66E-01 9.33E-01 9.47E-01 9.65E-01 9.34E-01

STD 3.71E-02 3.24E-02 4.01E-02 4.51E-02 4.26E-02 3.50E-02 5.81E-02 4.21E-02 3.12E-02 3.89E-02
nci9 AVG 5.74E-01 6.54E-01 6.33E-01 5.82E-01 5.84E-01 6.58E-01 6.24E-01 6.10E-01 6.07E-01 6.53E-01

STD 5.27E-02 1.03E-01 8.22E-02 9.95E-02 6.96E-02 1.09E-01 8.15E-02 8.60E-02 7.39E-02 9.66E-02
ORL AVG 9.31E-01 9.31E-01 9.32E-01 9.28E-01 9.39E-01 9.34E-01 9.34E-01 9.25E-01 9.28E-01 9.18E-01

STD 2.83E-02 2.44E-02 2.48E-02 3.02E-02 2.06E-02 2.24E-02 2.23E-02 2.76E-02 2.51E-02 2.96E-02
Prostate-GE AVG 9.57E-01 9.59E-01 9.53E-01 9.52E-01 9.76E-01 9.49E-01 9.58E-01 9.70E-01 9.54E-01 9.68E-01

STD 3.24E-02 2.47E-02 3.25E-02 3.69E-02 2.72E-02 3.49E-02 2.38E-02 2.17E-02 3.27E-02 2.59E-02
TOX-171 AVG 8.45E-01 8.73E-01 8.76E-01 9.15E-01 8.95E-01 9.01E-01 8.99E-01 8.90E-01 8.91E-01 8.95E-01

STD 4.47E-02 4.52E-02 6.00E-02 5.30E-02 3.75E-02 4.99E-02 4.36E-02 4.76E-02 5.64E-02 5.55E-02
warpAR10P AVG 9.00E-01 9.14E-01 9.07E-01 9.09E-01 8.60E-01 8.84E-01 8.61E-01 8.51E-01 8.53E-01 8.61E-01

STD 7.10E-02 4.46E-02 5.84E-02 6.45E-02 5.89E-02 4.26E-02 5.49E-02 7.75E-02 6.06E-02 5.72E-02
warpPIE10P AVG 9.84E-01 9.90E-01 9.93E-01 9.93E-01 9.87E-01 9.92E-01 9.87E-01 9.85E-01 9.88E-01 9.91E-01

STD 1.68E-02 1.57E-02 9.78E-03 1.01E-02 1.48E-02 1.27E-02 1.91E-02 1.60E-02 1.48E-02 1.44E-02
Yale AVG 7.76E-01 7.91E-01 8.01E-01 8.05E-01 7.87E-01 7.98E-01 7.92E-01 7.96E-01 7.45E-01 7.85E-01

STD 6.27E-02 5.44E-02 4.68E-02 5.98E-02 4.72E-02 5.17E-02 6.68E-02 4.44E-02 5.66E-02 5.00E-02

Table 15 ARMOEA with
different population size on
scikit-feature repository

Datasets Measure 10 30 50 70 90 110 130 150 170 190
lung AVG 6.98E-01 7.01E-01 7.18E-01 6.99E-01 6.98E-01 6.74E-01 6.66E-01 6.56E-01 6.44E-01 6.32E-01

STD 1.68E-02 1.69E-02 2.58E-02 2.04E-02 1.71E-02 1.28E-02 1.75E-02 1.39E-02 9.56E-03 1.29E-02
lung-discrete AVG 9.75E-01 9.49E-01 9.57E-01 9.55E-01 9.42E-01 9.33E-01 9.09E-01 8.78E-01 8.47E-01 8.51E-01

STD 2.48E-02 4.03E-02 3.46E-02 2.83E-02 3.37E-02 1.97E-02 2.69E-02 2.13E-02 3.56E-02 3.80E-02
lymphoma AVG 6.63E-01 6.66E-01 6.93E-01 6.76E-01 6.64E-01 6.48E-01 6.46E-01 6.18E-01 6.06E-01 6.10E-01

