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Abstract

We use the counterterms subtraction method to calculate various thermodynamical quantities for
charged rotating black holes in five-dimensional minimal gauged supergravity [1]. Specifically, we analyze
certain issues related to the first law and Smarr’s relation in the presence of a conformal anomaly.
Among the bulk quantities calculated are the on-shell action, total mass, and angular momenta of the
solution. All these quantities are consistent with previous calculations made using other methods. For the
boundary theory, we calculate the renormalized stress tensor, conformal anomaly, and Casimir energy.
Using the Papadimitriou-Skenderis analysis [2], we show that the mass calculated via the counterterms
method satisfies the first law of black hole thermodynamics. To discuss extended thermodynamics, we
extend the definition of the thermodynamic volume to cases with conformal anomalies using a procedure
similar to that of Papadimitriou-Skenderis. We show that this volume correctly accounts for extra terms
due to boundary metric variation. This shows that the mass and volume calculated using counterterms
satisfy Smarr’s relation as well as the first law.

Keywords: Black holes, thermodynamics, holography, Smarr’s relation, thermodynamic volume.
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1 Introduction

The discovery of the anti-de sitter/conformal field theory (AdS/CFT) correspondence [3] invoked lots of

interest in asymptotically AdS solutions in general relativity. This duality reveals how various gravitational

solutions in the AdS side encode important information about a specific gauge field theory on the boundary

in their semi-classical gravitational action. A strong interest in studying black hole solutions in AdS5

spacetimes then followed after studying a specific example of this duality, namely, the equivalence between

string theory on AdS5×S5 and four-dimensional N = 4, Super Yang-Mills (SYM) theory on the boundary.

This duality and other similar ones allow one to map certain five-dimensional AdS solutions to certain states

in the boundary field theory. Furthermore, it shows that bulk boundary quantities work as sources to CFT

quantities, e.g., the boundary metric works as a source for the boundary energy-momentum tensor. In this

duality as well as in a Euclidean path-integral formalism we have certain boundary conditions which fix

bulk boundary quantities. For example, AdS black hole thermodynamics with its possible phase transitions

are investigated for a fixed boundary metric as is discussed in [4, 5].

The AdS/CFT correspondence relates a strong-coupling regime in the boundary with a weak-coupling

regime in the bulk. The bulk partition function can be approximated [6] using saddle points leading to

Zgrav ≃ exp(−I), (1)

where I is the on-shell gravitational action. However, in AdS spacetimes, the action as a volume

integral diverges as we take the radial coordinate r to infinity. There are two main techniques often used to

regulate this action: the background subtraction method (for example, see[7] and references therein) and

the counterterms subtraction method [8]. Background subtraction works by defining a reference background

spacetime, then calculating the finite action as the difference between the action of the spacetime and that
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of the background metric. Since both metrics have the same diverging asymptotic region, this subtraction

method leaves a finite action. But a disadvantage of this technique is that the choice of a proper background

reference is not always obvious or clear [9, 10, 8]. In addition, sometimes certain quantities which are

common between the spacetime and its background (such as the conformal anomaly and vacuum energy)

cancel out in this procedure [11].

The counterterms subtraction method [9, 10, 8] works by adding certain covariant boundary coun-

terterms to the action which cancel action divergences exactly. These counterterms are thus inherent to

the spacetime boundary and there is no need for a background or a reference spacetime. Moreover, the

employment of the counterterms subtraction technique allows one to compare some important quantities

between the bulk and the boundary. For instance, the trace of the Brown-York quasilocal stress tensor [12]

resulting from the action of the counterterms technique is related to the conformal anomaly on the bound-

ary. Another example is the total energy/mass found using the counterterms technique, which includes

a non-vanishing contribution as the mass parameter m is sent to zero. In the context of the AdS/CFT

correspondence, this contribution which is the spacetime background energy is interpreted as the Casimir

energy of the boundary CFT. These two phenomena appear particularly in odd-dimensional bulk theories,

or even-dimensional boundary field theories. For example, see [10, 11] and references therein.

The counterterms method was criticized in [7] where the authors argued that the first law of black hole

thermodynamics,

dM = TdS +
∑

i

ΩidJi +ΦdQ, (2)

is not satisfied through this procedure. Several authors have presented resolutions to this apparent

violation [13, 6, 2]. Here we are particularly interested in the resolution presented in [2], which we briefly

explain below.

It is well known that quantum corrections can break classical conformal symmetries in even-dimensional

field theories leading to conformal anomalies. The conformal or Weyl transformation on the boundary is

a subset of the bulk diffeomorphisms. This diffeomorphism is a Penrose-Brown-Hennaux (PBH) trans-

formation [14, 15]. In the case of a non-vanishing conformal anomaly, a PBH transformation will not

leave the gravitational on-shell action invariant. The action has a relation to other quantities through the

Gibbs-Duhem given by

I = βM − TS −
∑

i

ΩiJi − ΦQ. (3)
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Now by varying this equation, one is expected to get variations of all terms, but instead, we get

δI = βδM. (4)

In other words, this variation affects only the mass, but not the other quantities in the first law, since

entropy, electric charge Q, and angular momenta Ja and Jb can be expressed in terms of integrals over the

horizon [2]. In §4.2 we show that the counterterms mass is the sum of two terms, the first is localized in

the black hole region (depends on the mass parameter and electric charge) while the second term is the

background energy of the spacetime which is not restricted to the black hole region. The flux of the latter

term depends on the boundary metric. An important boundary condition for the variation problem [2] is

to keep the boundary metric fixed by utilizing a PBH or boundary Weyl transformation. Therefore, one

can use a Weyl transformation to cancel the boundary metric variation of the mass term in the first law.

As a result, the first law is satisfied. To summarize, the first law is not violated by the counterterms mass,

but one should be careful about how to compute variations of bulk quantities since those must be done at

a fixed boundary metric as the AdS/CFT requires.

In this work, we use the counterterms subtraction method to calculate the renormalized on-shell action

for the general rotating charged AdS solution presented in [1] as well as its mass and angular momenta.

