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Abstract

Economic dispatch (ED) of thermal power units is significant for optimal generation operation efficiency of power systems. It is a
typical nonconvex and nonlinear optimization problem with many local extrema when considering the valve-point effects, especially
for large-scale systems. Considering that differential evolution (DE) is efficient in locating global optimal region, while gain-sharing
knowledge-based algorithm (GSK) is effective in refining local solutions, this study presents a new hybrid method, namely GSK-DE, to
integrate the advantages of both algorithms for solving large-scale ED problems. We design a dual-population evolution framework in
which the population is randomly divided into two equal subpopulations in each iteration. One subpopulation performs GSK, while
the other executes DE. Then, the updated individuals of these two subpopulations are combined to generate a new population. In
such a manner, the exploration and the exploitation are harmonized well to improve the searching efficiency. The proposed GSK-DE
is applied to six ED cases, including 15, 38, 40, 110, 120, and 330 units. Simulation results demonstrate that GSK-DE gives full play to
the superiorities of GSK and DE effectively. It possesses a quicker global convergence rate to obtain higher quality dispatch schemes
with greater robustness. Moreover, the effect of population size is also examined.

Keywords: differential evolution, economic dispatch, gaining–sharing knowledge-based algorithm, power system, valve-point effect

List of symbols
C: Total generation cost ($/h).
N: Number of generators.
Pn: Active power of the nth thermal power unit (MW).
Fn(Pn ): Fuel cost function of the nth thermal power unit

($/h).
an, bn, cn: Generation cost coefficients.
en, fn: Valve-point effect coefficients.
Pmin

n : Lower limit of active power for the nth unit (MW).
Pmax

n : Upper limit of active power for the nth unit (MW).
Ploss: Total transmission network loss (MW).
PD: Total system load (MW).
Bi j, B0i, B0 j : Loss coefficients.
URn: Increasing limit of the nth thermal power unit (MW).
DRn: Decreasing limit of the nth thermal power unit (MW).
Ppr

n : Previous output of the nth thermal power unit (MW).
pzn: Number of prohibited operating zones of the nth gen-

erator.
PL

n,k, PU
n,k: Lower and upper bounds of the kth prohibited oper-

ating zone of the nth generator (MW).
NP: Number of individuals.

POZ: Prohibited operating zone.
D: Dimension.
xi: Individual in a D-dimensional space.
G: Current generation.
GEN: Maximum generation number.
K: Knowledge rate.
kr: Knowledge ratio.
k f : Knowledge factor.
p: Constant between 0 and 1.
xp−best : Random individual in the best group.
xp−worst : Random individual in the worst group.
vi: Mutant vector.
F: Scaling factor.
r1, r2, r3: Mutually different individuals.
CR: Crossover rate.
jrand: Random dimension of {1, 2, . . . , D}.

1. Introduction
The purpose of economic dispatch (ED) of power systems is to
reasonably allocate the active power of grid-connected thermal

Received: September 1, 2022. Revised: January 1, 2023. Accepted: January 18, 2023
C© Crown copyright 2023. This Open Access article contains public sector information licensed under the Open Government Licence v3.0
(https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/).

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/2/615/7081313 by guest on 22 January 2024

https://orcid.org/0000-0002-8913-7315
https://orcid.org/0000-0002-5895-2632
mailto:gjxiongee@foxmail.com
mailto:chenhao@fjirsm.ac.cn
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/


616 | Hybrid metaheuristic method for economic dispatch problems

power units in the system with known system load demand,
so that the total generation cost of the system is minimized
while satisfying the system power balance constraint and thermal
power unit operation constraints. The generation fuel cost of the
traditional ED problem is usually expressed using a linear func-
tion or quadratic polynomial, which is simple in form but often
causes inaccuracy in the dispatch solution for the power system.
The ED model is more accurate after involving the valve-point
effects of units and network losses, but the solution space be-
comes highly nonlinear, and nonconvex, and has a large number
of local extremes, especially for large-scale power systems, which
makes the solution very complex. Because of this, scholars have
presented many solutions to this issue. These solution approaches
can be loosely classified into two categories based on their mathe-
matical perspective, i.e., classical mathematical methods and in-
telligent optimization methods.