STD 3.19E-02 2.99E-02 2.97E-02 3.39E-02 3.20E-02 3.74E-02 2.40E-02 4.78E-02 2.23E-02 2.38E-02
nci9 AVG 3.39E-01 3.68E-01 3.82E-01 3.93E-01 3.63E-01 3.77E-01 3.71E-01 3.50E-01 3.39E-01 3.28E-01

STD 9.93E-02 8.86E-02 8.73E-02 8.41E-02 8.50E-02 7.05E-02 9.53E-02 7.77E-02 6.81E-02 5.97E-02
ORL AVG 8.18E-01 7.76E-01 7.81E-01 7.83E-01 7.80E-01 7.65E-01 7.41E-01 7.24E-01 7.11E-01 7.05E-01

STD 3.45E-02 2.29E-02 1.94E-02 2.72E-02 3.17E-02 2.38E-02 1.93E-02 2.23E-02 1.86E-02 2.08E-02
Prostate-GE AVG 5.87E-01 6.13E-01 6.22E-01 6.33E-01 6.26E-01 6.15E-01 6.08E-01 5.91E-01 5.96E-01 5.81E-01

STD 3.65E-02 3.51E-02 4.87E-02 2.59E-02 3.29E-02 3.56E-02 3.49E-02 2.54E-02 3.20E-02 3.46E-02
TOX-171 AVG 5.78E-01 5.94E-01 6.18E-01 6.22E-01 6.20E-01 6.13E-01 6.05E-01 5.98E-01 5.70E-01 5.74E-01

STD 4.17E-02 3.07E-02 2.63E-02 3.33E-02 2.68E-02 3.24E-02 3.16E-02 2.28E-02 3.67E-02 3.18E-02
warpAR10P AVG 4.32E-01 4.52E-01 4.84E-01 4.87E-01 4.80E-01 4.71E-01 4.72E-01 4.52E-01 4.56E-01 4.29E-01

STD 7.23E-02 6.03E-02 6.22E-02 5.75E-02 4.51E-02 7.31E-02 4.42E-02 5.86E-02 6.47E-02 5.90E-02
warpPIE10P AVG 7.42E-01 7.20E-01 7.36E-01 7.18E-01 7.16E-01 7.04E-01 6.90E-01 6.76E-01 6.54E-01 6.51E-01

STD 2.09E-02 2.27E-02 2.12E-02 2.74E-02 2.20E-02 1.87E-02 1.79E-02 2.69E-02 2.24E-02 2.19E-02
Yale AVG 6.48E-01 6.35E-01 6.36E-01 6.49E-01 6.37E-01 6.40E-01 6.21E-01 5.92E-01 5.75E-01 5.64E-01

STD 5.05E-02 4.99E-02 5.36E-02 3.43E-02 5.38E-02 5.18E-02 4.39E-02 4.87E-02 4.48E-02 3.85E-02

Table 16 DAEA with different
population size on scikit-feature
repository

Datasets Measure 10 30 50 70 90 110 130 150 170 190
lung AVG 9.93E-01 9.95E-01 9.98E-01 9.98E-01 9.97E-01 9.98E-01 9.98E-01 9.98E-01 9.96E-01 9.97E-01

STD 1.36E-02 9.25E-03 5.78E-03 6.16E-03 7.86E-03 5.86E-03 6.94E-03 5.87E-03 8.61E-03 6.89E-03
lung-discrete AVG 9.89E-01 9.85E-01 9.93E-01 9.78E-01 9.84E-01 8.34E-01 8.50E-01 8.28E-01 8.18E-01 8.01E-01

STD 1.96E-02 2.44E-02 1.16E-02 2.91E-02 2.99E-02 6.39E-02 4.86E-02 4.42E-02 4.03E-02 3.65E-02
lymphoma AVG 9.46E-01 9.55E-01 9.49E-01 9.34E-01 9.57E-01 9.58E-01 9.55E-01 9.68E-01 9.53E-01 9.60E-01