We show that these quantities satisfy the first law and the Gibbs-Duhem relation. Going to extended

thermodynamics [16, 17] where we allow the cosmological constant to vary and act as a pressure, a naive

calculation of the first law shows that it is not satisfied. We show that a similar issue exists with the

volume defined in extended thermodynamics [16, 17]. Meaning that varying this quantity does not leave

the boundary metric fixed and one needs to use a compensating PBH term to keep the volume fixed. This

modification is important to satisfy the first law as well as the generalized Smarr’s formula in counterterms

context with a conformal anomaly.

The rest of the paper is organized as follows: in §2 we present the black hole solution and its ther-

modynamic quantities as in [1]. In §3 we show that these quantities satisfy the standard thermodynamic

relations: the first law (2) and the Gibbs-Duhem relation. In §4 we use the counterterms subtraction

method to calculate finite expressions for the action, mass, and angular momenta of the solution. In §5 we

calculate the renormalized stress tensor and conformal anomaly of the CFT from the dual gravitational

theory and compare those results to the field theory calculations on rotating Einstein Universe. Also, we

calculate the Casimir energy of the CFT and compare it to the background energy of the bulk theory which

was calculated using the counterterms subtraction method. In §6 we show that the quantities calculated

using counterterms subtraction satisfy the first law in regular and extended thermodynamics. We study the
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effect of a Weyl transformation on the boundary and use this to show that the mass calculated using the

counterterms method satisfies the first law of thermodynamics. Furthermore, we check that our expressions

for action and mass satisfy the Gibbs-Duhem relation. Finally, we discuss the effect of boundary variations

on Smarr’s formula and propose a new modification to the thermodynamic volume in the presence of a

conformal anomaly. This new volume satisfies the first law in extended phase-space as well as Smarr’s

formula.

2 The 5D Charged Rotating AdS Solution

The Einstein-Hilbert-Chern-Simons Lagrangian in five-dimensions has the following form [1]

L = (R2 + 12g2) ⋆ 1 − 1

2
⋆ F ∧ F +

1

3
√
3
F ∧ F ∧A. (5)

The first term on the right-hand side is the gravitational Einstein-Hilbert Lagrangian in AdS5, the

second is the Maxwell Lagrangian and the third is the Chern-Simons Lagrangian in five dimensions. The

latter is required in five-dimensional gauged supergravity [18].

In this letter we are interested in studying the general non-extremal rotating black holes in minimal

five-dimensional gauged supergravity [1] which has the following metric:

ds2 =− ∆θ[(1 + g2r2)ρ2dt+ 2qν]dt

ΞaΞbρ2
+

2qνω

ρ2
+
f

ρ4

(

∆θdt

ΞaΞb
− ω

)2

+
ρ2dr2

∆r

+
ρ2dθ2

∆θ

+
r2 + a2

Ξa
sin2 θ dφ2 +

r2 + b2

Ξb
cos2 θ dψ2,

(6)

where

ν = b sin2 θ dφ+ a cos2 θ dψ, ω = a sin2 θ
dφ

Ξa
+ b cos2 θ

dψ

Ξb
, (7)

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2
− 2m, (8)

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ, ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, (9)

Ξa = 1− a2g2, Ξb = 1− b2g2, (10)

f = 2mρ2 − q2 + 2abqg2ρ2. (11)

The constant g = 1/ℓ, where ℓ is the AdS radius, is not to be confused with the determinant of the

metric.

The coordinate system in (6) is (t, r, θ, φ, ψ). The ranges of the last three coordinates is such that they

5



cover a three-sphere. The range for θ is between 0 and π/2, while that for φ and ψ is between 0 and 2π.

The electromagnetic four-potential is given in [1] by

A =

√
3q

ρ2

(

∆θdt

ΞaΞb
− ω

)

. (12)

And the electric charge is given by

Q =

√
3πq

4ΞaΞb
. (13)

In four spatial dimensions, the black hole has two possible rotation axes. The corresponding angular

velocities are denoted Ωa (in the φ-direction) and Ωb (in the ψ-direction). They are given in [1] by

Ωa =
a
(

r2+ + b2
) (

1 + g2r2+
)

+ bq
(

r2+ + a2
) (

r2+ + b2
)

+ abq
, Ωb =

b
(

r2+ + a2
) (

1 + g2r2+
)

+ aq
(

r2+ + a2
) (

r2+ + b2
)

+ abq
. (14)

Evidently, the metric in (6) has axial symmetries in φ and ψ. The Killing vectors associated with these

symmetries are ∂φ and ∂ψ. The angular momenta were subsequently calculated in [1] using the Komar

integral,

Ja =
1

16π

∫

S3

⋆d (∂φ) , Jb =
1

16π

∫

S3

⋆d (∂ψ) , (15)

yielding

Ja =
π
[

2am+ qb
(

1 + a2g2
)]

4Ξ2
aΞb

, Jb =
π
[

2bm+ qa
(

1 + b2g2
)]

4Ξ2
bΞa

. (16)

Note that the integrals in (15) directly lead to finite results and do not need regularization.

3 Thermodynamics: Background Method

In this section we review the thermodynamics of the spacetime under consideration using background-

subtraction calculations. For this solution, the temperature and entropy are given by

T =
r4+
[

g2
(

a2 + b2 + 2r2+
)

+ 1
]

− (ab+ q)2

2πr+
[(

a2 + r2+
) (

b2 + r2+
)

+ abq
] , (17)

S =
π2
[(

r2+ + a2
) (

r2+ + b2
)

+ abq
]

2ΞaΞbr+
. (18)
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The total energy/mass was calculated in [1] by integration of the first law (2). This mass is given by∗

M0 =
πm (2Ξa + 2Ξb − ΞaΞb) + 2πabg2q (Ξa + Ξb)

4GΞ2
aΞ

2
b

. (19)

It is worth noting that this expression for the mass matches the one that was found using the ADM

calculation in [19, 6].

Using the above mass, it is straightforward to check the validity of the first law

dM0 = TdS +ΩadJa +ΩbdJb +ΦdQ. (20)

The electric potential is found from

Φ = ξaAa|r→∞ − ξaAa|r→r+

=

√
3qr2+

(

a2 + r2+
) (

b2 + r2+
)

+ abq
, (21)

which is in agreement with [20].