The classical mathematical methods include linear program-
ming (Jabr et al., 2000), nonlinear programming (Nanda et al., 1994),
dynamic programming (Muralidharan et al., 2007), mixed integer
programming (Azzam et al., 2014), Lagrange relaxation (Hindi &
Ghani, 1991), and so on. The main advantages of these methods
are the maturity of the theory and the convergence speed of the
solution. However, these methods face a lot of difficulties in solv-
ing the ED problem. For example, the linear programming requires
a certain initial value and the objective function being convex,
and its generality is not strong enough. The nonlinear program-
ming requires a continuous and differentiable objective function,
and results in large computational effort and poor stability for
high-dimensional problems. The dynamic programming and the
mixed integer programming are prone to “dimensional disaster”
as the number of dimensions increases. The Lagrange relaxation
method easily leads to oscillation.

To overcome the troubles associated with the classical math-
ematical methods, the intelligent optimization methods have
been frequently applied as alternative solutions to the nonconvex
ED problems. Some of these methods have been already imple-
mented in their original form (Chiang, 2007). At the same time, in
view of the shortcomings in the basic algorithms mentioned ear-
lier, many scholars have made improvements to enhance their op-
timization performance in solving the ED problems. Among them,
hybridization is a frequent and effective way for improvement
because it can integrate the merits of different algorithms. For
example, Victoire and Jeyakumar (2006) hybridized tabu search
(TS), particle swarm optimization (PSO), and sequential quadratic
programming (SQP) technique to deal with the fuzzy modeling
unit input problem. Khamsawang and Jiriwibhakorn (2010) hy-
bridized the distributed Sobol PSO and TS algorithm. The method
starts with a Sobol sequence instead of the existing process to
generate the inertia factors, and then, uses distributed programs
and activates the TS strategy to quickly obtain the global opti-
mum. Parouha and Das (2016) proposed a differential evolution
(DE)-PSO-DE method. It divides the population into three groups,
i.e., lower, intermediate, and upper groups. The lower and upper
groups use DE, while the intermediate group uses PSO. The differ-
ence information from DE is combined with the memory informa-
tion extracted by PSO in order to get rid of the local extreme points.
Chansareewittaya (2017) proposed a hybrid bee algorithm (BA)/TS
method. It uses the local search method in the BA to replace the TS
in order to arrive at the global minimum solution. Chen and Mar-
rani (2020) devised a hybrid solution approach that combines the
PSO with imperialist competitive algorithm (ICA). In this method,
the search strategy of PSO is applied to ICA to improve the ex-
ploitation capability. Zhang et al. (2013) put forward a hybrid algo-

rithm based on PSO and DE. It integrates the variational operator
and crossover operator of DE, and the chaotic sequence into PSO
to improve the global search capability. Takeang and Aurasopon
(2019) used the Lambda iteration to initialize a refined population
instead of the traditional random values for simulated annealing
method to prevent the rapid loss of population diversity.

Many scholars have accomplished a lot of works to achieve
good results, but they were mainly applied to relatively small-
scale systems. As the requirement for the power energy rises and
the energy Internet progresses, the power system is growing in
scale and sophistication significantly. In this context, the quantity
of units in a power system grows quickly, making the ED problem
solution space more complicated, especially when considering the
valve-point effects. As a consequence, the difficulty for achieving
an accurate solution for the ED problem increases considerably
and it is urgent and essential to design an effective ED solution
approach to adapt to large-scale power systems.

In this research, we attempt to design an effective approach to
resolve the ED problem of large-scale power systems by hybridiz-
ing gain-sharing knowledge-based algorithm (GSK) and DE.

DE is one of the most extensively popular population-based
algorithms and has the advantages of simple structure, easy to
use, and robustness (Wang and Tan, 2020; Gao et al., 2020). It has
shown qualified performance in handling different optimization
problems. Nevertheless, the fundamental DE algorithm has a high
pressure on the selection of suitable control parameters, which of-
ten drags down the global convergence and results in poor local
refinement search ability (Wang et al., 2022). Therefore, it makes
the performance of the algorithm deteriorate in the process of
evolution.