STD 5.86E-02 3.96E-02 4.85E-02 6.22E-02 3.84E-02 3.71E-02 5.32E-02 3.83E-02 4.44E-02 3.35E-02
nci9 AVG 8.05E-01 8.53E-01 8.08E-01 8.28E-01 8.13E-01 7.95E-01 7.95E-01 7.85E-01 7.93E-01 8.08E-01

STD 7.36E-02 1.03E-01 9.48E-02 8.88E-02 9.47E-02 1.02E-01 9.75E-02 8.90E-02 8.17E-02 9.25E-02
ORL AVG 9.04E-01 9.50E-01 9.52E-01 9.56E-01 9.46E-01 9.52E-01 9.37E-01 9.42E-01 9.46E-01 9.37E-01

STD 3.74E-02 1.95E-02 2.58E-02 2.45E-02 1.96E-02 1.78E-02 3.03E-02 2.86E-02 1.99E-02 2.61E-02
Prostate-GE AVG 9.98E-01 9.98E-01 1.00E+00 9.98E-01 9.94E-01 9.98E-01 9.97E-01 9.94E-01 9.97E-01 9.94E-01

STD 8.30E-03 8.29E-03 1.41E-05 8.30E-03 1.57E-02 8.30E-03 1.15E-02 1.57E-02 1.15E-02 1.57E-02
TOX-171 AVG 9.52E-01 9.83E-01 9.88E-01 9.90E-01 9.89E-01 9.83E-01 9.85E-01 9.82E-01 9.82E-01 9.82E-01

STD 3.75E-02 2.04E-02 2.18E-02 1.91E-02 1.93E-02 1.91E-02 2.40E-02 1.91E-02 2.47E-02 2.03E-02
warpAR10P AVG 9.27E-01 9.40E-01 9.35E-01 9.33E-01 9.32E-01 9.05E-01 9.00E-01 8.91E-01 8.61E-01 8.59E-01

STD 4.40E-02 3.91E-02 5.12E-02 4.70E-02 3.66E-02 4.78E-02 5.43E-02 4.33E-02 6.39E-02 5.72E-02
warpPIE10P AVG 9.92E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.97E-01 9.95E-01

STD 1.54E-02 3.94E-03 7.88E-03 5.48E-03 5.46E-03 5.50E-03 5.54E-03 3.95E-03 6.59E-03 1.05E-02
Yale AVG 8.06E-01 8.03E-01 8.25E-01 8.22E-01 8.23E-01 7.95E-01 8.13E-01 8.05E-01 7.93E-01 7.72E-01

STD 6.61E-02 5.46E-02 6.24E-02 4.53E-02 4.51E-02 3.98E-02 4.93E-02 6.46E-02 5.41E-02 5.24E-02
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Table 17 DEAGNG with
different population size on
scikit-feature repository

Datasets Measure 10 30 50 70 90 110 130 150 170 190
lung AVG 7.18E-01 7.05E-01 7.24E-01 7.44E-01 7.37E-01 7.20E-01 7.08E-01 6.90E-01 6.81E-01 6.68E-01

STD 2.26E-02 2.27E-02 1.95E-02 1.44E-02 1.43E-02 1.01E-02 1.42E-02 1.68E-02 1.13E-02 1.25E-02
lung-discrete AVG 9.66E-01 9.67E-01 9.59E-01 9.63E-01 9.65E-01 9.68E-01 9.58E-01 9.12E-01 9.06E-01 8.91E-01

STD 3.29E-02 2.42E-02 3.90E-02 3.62E-02 3.51E-02 3.40E-02 1.52E-02 5.01E-02 3.32E-02 2.77E-02
lymphoma AVG 6.75E-01 6.61E-01 6.87E-01 6.95E-01 6.97E-01 6.88E-01 6.75E-01 6.56E-01 6.54E-01 6.45E-01

STD 3.41E-02 4.04E-02 3.06E-02 4.94E-02 3.23E-02 3.99E-02 4.13E-02 3.71E-02 1.72E-02 2.12E-02
nci9 AVG 3.10E-01 3.42E-01 3.64E-01 3.50E-01 3.81E-01 4.01E-01 3.42E-01 3.72E-01 3.65E-01 3.55E-01