To check the first law, one needs to verify the following equation

∂M0

∂α
dα = T

∂S

∂α
dα+Φ

∂Q

∂α
dα+Ωa

∂Ja
∂α

dα+Ωb
∂Jb
∂α

dα, (22)

for the parameters, α = r+, q, a, b, since the mass is a function of these variables. Direct evaluation of

these expressions shows that the first law is verified.

Gibbs Free Energy and Action Calculation

Since the integral of (5) is divergent as r → ∞, the background subtraction method instructs us to

start by taking a cut-off at a large value R. We then specify a background metric by taking m→ 0, q → 0

in (6), which gives the Kerr-AdS5 spacetime. We compute the integral of this action at the cut-off value

R, then subtract it from our previous calculation with the original metric to cancel the divergences. The

action using the background subtraction method was given in [19] by

I0 =
πβ

4ΞaΞb

[

m−
(

g2
(

a2 + r2
) (

b2 + r2
))

− q2r2

(a2 + r2) (b2 + r2) + abq

]

. (23)

It is straightforward to verify that

I0 = βG0, (24)

∗The mass was denoted in [1] by M but we will use here the notation M0 to distinguish this mass from that which we will
derive using the counterterms method in §4.2.
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where the Gibbs free energy is given by†

G0(T,Ωa,Ωb,Φ) =M0 − TS − ΩaJa − ΩbJb − ΦQ. (25)

This is the Gibbs-Duhem relation, one of the few important thermodynamic relations used to check

the consistency of black hole thermodynamics. To check that G0 = G0(T,Ωa,Ωb,Φ), one might vary G0

to obtain

dG0 = −SdT − JadΩa − JbdΩb −QdΦ, (26)

where

(

∂G

∂T

)

Ωa,Ωb,Φ

= −S,
(

∂G

∂Ωa

)

T,Φ,Ωb

= −Ja,
(

∂G

∂Ωb

)

T,Φ,Ωb

= −Jb,
(

∂G

∂Φ

)

T,Ωa,Ωb

= −Q. (27)

Notice that the above quantum-statistical relation which we call the Gibbs-Duhem relation is going to

be the same for the background and counterterms methods apart from a modification in mass and action

calculations. As we have mentioned in the Introduction, in the counterterms method, this relation plays

an important role to prove the validity of the first law.

A Generalized Smarr’s Formula

For asymptotically AdS spaces, in order to construct a generalized Smarr’s formula, one must allow

the cosmological constant to vary, leading to the following form of Smarr’s formula [21]

M0 =
3

2
(TS +ΩaJa +ΩbJb) + ΦQ− PV0, (28)

where the cosmological constant plays the role of a pressure with some thermodynamic volume as a

conjugate variable [16, 17], or

P = − Λ

8π
=

3g2

4π
, (29)

†We use the subscript “0” to refer to the Gibbs free energy calculated from M0 to distinguish it from that calculated from
the counterterms mass.
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And V0 is the “thermodynamic volume” V0 conjugate to P . Following the prescription in [21], we find

V0 =

(

∂M0

∂P

)

S,Q,Ja,Jb

=
π2

2ΞaΞb

[

(

r2+ + a2
) (

r2+ + b2
)

+
2

3
abq

]

+
2π

3
(aJa + bJb) , (30)

in accordance with [20]. With some algebraic manipulations, it is straightforward to show that the above

Smarr’s formula (28) is satisfied.

4 Thermodynamics: Counterterms Method

As mentioned in the introduction the need to use the counterterms method is to obtain a finite on-shell

gravitational action. This method gives a non-ambiguous procedure to regularise the action in a manner

independent of any other spacetime (i.e. a background spacetime). This allows us to make some important

connections between the bulk gravity and the dual CFT in four dimensions. As we will see in the coming

sections, this method enables us to calculate quantities such as the vacuum expectation value (vev) of the

stress-tensor, the conformal anomaly, as well as the Casimir energy of the boundary field theory. Our aim

is to calculate the gravitational finite action first, then use it to calculate the vev of the field theory stress

tensor through calculating the quasilocal stress tensor, or the Brown-York stress-tensor [12] (BY) (using

eq. (58). For details see for example[10, 11]). The BY tensor is also used to calculate conserved quantities

such as the mass and angular momenta.

4.1 Action Calculation

The action of the Lagrangian presented in eq.(5) is composed of the following terms

Inon-ren = IEH + IGH + IEM. (31)

Calculating the electromagnetic part‡, one finds

IEM =
−πβ
4ΞaΞb

[

q2r2+
(

r2+ + a2
) (

r2+ + b2
)

+ abq

]

, (32)

‡See also, [22]
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While the Einstein-Hilbert action calculation leads to

IEH = β

[

πg2r4

4ΞaΞb
+
πg2r2

(

a2 + b2
)

4ΞaΞb
− πg2r2+

(

a2 + b2 + r2+
)

4ΞaΞb

]
∣

∣

∣

∣

∣

r→+∞

. (33)

And the Gibbons-Hawking action calculation produces

IGH = β

[

− πg2r4

ΞaΞb
+

15πr2 (Ξa +Ξb + 3/4)

24ΞaΞb
+
π
(

a4g2 − 8a2b2g2 − 9a2 + b4g2 − 9b2 + 24m
)

24ΞaΞb

]∣

∣

∣

∣

r→+∞

.

(34)

Summing the previous three expressions we get the following divergent action

Inon-ren =IEH + IGH + IEM

=

[

−3πβg2r4

4ΞaΞb
+ βr2

(

πg2
(

a2 + b2
)

4ΞaΞb
+
π
(

−15a2g2 − 15b2g2 − 18
)

24ΞaΞb

)]
∣

∣

∣

∣

∣

r→+∞

+ finite terms. (35)

Now let us calculate the counterterms and verify that they cancel these divergences. The expression

for these counterterms is given in [8] by

Ict =
1

8π

∫

∂M

dnx
√
h

[

n− 1

ℓ
+

ℓ

2(n− 2)
R+

ℓ3

2(n − 4)(n − 2)2

(

RabRab − n

4(n− 1)
R2

)

+ . . .

