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Abstract: Carbon nanotubes (CNTs) are cylindrical nanostructures fabricated from carbon atoms that
seem like seamless cylinders composed of rolled sheets of graphite. Owing to the unique properties
of single-walled carbon nanotubes (SWCNTs), they are a promising candidate in various fields such
as chemical sensing, hydrogen storage, catalyst support, electronics, nanobalances, and nanotubes.
Because of their small size, large surface area, high sensitivity, and reversible behavior at room
temperature, CNTs are ideal for measuring gas. They also show improved electron transfer when
used as electrodes in electrochemical reactions and serve as solid media for protein immobilization
on biosensors. SWCNTs can be metallic or semi-conductive, counting on their structural properties.
In this study, an atomic force microscope (AFM) was used as a powerful tool to manipulate and
disaggregate SWCNTs. By precisely controlling the AFM probe, it was possible to manipulate
individual SWCNTs and separate them from the bundle structures. Next, the electrical transport of
disaggregated SWCNTs was studied using the conductive atomic force microscope (cAFM) technique.
Thus, current-voltage measurements on the unbundled branches of SWCNTs were carried out.
Interestingly, these current-voltage measurements have allowed us to unravel the complex electrical
characteristics of the nanotube bundle, which is a very crucial issue for gating effects as well as the
resistance of the interconnects within carbon nanotube network devices.

Keywords: AFM; cAFM; SWCNT; nanomanipulation

1. Introduction

A carbon nanotube (CNT) is a cylindrical structure of carbon atoms that can be viewed
as seamless cylinders rolled up as layers of graphite for a single-walled carbon nanotube
(SWCNT). Due to the outstanding properties SWNTs possess, researchers are interested
in getting a deeper and wider insight into the physics behind this one-dimensional sys-
tem; nevertheless, many novel applications were developed including chemical sensors,
hydrogen energy storage, catalyst support [1–9], electronic devices [10–16], high-sensitivity
nano-balance for nanoscopic particles, and nano-tweezers. CNTs have some advantages
over other bulky materials; because of their small size with a larger surface area, high
sensitivity, fast response, and reversibility at room temperature, they also serve as gas
sensors. Depending on the chirality of SWCNTs, they could be metallic or semiconductors.

An atomic force microscope (AFM) is one of the scanning probe techniques. In contrast
to electron microscopes, an AFM is capable of working in ambient [17,18], liquids [19–25],
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and gases. Imaging is not the only function of an AFM; it can be used for lithography,
spectroscopy, and nanomanipulation. Few studies have been carried out on CNT manipu-
lation using an AFM [26–29]. The unbundling of SWNTs has not yet been carried out using
an AFM.

This work presents a study of unbundling the SWCNT by manipulating it using an
AFM tip and measuring the electrical characteristics of the bundle and the unbundled
branches, by using the AFM tip as a nanoprobe to measure the local voltage-current
characteristics.

2. Materials and Methods
2.1. Materials

Chemical vapor deposition (CVD)-prepared SWCNTs in powder form, dichloroethane
(DCE), isopropyl alcohol (IPA), and acetone were purchased from Sigma-Aldrich, Germany.
All chemicals were used as received.

2.2. Preparation of SWCNT Thin-Film Samples

First, the SWCNT powder was dispersed in DCE with a concentration of 20 mg/L at
room temperature using the HIELSCHER tip sonicator with a sonotrode of a 2 mm diameter
and a power of 95 watts. In order to reduce the heat effect of sonication, the sonication was
carried out in a pulse of 30 s, followed by 30 s with the sonicator turned off and repeated for
15 min. Then, the solution was centrifuged to eliminate the undispersed and giant particles.
A drop of the solution was cast on a chip of SiO2/Si with gold electrodes.

2.3. AFM Measurement

The Veeco Multimode V system was connected to the Nanonis controller for perform-
ing AFM measurements (Veeco, USA/Nanonis, Specs, Switzerland). All experiments were
conducted at room temperature under ambient pressure, utilizing a doped diamond tip
(Nanosensors DT-NCHR, Nanoworld AG, Switzerland).

To begin, the sample was scanned in non-contact mode to locate a bundle connected
to the gold electrode. Once such a bundle was identified, the AFM operating mode was
switched to the contact mode. To ensure gentle handling and prevent any mechanical
damage or cutting of the bundle, a soft approach strategy was adopted. The force of the
cantilever was controlled to be 100 pN during the soft approach.

Upon approaching the bundle, a 100 nm × 100 nm mesh with 64 data points was
established to scan the cantilever’s deflection, confirming contact with the bundle. Subse-
quently, the tip was accurately positioned on the bundle, and a relatively larger force was
applied to split the tubes.

Next, a force of 100 nN was applied and the tip was dragged along a line perpendicular
to the bundle, simultaneously applying a potential of 1.0 V to the tip. We repeated this
process for different trials, ensuring that after each trial, the tip was cleaned on the gold
electrode. This was carried out for two purposes: first, to enable the scanning of the surface
and reconstruct a topographical image; and second, to verify its electrical conductivity.

For the electrical measurements, a voltage was sourced to the AFM tip, and the current
was drained from the gold electrode through the CNT tube/bundle. The voltage was swept
from −0.5 to 0.5 V, and the corresponding current values were recorded to establish the
I–V relationship.

3. Results and Discussion

As previously mentioned, we utilized the non-contact mode to scan the sample and
identify a bundle connected to the gold electrode. In Figure 1a, the bundle shown is
connected to the electrode on one side and free on the other side. That was confirmed by
measuring the electrical contact on it at point I(3) (Figure 1a), which is presented in the
voltage-current curve shown in Figure 1c.
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Figure 1. Topography images of SWNT deposited on SiO2/Si substrate (white scale bars have a
length of 3 µm): (a) SWNT before manipulation; (b) SWNT after manipulation; (c) voltage—current
measurements on the assigned branches before and after manipulation of a nanotube bundle. The
manipulation has unmasked two different characteristics, which can be assigned to a semiconducting
branch, I(1), and a metallic branch, I(2), within the nanotube bundle.

Subsequently, the mode was switched to the contact mode using the gentle approach
described earlier. With the help of the mesh, the electrical properties of the bundle at the
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specific point where the bundle was later split were measured, as depicted in Figure 1c (the
blue curve).

During this manipulation process, the bundle was successfully split into two branches,
as illustrated in Figure 1b. The unbundled branches were then subjected to electrical
characterization (Figure 1c) by measuring the I–V curve for both branches at the points
indicated by the arrows in Figure 1b.

Based on the electrical characterization, it was inferred that one branch exhibited
metallic/semimetal characteristics, evident from the linearity of the red curve in Figure 1c.
On the other hand, the other branch of the split bundle displayed characteristics similar to
that of a diode, as seen in the black curve in Figure 1c.

4. Conclusions

An AFM has emerged as a potent and versatile tool for precisely manipulating and
assembling single-walled carbon nanotubes (SWCNTs). Its remarkable capability to po-
sition SWCNTs with nanometer-level accuracy holds tremendous promise for advancing
nanoelectronic devices and other nanoscale applications. Our research demonstrated the
mechanical manipulation of carbon nanotubes using an AFM tip, achieved by applying
both mechanical force and electrical potential to the tip. Employing the contacting mode of
an AFM, the carbon nanotube bundle was successfully split into distinct branches. Subse-
quently, local electrical transport measurements were conducted on the bundle, both before
and after splitting, utilizing the conductive mode of an AFM with the tip in contact with
the CNT. The electrical measurements revealed distinguishable characteristics between
metallic and semiconducting tubes.
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