STD 8.53E-02 8.28E-02 8.81E-02 7.42E-02 8.58E-02 7.95E-02 8.76E-02 8.32E-02 7.25E-02 9.04E-02
ORL AVG 8.25E-01 7.98E-01 7.92E-01 8.11E-01 8.12E-01 7.88E-01 7.66E-01 7.49E-01 7.27E-01 7.15E-01

STD 3.34E-02 3.01E-02 3.36E-02 2.87E-02 2.09E-02 2.64E-02 2.64E-02 2.30E-02 2.53E-02 2.54E-02
Prostate-GE AVG 5.79E-01 6.15E-01 6.42E-01 6.50E-01 6.41E-01 6.36E-01 6.30E-01 6.09E-01 6.04E-01 5.94E-01

STD 3.98E-02 3.65E-02 4.20E-02 3.05E-02 3.60E-02 2.99E-02 3.64E-02 2.45E-02 3.91E-02 3.36E-02
TOX-171 AVG 5.71E-01 5.93E-01 6.25E-01 6.34E-01 6.41E-01 6.27E-01 6.13E-01 5.94E-01 5.96E-01 5.89E-01

STD 3.02E-02 3.38E-02 3.89E-02 3.70E-02 3.10E-02 3.77E-02 2.91E-02 3.68E-02 2.93E-02 3.01E-02
warpAR10P AVG 4.73E-01 4.79E-01 4.93E-01 5.15E-01 5.31E-01 4.87E-01 5.07E-01 4.83E-01 4.73E-01 4.64E-01

STD 7.60E-02 6.59E-02 6.44E-02 6.77E-02 6.59E-02 7.48E-02 5.40E-02 4.45E-02 5.13E-02 5.61E-02
warpPIE10P AVG 7.54E-01 7.42E-01 7.53E-01 7.65E-01 7.50E-01 7.39E-01 7.28E-01 7.02E-01 6.99E-01 6.82E-01

STD 2.65E-02 2.19E-02 2.80E-02 2.32E-02 2.41E-02 2.27E-02 1.62E-02 2.57E-02 1.60E-02 1.75E-02
Yale AVG 6.91E-01 6.36E-01 6.73E-01 6.58E-01 6.80E-01 6.43E-01 6.39E-01 6.01E-01 6.04E-01 5.86E-01

STD 5.01E-02 5.53E-02 5.03E-02 4.84E-02 5.22E-02 5.13E-02 5.13E-02 5.15E-02 5.74E-02 5.24E-02

Table 18 MOEAPSL with
different population size on
scikit-feature repository

Datasets Measure 10 30 50 70 90 110 130 150 170 190
lung AVG 9.23E-01 9.68E-01 9.91E-01 9.75E-01 9.75E-01 9.71E-01 9.86E-01 9.76E-01 9.91E-01 9.83E-01

STD 1.28E-01 7.55E-02 2.26E-02 6.11E-02 4.41E-02 5.16E-02 4.40E-02 6.24E-02 2.60E-02 4.34E-02
lung-discrete AVG 9.75E-01 9.85E-01 9.85E-01 9.89E-01 9.87E-01 9.79E-01 9.73E-01 9.80E-01 9.84E-01 9.76E-01

STD 3.34E-02 2.79E-02 2.27E-02 1.67E-02 2.23E-02 3.26E-02 2.93E-02 3.54E-02 2.25E-02 2.80E-02
lymphoma AVG 9.09E-01 9.45E-01 9.59E-01 9.46E-01 9.38E-01 9.47E-01 9.56E-01 9.62E-01 9.49E-01 9.31E-01

STD 1.07E-01 4.56E-02 4.32E-02 5.87E-02 5.35E-02 3.93E-02 5.42E-02 3.47E-02 5.31E-02 5.34E-02
nci9 AVG 7.19E-01 7.77E-01 8.39E-01 7.85E-01 8.43E-01 8.10E-01 8.17E-01 7.92E-01 7.75E-01 8.04E-01