]

, (36)

where Rab and R are the Ricci tensor and Ricci scalar of the boundary metric, respectively, and we

recall that ℓ = 1/g. These counterterms were calculated in D = n+ 1 dimensions [10, 8]. The extra terms

denoted by “...” are needed in higher dimensions. Evaluation of the counterterms in (36) yields

Ict = β

[

3πg2r4

4ΞaΞb
+

3πr2
(

a2g2 + b2g2 + 2
)

8ΞaΞb

]
∣

∣

∣

∣

∣

r→+∞

+ finite terms. (37)

The final expression for the Euclidean action from the counterterms subtraction method is found by

adding the term in (37) to the divergent action in (35), which gives the regulated action

Iren =
πβ

96g2ΞaΞb

[

Ξ2
a + Ξ2

b + 7ΞaΞb + 24g2
(

m− a2b2g2 − g2r2+(r
2
+ + a2 + b2)

)]

− πβ

4ΞaΞb

[

q2r2+
(

r2+ + a2
) (

r2+ + b2
)

+ abq

]

.

(38)

This action reduces to that of the Reissner-Nordström black hole in [18] in the limit a, b→ 0. We can
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also re-express the gravitational part of the action as

Igravren = βMKerr-AdS5
BG +

πβ
[

m− g2(r2+ + a2)(r2+ + b2)
]

4ΞaΞb
,

where

MKerr-AdS5
BG =

π
[

9Ξa9Ξb + (Ξa − Ξb)
2
]

96g2ΞaΞb
(39)

is the background energy of the Kerr-AdS5 black hole [2]. Our result takes the exact same form as the

one calculated by Papadimitriou and Skenderis [2] for a non-charged rotating black hole.

The difference here of course is that the charge does make an appearance in the β term. Nevertheless,

it is interesting that the gravitational action maintains the same expression in terms of β. This also

automatically shows that our result reduces to that in [2] since, in the absence of an electric charge, the

temperature takes the same form as that in [2], and the electromagnetic action vanishes.

4.2 Mass and Angular Momenta Calculations

The calculation of conserved charges is based on the Brown-York quasilocal charge definition [12]. The

Brown-York quasilocal stress tensor is given by

T ab =
−2
√

|h|
δIren
δhab

=
1

8πG

[

Kab − habK + g(n − 1)hab − Gab
g(n− 2)

]

, (40)

where hab, Kab, and Gab are the metric, extrinsic curvature, and Einstein tensors on the induced boundary,

respectively. Notice that D = n+1 is the spacetime dimensions. A charge associated with a Killing vector

Ka is defined by

Q[K] =

∫

S3

d3x
√
σuaTabK

b. (41)

Here ua = −N∇at, while N is the lapse function and σ is the spacelike metric that appear in the

ADM-like decomposition of the metric

ds2 = −Ndt2 + σab(dx
a +Nadt)(dxb +N bdt). (42)

In the above expression Na is the shift vector. The Killing vector associated with the mass is the
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timelike Killing vector χ = ∂t. Plugging this in (41) initially yields a slightly complicated expression for

the mass. To simplify the long calculation let us write the mass as the sum of four terms:

M =Mnr1 +Mnr2 +Mct1 +Mct2. (43)

The first two terms are divergent; they result from the original non-regularized components of the

Brown-York quasilocal stress tensor. The last two terms are those arising from the counterterms action.

The first of those four terms is given by

Mnr1 =
πm

[

−3g2
(

a2 + b2
)

+ a2g2Ξb + b2g2Ξa − 2ΞaΞb + 6
]

8GΞ2
aΞ

2
b

+
πq
[

abg2
(

−3g2
(

a2 + b2
)

+ a2g2Ξb + 6
)

+ ab3g4Ξa + 2abg2ΞaΞb
]

8GΞ2
aΞ

2
b

+
π
[

2a2b2g2ΞaΞb + 2g2r2(a2 + b2)ΞaΞb + 2g2r4ΞaΞb
]

8GΞ2
aΞ

2
b

, (44)

where we have reinstated the gravitational constant G (originally a factor in the denominator of the

Brown-York quasilocal stress tensor) for future need. The second term is given by

Mnr2 =
−π

24GΞaΞb

[

a4 − g2 + 3r2
(

5g2
(

a2 + b2
)

+ 6
)

+ 8a2b2g2 + 9a2 − b4g2 + 9b2 +24g2r4 − 24m
]

. (45)

The first part of the counterterms contribution is

Mct1 =
π

32g2GΞ2
aΞ

2
b

[

12g2
(

a2g2Ξb + a2g2 + b2g2 − 2
) (

abg2q +m
)

+ Ξa

(

Ξb
(

− a4g4 + a2g2

(

11b2g2 + 18g2r2 + 9
)

+ 24abg4q − b4g4 + 9b2
(

2g4r2 + g2
)

+ 3
(

8g4r4 + 4g2r2

− 1
))

+ 12b2g4
(

abg2q +m
)

)]

. (46)

And lastly, the second contribution from the counterterms gives

Mct2 = −3π
[

a2g4
(

b2 + r2
)

+ g2r2
(

b2g2 − 2
)

− 1
]

16g2GΞaΞb
. (47)

The addition of all these terms gives the mass via the counterterms subtraction method,

M =
πm (2Ξa + 2Ξb − ΞaΞb) + 2πabg2q (Ξa + Ξb)

4GΞ2
aΞ

2
b

+
π
[

9ΞaΞb + (Ξa − Ξb)
2
]

96Gg2ΞaΞb
. (48)

The first term on the RHS is just the black hole mass calculated in [1] by integrating the first law. The

second term is the background energy of the spacetime: it is the value that the total energy reduces to
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in the absence of the black hole (when m = 0, q = 0). We note that this background energy is the same

as that in the Kerr-AdS5 black hole solution [23]. In §5.2 we will show that this is exactly equal to the

Casimir energy of the dual CFT on the boundary. Furthermore, when the two rotation parameters are

set to zero, this vacuum energy in (51) reduces to the background energy of the pure non-rotating AdS5

spacetime given in [10] by

MBG

∣

∣

∣

a=b=0
=

3π

32g2G
. (49)

The full expression for the mass calculated via the counterterms method can now be written as

M =M0 +MBG, (50)

with

MBG =
π
[

9ΞaΞb + (Ξa − Ξb)
2
]

96Gg2ΞaΞb
. (51)

The final quantities to calculate using the counterterms method are the angular momenta. To get Ja

(respectively Jb) we plug in (41) the Killing vector ∂φ (respectively ∂ψ). The angular momentum in the

φ-direction is given by

Ja =

∫

S3

sin3 θ cos θ
[

am+ b
(

a2g2q + 1
2qΞa

)]

2πΞ2
aΞb

dθdφdψ

=
π
[

2am+ qb
(

1 + a2g2
)]

4Ξ2
aΞb

. (52)

And we find a similar result for Jb,

Jb =
π
[

2bm+ qa
(

1 + b2g2
)]

4ΞaΞ2
b

. (53)

These results are equal to the angular momentum calculated in [1] using the Komar integral.

There are some intriguing features of this solution worth discussing, some of which are indeed unique.

Before we discuss these features let us take some limits to check the above mass/total energy expression.

By setting q = 0 and a = b = 0, we reduce this solution to the Schwarzschild mass,

M
∣

∣

q=0,a=b=0
=

3πm

4
.

This means that the parameter m has the usual interpretation of a “mass parameter”. Yet there seems

to be an unusual aspect of this solution: when this parameter vanishes, the black hole’s mass does not

13



vanish not only because of the background energy but also due to contributions from the electric charge, q.

M
∣

∣

m=0
=
πabg2q(Ξa + Ξb)

2Ξ2
aΞ

2
b

+MBG. (54)

Indeed, the charge contributes to the total mass of the solution! We do not know any other solution

that shares this property with the solution presented here. For instance, we find the mass of a static

charged black hole in five-dimensional anti-de Sitter spacetime and the neutral Kerr-AdS solutions have

no charge contributions in their mass expressions. Therefore, the physical significance of the expression

in (48) when m vanishes seems a bit puzzling. However, one can show that there are no horizons, or real

values for r+, if m = 0 while q 6= 0. In other words, the case m = 0, q 6= 0 has a naked singularity.

Another puzzling feature appears in the angular momenta expression in equations (52), and (53).

The angular momenta carry some dependence on the electric charge. This feature has no analog in four

dimensions. While the mass is non-vanishing if m goes to zero, there are also non-vanishing angular

momenta Ja and Jb. Furthermore, if we keep m 6= 0 and set a = 0 we still have a non-null value for Ja!

The same thing happens if we m 6= 0 and b = 0: we still have a non-null value for Jb! Of course, this does

not happen in the Kerr-AdS5 solution where the angular momenta are given [2] by

Ja =
πam

2Ξ2
aΞb

, Jb =
πbm

2Ξ2
bΞa

. (55)

One is then left to wonder if these new features can produce some interesting phenomena for these black

holes.

5 Holographic Stress Tensor and Anomaly

One of the predictions of the AdS/CFT correspondence is that the conformal anomaly calculated from the

conformal field theory on the boundary should exactly match the trace of the gravitational stress tensor

(BY tensor) [10, 11], where the identification G−1 ↔ 2N2g3/π is to be made. Another prediction is the

matching of the dual field theory Casimir energy with the background energy obtained as we set m = 0

and q = 0 in the mass expression. In this section we will aim to verify these predictions as well as calculate

the vev of the renormalized CFT stress tensor predicted by the duality.
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5.1 CFT Stress Tensor and Conformal Anomaly

It is important to notice here that the metric in eq.(6) is asymptotically AdS with a conformal boundary

(with R× S3 topology). The induced metric at the boundary is given by

ds2Boundary = g2r2
[

−dt2 +
2a sin2 θ

Ξa
dtdφ+

2b cos2 θ

Ξb
dtdψ +

dθ2

g2∆θ(θ)
+

sin2 θ

g2Ξa
dφ2 +

cos2 θ

g2Ξb
dψ2

]

, (56)

which is nothing but the rotating Einstein Universe. The CFT or the boundary metric is found by

removing the divergent conformal factor g2r2 from the above metric [11]

ds2BG = −dt2 +
2a sin2 θ

Ξa
dtdφ+

2b cos2 θ

Ξb
dtdψ +

dθ2

g2∆θ(θ)
+

sin2 θ

g2Ξa
dφ2 +

cos2 θ

g2Ξb
dψ2. (57)

The bulk stress tensor is related to the expectation value of the renormalized CFT stress tensor 〈T̂ab〉
[11] by

√−γ γab〈T̂ bc〉 = lim
r→+∞

√
−hhabT bc. (58)

Therefore, we expect the trace of the gravitational tensor to be related to the CFT’s stress tensor

through the following factor

lim
r→+∞

√

h/γ = g4r4. (59)

Evaluation of the trace of (40) gives

T aa = −
(

a2 − b2
)

[

3g2
(

a2 − b2
)

cos4 θ − 2 cos2 θ
(

a2g2 − 2b2g2 + 1
)

− b2g2 + 1
]

8πgGr4
. (60)

Multiplying this by the conformal factor g4r4 yields

g4r4T aa = −
g3
(

a2 − b2
)

[

3g2
(

a2 − b2
)

cos4 θ − 2 cos2 θ
(

a2g2 − 2b2g2 + 1
)

− b2g2 + 1
]

8πG
. (61)

This result matches that found in [23] for the Kerr-AdS5 solution. This is expected since the difference

between the Kerr-AdS5 metric and that in (6) is a term proportional to the charge parameter q, which

vanishes at the boundary.

We now look at the expectation value of the stress tensor of the dual CFT. The details that we followed

in calculating and renormalizing this tensor are outlined in Chapter 6 of ref. [24]. Following the notation

in ref. [23], the renormalized stress tensor is given by
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〈T̂ab〉 = − 1

16π2

∑

s

(

1

9
αsH

(1)
ab + βsH

(3)
ab

)

, (62)

where the summation is over the possible fields of the theory, with s = 0, 12 , 1 standing for scalar, Weyl

spinor, and U(1) gauge fields, respectively. If we calculate the expectation value over a vacuum state then

H
(4)
ab will vanish since it is the vacuum expectation value of the stress tensor in flat spacetime.

Furthermore, one can choose a regularization scheme in which the αs coefficients vanish. For more

details on this, the reader can refer to ref. [25]. The values of the remaining βs coefficients are given [25]

by

β0 = − 1

2880π2
N0, β

1

2 = − 1

2880π2
N

1

2 , β1 = − 1

2880π2
N1, (63)

where N i is the number of fields of spin i. These numbers are [11] N0 = 6N2, N
1

2 = 4N2 and N1 = N2.