STD 2.25E-01 2.15E-01 1.64E-01 1.54E-01 1.29E-01 1.36E-01 1.26E-01 1.28E-01 1.62E-01 1.04E-01
ORL AVG 9.24E-01 9.45E-01 9.42E-01 9.41E-01 9.36E-01 9.33E-01 9.31E-01 9.26E-01 9.29E-01 9.34E-01

STD 4.10E-02 3.55E-02 3.05E-02 2.69E-02 3.79E-02 3.64E-02 5.22E-02 4.62E-02 3.51E-02 3.55E-02
Prostate-GE AVG 9.21E-01 9.85E-01 8.26E-01 9.72E-01 9.85E-01 9.79E-01 9.82E-01 9.86E-01 9.78E-01 9.80E-01

STD 1.12E-01 3.78E-02 3.20E-01 5.65E-02 4.07E-02 5.38E-02 4.61E-02 2.78E-02 5.55E-02 2.98E-02
TOX-171 AVG 9.09E-01 9.34E-01 9.75E-01 9.70E-01 9.74E-01 9.90E-01 9.80E-01 9.60E-01 9.76E-01 9.42E-01

STD 1.35E-01 9.76E-02 6.38E-02 5.42E-02 4.92E-02 2.34E-02 3.21E-02 6.98E-02 4.07E-02 8.59E-02
warpAR10P AVG 7.47E-01 8.69E-01 8.89E-01 9.04E-01 8.79E-01 8.70E-01 8.52E-01 8.54E-01 8.31E-01 8.20E-01

STD 2.15E-01 1.59E-01 1.17E-01 8.79E-02 1.01E-01 9.16E-02 9.84E-02 8.86E-02 9.48E-02 7.71E-02
warpPIE10P AVG 9.56E-01 9.79E-01 9.73E-01 9.91E-01 9.77E-01 9.84E-01 9.79E-01 9.86E-01 9.94E-01 9.85E-01

STD 7.12E-02 4.01E-02 5.16E-02 3.67E-02 5.21E-02 3.93E-02 6.38E-02 2.77E-02 1.45E-02 2.52E-02
Yale AVG 7.88E-01 8.06E-01 8.28E-01 8.25E-01 8.05E-01 7.88E-01 8.05E-01 7.87E-01 7.92E-01 7.82E-01

STD 7.39E-02 6.51E-02 5.98E-02 6.83E-02 7.02E-02 6.73E-02 6.57E-02 7.58E-02 6.69E-02 6.96E-02

Table 19 The best results with
different population size of
ARMOEA, DAEA, DEAGNG,
MOEAPSL, SparseEA, and
RA-SparseDO (Rand2) on
scikit-feature repository

Datasets Measure ARMOEA DAEA DEAGNG MOEAPSL SparseEA RA-SparseDO (Rand2)
lung AVG 7.18E-01 9.98E-01 7.44E-01 9.91E-01 9.94E-01 1.00E+00

STD 2.58E-02 5.78E-03 1.44E-02 2.26E-02 1.33E-02 1.52E-04
lung-discrete AVG 9.75E-01 9.93E-01 9.68E-01 9.89E-01 9.95E-01 9.95E-01

STD 2.48E-02 1.16E-02 3.40E-02 1.67E-02 1.52E-03 1.44E-03
lymphoma AVG 6.93E-01 9.68E-01 6.97E-01 9.62E-01 9.66E-01 9.79E-01

STD 2.97E-02 3.83E-02 3.23E-02 3.47E-02 3.50E-02 3.91E-02
nci9 AVG 3.93E-01 8.53E-01 4.01E-01 8.43E-01 6.58E-01 8.28E-01

STD 8.41E-02 1.03E-01 7.95E-02 1.29E-01 1.09E-01 7.85E-02
ORL AVG 8.18E-01 9.56E-01 8.25E-01 9.45E-01 9.39E-01 9.52E-01

STD 3.45E-02 2.45E-02 3.34E-02 3.55E-02 2.06E-02 1.87E-02
Prostate-GE AVG 6.33E-01 1.00E+00 6.50E-01 9.86E-01 9.76E-01 9.98E-01