The tensor H
(3)
ab is given in [24] by

H
(3)
ab =

1

12
R2γab −RcdRcadb, (64)

where γab is the CFT metric tensor and Rabcd, Rab and R are the Riemann tensor, Ricci tensor, and

Ricci scalar of the CFT, respectively.

We list below the non-vanishing components of the CFT stress tensor:

〈T̂tt〉 =− 495N2g4

1952π2ΞaΞb

[(

g2
(

a2 + b2
)

+ g2(a2 − b2) cos(2θ)− 2
)(

g2(a2 − b2)
(

20 cos(2θ)
(

g2
(

a2 + b2
)

− 2
)

+ 7g2(a2 − b2) cos(4θ)
)

− 24g2
(

a2 + b2
)

+ g4
(

5a4 + 14a2b2 + 5b4
)

+ 24
)]

,

〈T̂θθ〉 =
495N2g2

976π2 (g2 (b2 − a2) cos2 θ − b2g2 + 1)

[

g2
(

a2 − b2
)

(

3g2
(

a2 − b2
)

cos(4θ) + 4 cos(2θ)
(

g2
(

a2 + b2
)

− 2
)

)

+ 8g2
(

a2 + b2
)

+ g4
(

− 7a4 + 6a2b2 − 7b4
)

− 8
]

,

〈T̂φφ〉 =
495N2g2 sin2 θ

976π2Ξa

[

g2(a2 − b2)
(

7g2(a2 − b2) cos(4θ)− 4 cos(2θ)
(

g2
(

3a2 − 5b2
)

+ 2
)

)

+ 8g2
(

a2 + b2
)

+ g4
(

5a4 − 18a2b2 + 5b4
)

− 8
]

,

〈T̂ψψ〉 =
495N2g2 cos2 θ

976π2Ξb

[

g2
(

a2 − b2
)

(

7g2
(

a2 − b2
)

cos(4θ) + 4 cos(2θ)
(

g2
(

5a2 − 3b2
)

− 2
)

)

+ 8g2
(

a2 + b2
)

+ g4
(

5a4 − 18a2b2 + 5b4
)

− 8
]

. (65)

It is important to state here that the above CFT stress tensor matches the one predicted by the duality,

which is calculated using Brown-York tensor and the above relation in eq. (58). Indeed, this is one of the
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important non-perturbative silent checks of this duality. As a result, evaluating the trace of this stress

tensor yields the expected conformal anomaly

〈T̂ aa〉 = −
(

a2 − b2
)

N2g6
[

3g2
(

a2 − b2
)

cos4 θ − 2 cos2 θ
(

a2g2 − 2b2g2 + 1
)

− b2g2 + 1
]

4π2
. (66)

This identification is exact upon remembering that, in the AdS/CFT correspondence, 2N2g3/π is

translated to G−1 at the gravity side and vice versa. We have therefore shown that the CFT stress tensor

– which is calculated from the counterterm-regulated action at the gravity side – is exactly equal to the

CFT boundary stress tensor calculated at the field theory side. This also implies an equality between the

conformal anomalies on both sides.

5.2 Casimir Energy

Another consequence of the matching of the above two stress tensors – the one predicted by gravity and

that calculated on the field theory side – is the matching between the vacuum energies, (51) on the gravity

side and the Casimir energy ECasimir on the field theory side. The Casimir energy is found using the

formula ([11])

ECasimir =
∑

s=0, 1
2
,1

N s

∫

S3

d3x
√
σ χa〈T̂ sab〉ub. (67)

Here the summation is again over the possible fields of the theory. χa and ua are the timelike Killing

vector and unit normal vector, and σab is the foliation metric of the conformal boundary. The conformal

foliation metric is found using

σab = g2r2 (gab + uaub) , (68)

whose determinant is given by

σ =

(

a2 cos2 θ + b2 sin2 θ + r2
)

sin2 θ cos2 θ

g6r2∆θΞaΞb
. (69)

Direct evaluation of the integral in (67) followed by some simplifications gives

ECasimir =
N2g

[

9ΞaΞb + (Ξa − Ξb)
2
]

48ΞaΞb
. (70)

Making the identification π/(2Gg3) ↔ N2, it is easy to see that the Casimir energy in (70) is identical
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to the background energy of the bulk spacetime in (51),

ECasimir =MBG. (71)

6 The First Law and the Counterterms Method

As was discussed in [2], introducing surface counterterms to regulate the on-shell gravitational action in

five dimensions induces an anomalous Weyl transformation on the boundary.§ This is how the bulk encodes

the boundary Weyl anomaly. Let us denote the radial spacelike boundary at infinity by ∂M. It was found

[2] that a Weyl factor δσ changes the renormalized action by

δσIren =

∫

∂M

dnx
√
−hAδσ, (72)

in the presence of a conformal anomaly A.

Now, we have seen that in order to verify the first law, we need to vary various quantities, such as

the entropy, angular momenta, and charge with respect to r+, q, a and b (see for example eq. (22)). But

since the boundary metric is expressed in terms of a and b, variation of these parameters will change the

boundary metric that should remain fixed. We will see (eq. (82)) that variations of a and b have the effect

of a Weyl transformation on the boundary metric. The entropy, angular momenta, and electric charge are

expressed as surface integrals of fluxes whose sources are localized in the black hole region. In that sense,

they can be written as integrals over the horizon [2]. Thus they will not be affected by variations of the

boundary metric. This is not the case for the mass. As we saw in eq. (48), the total mass is the sum of a

term that depends on the mass parameter (M0) plus the background energy (MBG). The latter is certainly

affected by conformal transformations of the boundary. Another quantity that is affected by the boundary

conformal transformation is the renormalized action, which contains contributions from surface integrals

on the boundary.

The main idea is to subtract from the LHS of the first law the variation of the mass that results from

varying the boundary metric. If we denote this mass variation by δσM , the correct form of the first law

[2] is thus given by

dM = δσM + TdS +ΩadJa +ΩbdJb +ΦdQ. (73)

Note that the variations of the renormalized action Iren and mass are not independent since (see eq. (76)

§Notice that this happens when the rotation parameters are different.
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below)

Iren = β(M − TS − ΩaJa − ΩbJb −ΦQ), (74)

so

δσIren = βδσM. (75)

We argue here that, by a similar analysis, the volume term (see eq. (30)) needs to be modified due to

extra terms arising from boundary variation when the AdS radius 1/g is varied as well.

In conclusion, we expect the action and mass calculated from the counterterms method to verify the

quantum statistical relation, the first law, and Smarr’s formula. But in order to show the latter two,

we must account for extra terms which result from a Weyl transformation of the boundary when certain

parameters are varied

6.1 The First Law in the Presence of a Conformal Anomaly

We begin by noting that the counterterms action (38) and mass (48) satisfy the so-called quantum statistical

relation

Iren = βG(T,Ωa,Ωb,Φ). (76)

We will adopt the same procedure that was done in [2]. The first step is to transform the boundary

metric into a more canonical asymptotic form. To do so we use the coordinates r̄ and θ̄ defined by

r = r̄

[

1 +
∆̂θ̄

4g2r̄2
+

∆̂θ̄

16gr̄

(

1 + Ξ̂a + Ξ̂b − 2∆̂θ̄

)

+O
(

1

r̄6

)

]

, (77)

θ = θ̄ +
1

16gr̄

(

1− ∆̂θ̄

)

∆̂′

θ̄
− 1

32g6r̄6

(

1− ∆̂θ̄

)

∆̂′

θ̄

(

1 + Ξ̂a + Ξ̂b + 3∆̂θ̄

)

+O
(

1

r̄8

)

. (78)

The functions ∆̂θ, Ξ̂a and Ξ̂b are given by

∆̂θ = 1−∆θ, Ξ̂a = 1− Ξa, Ξ̂b = 1− Ξb. (79)

The conformal boundary metric in terms of the new coordinates is

ds̄2BG = −dt2 +
2a sin2 θ̄

Ξa
dtdφ+

2b cos2 θ̄

Ξb
dtdψ +

1

g2∆θ̄

dθ̄2 +
sin2 θ̄

g2Ξa
dφ2 +

cos2 θ̄

g2Ξb
dψ2. (80)
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We now consider the variation of this metric under infinitesimal variations of a and b. We switch to a

new coordinate system (t, r̄, θ̄′, φ′, ψ′) given by

tan2 θ̄ =

(

1 +
δΞa
Ξa

− δΞb
Ξb

)

tan2 θ̄′, φ = φ′ − g2tδa, ψ = ψ′ − g2tδb. (81)

In terms of these coordinates, the resulting variation of the metric in (80) is given [2] by

ds̄2BG →
(

1− δΞa
Ξa

sin2 θ̄ − δΞb
Ξb

cos2 θ̄

)

ds̄2BG. (82)

We use the value of the conformal anomaly that we calculated in (66) to find the variation of the action

resulting from the Weyl factor in (82):

δσIren =

∫

[0, β]×S3

d4x
√
−hAδσ (83)

=
πβ

96g2G
δ

(

Ξa
Ξb

+
Ξb
Ξa

)

. (84)

This form is in agreement with [2], again with the caveat that the electric charge appears in β. We also

explicitly verify that

δσIren = βδσM

= βδMCasimir, (85)

which is expected, given the result in (76). The first law can then be written as¶

dM = dM0 + dMCasimir = δMCasimir + TdS +ΩadJa +ΩbdJb +ΦdQ. (86)

We have already seen that the first term on the left-hand side equals the sum of all but the first term

on the right-hand side. The Casimir energy is only a function of a and b and does not depend on r+ or q.

The term dMCasimir is hence just the variation of the Casimir energy with respect to a and b. Using (85)

this term can be calculated from

δMCasimir = β−1

∫

[0, β]×S3

d4x
√
−hAδσ. (87)

¶Recall that M = M0 +MBG = M0 +MCasimir.
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6.2 Extended Thermodynamics and Volume Calculation

Allowing the cosmological constant to vary leads to another treatment called extended thermodynamics [16,

17]. In this treatment we are adding another pair of thermal quantities, namely the pressure, P = 3g2/4π,

and its conjugate thermodynamic volume

V =

(

∂M

∂P

)

S,Q,Ja,Jb

. (88)

This pair is supposed to obey Smarr’s relation (28) as in [17], but it is straightforward to check that the

volume in (88) does not satisfy this relation. In this section we analyze the reason behind this contradiction

and show how it can be fixed. We are unaware of any similar attempts to address this issue for this or any

other black hole solutions in the literature.

The relation in (88) can equivalently be written as

V =
∂g

∂P

(

∂M

∂g

)

S,Q,Ja,Jb

. (89)

It is easy to see that the last term on the RHS induces a variation in the boundary metric analogous to

variations with respect to a and b in §6.1. We thus need to add a compensating term to the thermodynamic

volume to account for this variation. Let us go back to the metric in (80). We now switch to a new

coordinate system
(

t, r̄, θ̄′′, φ′′, ψ′′
)

, where

tan2 θ̄ =

(

1 +
δΞa
Ξa

− δΞb
Ξb

)

tan2 θ̄′′, φ = φ′′ − a2tδg, ψ = ψ′′ − b2tδg. (90)

We emphasize that the variations of Ξa and Ξb are now with respect to g, and the rotation parameters

a and b are kept fixed throughout this subsection. With this in mind, it is easy to see that the variation

of the metric follows the form

ds̄2BG →
(

1− δΞa
Ξa

sin2 θ̄ − δΞb
Ξb

cos2 θ̄

)

ds̄2BG. (91)

Let us denote the Weyl factor in this section by δσ̃. We define an effective thermodynamic volume V̄

that takes care of the extra terms in the mass that arise from the transformation (91) by

V̄ =

(

∂M

∂P

)

S,Q,Ja,Jb

+
∂(δσ̃M)

∂P
. (92)

This is a generalized definition of the volume that reduces to the usual definition in (30) and (88) in the

absence of a conformal anomaly and still satisfies Smarr’s formula in the presence of the latter. Furthermore,
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this definition satisfies Smarr’s formula even if we use the ADM [19] or the Kounterterms method [26].

These two techniques give the mass expression in (19), resulting in the last term on the RHS vanishing.