STD 2.59E-02 1.41E-05 3.05E-02 2.78E-02 2.72E-02 8.29E-03
TOX-171 AVG 6.22E-01 9.90E-01 6.41E-01 9.90E-01 9.15E-01 9.97E-01

STD 3.33E-02 1.91E-02 3.10E-02 2.34E-02 5.30E-02 8.84E-03
warpAR10P AVG 4.87E-01 9.40E-01 5.31E-01 9.04E-01 9.14E-01 9.61E-01

STD 5.75E-02 3.91E-02 6.59E-02 8.79E-02 4.46E-02 3.54E-02
warpPIE10P AVG 7.42E-01 9.98E-01 7.65E-01 9.94E-01 9.93E-01 9.98E-01

STD 2.09E-02 3.94E-03 2.32E-02 1.45E-02 9.78E-03 3.11E-03
Yale AVG 6.49E-01 8.25E-01 6.91E-01 8.28E-01 8.05E-01 8.42E-01

STD 3.43E-02 6.24E-02 5.01E-02 5.98E-02 5.98E-02 4.55E-02
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Table 20 Comparisons of
different algorithms on UCI
machine learning repository
(with population size set to 100)

RA-SparseDO RA-HSparseDO
Datasets Measure NSGAII DEAGNG ARMOEA SparseEA (Rand1) (Rand1Best1)

iris AVG 8.43E-01 8.42E-01 8.38E-01 8.42E-01 8.45E-01 8.38E-01
STD 2.66E-02 2.11E-02 2.27E-02 2.54E-02 2.92E-02 2.35E-02

lungcancer AVG 9.83E-01 9.85E-01 9.78E-01 9.76E-01 9.82E-01 9.83E-01
STD 5.72E-03 4.62E-03 2.58E-02 2.73E-02 5.45E-03 4.87E-03

Person-Classification AVG 9.34E-01 9.31E-01 9.22E-01 8.92E-01 9.58E-01 9.41E-01
STD 1.17E-01 1.03E-01 1.21E-01 1.13E-01 8.10E-02 9.41E-02

MUSK1 AVG 9.73E-01 9.70E-01 9.71E-01 9.72E-01 9.77E-01 9.77E-01
STD 6.88E-03 1.02E-02 9.14E-03 1.24E-02 1.33E-02 8.98E-03

heart AVG 8.69E-01 8.66E-01 8.68E-01 8.65E-01 8.74E-01 8.73E-01
STD 2.54E-02 2.45E-02 2.62E-02 2.39E-02 2.69E-02 2.27E-02

ionosphere AVG 9.64E-01 9.67E-01 9.69E-01 9.67E-01 9.70E-01 9.64E-01
STD 1.41E-02 1.41E-02 1.46E-02 1.57E-02 1.43E-02 1.28E-02

Parkinson AVG 5.94E-01 6.00E-01 6.08E-01 6.03E-01 6.20E-01 6.11E-01
STD 3.45E-02 2.80E-02 3.37E-02 3.19E-02 3.21E-02 3.05E-02

COVID-19 Surveillance AVG 8.38E-01 7.81E-01 8.61E-01 7.57E-01 8.01E-01 8.48E-01
STD 1.86E-01 2.17E-01 1.53E-01 2.10E-01 2.57E-01 1.69E-01

RA-SparseDO(Rand1) 0 1 1 0 6
40211)1tseB1dnaR(ODesrapSH-AR

multi-objective feature selection problems. The compari-
son algorithms used in this experiment are NSGAII [70],
DEAGNG, ARMOEA, and the original SparseEA. Specifi-
cally, the NSGAII is one of the most classical and popular
multi-objective optimization algorithms, which is based on
genetic algorithm. The datasets chosen in this subsection are
shown in Table 3. In this experiment, RA-SparseDO (Rand1)
and RA-HSparseDO (Rand1Best1) are selected to compare
with the comparison algorithms. The number of function
evaluations for each algorithm is 10,000, and the population
size of each algorithm is set to 100.