Expression (92) will hence give the same quantity in (30), which we have already verified that it satisfies

Smarr’s formula if the mass is given by (19).

In AdS5, it is straightforward to verify that transformation (91) leads to a variation of the mass given

by

δσ̃M = β−1δσ̃Iren

= β−1

∫

[0, β]×S3

d4x
√
−hAδσ̃

=
π

96g2G

[

δΞa(Ξa − Ξb)(Ξa + Ξb)

Ξa2Ξb
− δΞb(Ξa − Ξb)(Ξa + Ξb)

ΞaΞb2

]

=
π

96g2G
δ

(

Ξa
Ξb

+
Ξb
Ξa

)

. (93)

The first line is just eq. (83), and we used relation (85) to arrive at the second line. We now calculate

the volume in (92) for our solution:

V̄ = V0 −
π2
[

−9g2
(

a2 + b2
)

+ g
(

a+ 7a2b2 + b
)

+ 9
]

72gΞaΞb
. (94)

It is straightforward to show that the expression in (94) satisfies Smarr’s formula with the mass calcu-

lated via the counterterms method,

M =
3

2
(TS +ΩaJa +ΩbJb) + ΦQ− PV̄ . (95)

Alternatively, one can define the thermodynamic volume by (88) and add a compensating term to

Smarr’s formula,

M =
3

2
(TS +ΩaJa +ΩbJb) + ΦQ−

(

PV + P
∂(δσ̃M)

∂P

)

. (96)

6.3 The First Law in Extended Thermodynamics

We discuss here the first law in extended thermodynamics for the general black hole in five dimensions. In

extended thermodynamics, the mass/energy M is nothing but the enthalpy

H = U + PV̄ . (97)
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The internal energy is thus found from

U =M − PV̄ . (98)

With this, the first law in terms of U can be written as

dU = TdS +
∑

i

ΩidJi +ΦdQ− PdV̄ . (99)

It is easy to show that

∂U

∂r+
= T

∂S

∂r+
+
∑

i

Ωi
∂Ji
∂r+

+Φ
∂Q

∂r+
− P

∂V̄

∂r+
,

∂U

∂q
= T

∂S

∂q
+
∑

i

Ωi
∂Ji
∂q

+Φ
∂Q

∂q
− P

∂V̄

∂q
,

∂U

∂g
= T

∂S

∂g
+
∑

i

Ωi
∂Ji
∂g

+Φ
∂Q

∂g
− P

∂V̄

∂g
. (100)

When we vary with respect to c = a, b we find

∂U

∂c
= T

∂S

∂c
+
∑

i

Ωi
∂Ji
∂c

+Φ
∂Q

∂c
− P

∂V̄

∂c
+
∂MBG

∂c
. (101)

Eqs. (100) and (101) can be combined in the form

dU = TdS +
∑

i

ΩidJi +ΦdQ− PdV̄ + δσMBG, (102)

where the variation δσ is understood to be w.r.t. to a and b but not g.

This completes our investigation of the extended thermodynamics of the general charged rotating black

hole in five dimensions where we saw that Smarr’s relation as well as the first law are satisfied using the

counterterms method.

7 Conclusion

We used the counterterms subtraction method to calculate various physical quantities of the charged

rotating black holes in AdS5 introduced in [1]. We showed that the resulting quantities satisfy the known

thermodynamic relations in the cases of a varying and fixed cosmological constant, i.e., in extended and

regular thermodynamics. All these quantities satisfy the Gibbs-Duhem relation, the first law, and Smarr’s

relation.

23



Quantum corrections break conformal symmetries in four-dimensional field theories, producing confor-

mal anomalies. This classical symmetry on the boundary is realized as a subset of the bulk diffeomorphisms

which is called the Penrose-Brown-Hennaux (PBH) transformation [14, 15]. For boundary field theories

with a non-vanishing conformal anomaly, a PBH transformation will not leave the gravitational on-shell

action invariant. As was generally argued in [2], this variation affects only the mass, but not the other

quantities in the first law. This is because these other quantities can be written as integrals over the

horizon.

We showed that the mass calculated from the counterterms method can be written as a sum of two

terms, one containing the mass parameter and electric charge, and another which is nothing but the

background energy of the spacetime. The background energy is not restricted to the black hole region and

its flux depends on the boundary. An important boundary condition for the AdS/CFT correspondence

(or for the variation problem in [2]) is to keep the boundary metric fixed by utilizing a PBH or boundary

Weyl transformation. As a result, one can use a Weyl transformation to cancel the variation in the mass

term that results from varying the boundary metric. This leaves the first law satisfied.

In this work we used the counterterms subtraction method to calculate the renormalized on-shell action

for the general rotating charged AdS solution presented in [1], as well as its mass and angular momenta.

We showed that these quantities satisfy the first law and the Gibbs-Duhem relation. Going to extended

thermodynamics [16, 17] where we allow the cosmological constant to vary and act as a pressure, a naive

calculation of first law shows that it is not satisfied. We showed that a similar issue exists with the volume

defined in the extended-thermodynamics treatment [16, 17], meaning varying this quantity does not leave

the boundary metric fixed and one needs to use a compensating PBH term to keep the volume fixed. This

modification is important to satisfy the first law in this case as well as the generalized Smarr’s formula

when the counterterms subtraction method is used in the presence of a conformal anomaly.

We calculated the renormalized stress tensor and conformal anomaly of the CFT living on the boundary

as predicted by the AdS/CFT duality, i.e., from the gravity side. We showed that these quantities coincide

with the quantities calculated on the field theory side on a rotating Einstein Universe. Furthermore, we

calculated the Casimir energy in the CFT and verified that it exactly matches the background energy of

the bulk theory.

Finally, we showed that the calculation of the thermodynamic volume induces a Weyl transformation

on the boundary metric, which adds extra terms to the calculated expression. We have generalized the

definition of the thermodynamic volume in a way that accounts for these extra terms in the presence of a

conformal anomaly. We have shown that our definition leads to a volume term that satisfies Smarr’s relation

as well as the first law in extended thermodynamics when the counterterms method is used. It would be
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interesting to use the quantities calculated here to study various phase transitions for the five-dimensional

charged rotating solution [1], which are expected to have a rich structure.
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