Table 20 shows the HV values obtained by NSGAII,
DEAGNG,ARMOEA,SparseEA, andRA-SparseDO(Rand1).
Similarly, the best results of the five algorithms are marked
in red. From the penultimate row of Table 20, we can see
that both DEAGNG and ARMOEA have the best perfor-
mance on the one dataset. RA-SparseDO (Rand1) has the
best performance, and obtains the best value on six datasets.
The best results of RA-HSparseDO (Rand1Best1) compared
with NSGAII, DEAGNG, ARMOEA, SparseEA are marked
in bold. It can be found from the last line of Table 20 that
RA-HSparseDO (Rand1Best1) got the best results on four
datasets. Next is ARMOE, which obtains two best values.
Both NSGAII andDEAGNperform best on only one dataset.
Therefore, the proposed algorithm also has certain advan-
tages for small-scale datasets.

Running time

Finally, the computational efficiency of the five algorithms
is compared in this subsection. The experiment is performed
on scikit-feature repository and the results are shown in
Table 21. The last line refers to the total times on ten
datasets. It can be found that the original SparseEA algo-
rithm has the longest running time and MOEAPSL has the

shortest running time. DAEA takes slightly more time to
run than MOEAPSL. ARMOEA and DEAGNG take about
the same time. Since the ReliefF algorithm has reduced
the dimensions first for LSMFSPs, the running times of
the proposed RA-SparseDO (Best2), RA-SparseDO (Best2),
and RA-HSparseDO (Rand2Best2) are all less than that of
the original SparseEA; especially on nci9, Prostate-GE and
TOX-171 datasets, because the number of features in these
datasets exceeds 5000.

Conclusion

There are many application scenarios of LSMFSPs in real
life, but there is little research dedicated to solving this
problem. SparseEA is an excellent algorithm for solv-
ing LSMOPs, and LSMFSPs are specific applications of
LSMOPs. Therefore, this manuscript proposes an enhanced
SparseEA algorithm based on ReliefF with difference oper-
ators to specifically solve the LSMFSPs. SparseEA deter-
mines feature Scores by calculating the fitness of individual
features, which does not reflect the correlation between fea-
tures well. Therefore, combining the filter feature selection
algorithm ReliefF and SparseEA, a Filter-Wrapper feature
selection method is proposed in this manuscript for LSMF-
SPs. Furthermore, to improve the performance of SparseEA,
difference operators and adaptive scores strategy are used in
this manuscript.

Experiments on the SMOP test suite show that SparseDO
is effective in generating offspring solutions of real vari-
ables. To verify the effect of binary differential operators
on solution diversity, we conducted experiments on the
scikit-feature repository. It can be seen from the three
diversity indicators (the overall diversity of the population
DP, genetic diversity DG, and individual diversity DI) that
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SparseDO (Best2), SparseDO (Rand1), SparseDO (Rand2),
HSparseDO (Rand1Best1), and HSparseDO (Rand2Best2)
are effective for increasing the diversity of SparseEA. The
ablation experiments show that both the ReliefF-based com-
ponent and the difference operator-based component are
effective for solving LSMFSPs. Comparative experiments
for LSMFSPs are verified on scikit-feature repository. The
experimental results show that the proposed algorithm is sig-
nificantly better than ARMOEA, DEAGG, MOEAPSL and
the original SparseEA for solving LSMFSPs. Meanwhile,
experiment on UCI repository shows that the proposed algo-
rithm also has certain advantages for small-scale datasets. In
addition, since the ReliefF algorithm has reduced the dimen-
sions first for LSMFSPs, the running times of the proposed
algorithms are less than that of the original SparseEA.

Later work will study the other ways of combining dif-
ference operators with SparseEA. The combination of other
traditional feature selection algorithms with meta-heuristic
algorithms is also one of the key points in the future work.
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