GSK, a new metaheuristic algorithm proposed for combinato-
rial optimization, was inspired by people behavior of acquiring
and sharing knowledge (Mohamed et al., 2020). It has received
a lot of attention for its ease of implementation and efficiency,
and has worked well in several fields, including fault diagnosis of
power systems (Li et al., 2022; Xiong et al., 2022b, c), knapsack prob-
lems (Agrawal et al., 2022), travelling advisor problem (Hassan et
al., 2020), and parameter extraction of solar photovoltaic models
(Xiong et al., 2021). Nevertheless, like a coin has two sides, GSK also
has some drawbacks. On the one hand, GSK is good at using local
search capability to refine the solution thoroughly. On the other
hand, when solving complex multimodal problems, it is easy to
be bounded by the local extrema and converges prematurely be-
cause of insufficient global search capability.

From the above analysis, we found that the features of GSK and
DE are highly complementary. Namely, GSK is good at exploit-
ing the current region to refine the solution, while DE is adept
in exploring the region where the global solution locates. These
two search features are extremely indispensable for an algorithm.
This motivates us that a logical hybridization of them may result
in an effective algorithm with preeminent performance. Moreover,
to our best knowledge, GSK and DE have not been hybridized be-
fore to solve the ED problems. In this work, a hybrid GSK-DE al-
gorithm based on the idea of dual population is devised to solve
large-scale ED problems. In view of increasing the efficiency of
searching the solution space, a dual-population evolution frame-
work that updates individuals making use of two different search
strategies is presented. Specifically, after randomly dividing all in-
dividuals into two different subpopulations equally, one half exe-
cutes GSK while the other half executes DE. In this way, the pop-
ulation uses a heterogeneous search strategy to increase the pop-
ulation diversity and speed up the convergence for the purpose
of improving the quality of solutions found by the designed algo-
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Figure 1: (a) Fuel cost function with the valve-point effect and (b) fuel cost function without the valve-point effect.

rithm. To evaluate the effectiveness of GSK-DE in solving large-
scale ED problems, we focus on demonstrating and discussing its
application in six test cases, including 15-unit, 38-unit, 40-unit,
110-unit, 120-unit, and 330-unit systems. A comparative analysis
with other algorithms shows the superiority of the designed al-
gorithm from convergence performance, solution quality, and ro-
bustness. The effect of population size is also discussed in depth.

The rest of this paper is laid out as follows: The mathematical
model of the ED problem is described in Section 2. The proposed
GSK-DE is presented in Section 3. The simulation results and dis-
cussions are presented in Section 4. The conclusions and future
work are summarized in Section 5.

2. Mathematical Formulation of ED
2.1. Objective function
The objective of the ED problem is to reduce the total generation
cost over the dispatch cycle by appropriately allocating the out-
put of each thermal power unit, while meeting the requirements
of load demand and operating constraints. The optimization ob-
jective of the total generation cost is expressed as (Sinha et al.,
2003)

minC =
N∑

n=1

Fn(Pn ) =
N∑

n=1

(
anP2

n + bnPn + cn
)
, (1)

where C represents the total fuel cost; Pn is the active power of the
nth thermal power unit; N is the number of grid-connected units;
an, bn, and cn denote the generation cost coefficients; and Fn(Pn )
is the consumption characteristic function, which represents the
generation cost.

However, the steam inlet valve of the turbine during the actual
operation of the thermal power unit can suddenly open, result-
ing in a pulling phenomenon, also known as the valve-point ef-
fect. A pulsation is superimposed on the unit consumption curve
due to the valve-point effect. At this point, the optimization ob-
jective function of the generation cost is (Liu et al., 2022; Xiong et
al., 2022a)

Fn(Pn ) = anP2
n + bnPn + cn +

∣∣∣en × sin( fn × (Pmin
n − Pn ))

∣∣∣ , (2)

where en and fn are the valve-point effect coefficients, and Pmin
n is

the lower limit of active power for the nth unit. Figure 1a and b
show the fuel cost function with and without valve-point effect,
respectively.

2.2. Constraints
2.2.1. Load balance constraint

N∑
n=1

Pn − PD − Ploss = 0, (3)

where Ploss and PD represent the network loss and system load, re-
spectively. Ploss is related to the active power of the unit set, trans-
mission line parameters, and the system structure. The B-factor
approach is used to calculate it:

Ploss =
N∑

i=1

N∑
j=1

PiBi jPj+
N∑

i=1

B0iPi + B00, (4)

where Bi j, B0i, and B00 are coefficients.

2.2.2. Unit capacity constraint

Pmin
n ≤ Pn ≤ Pmax

n , n = 1, 2, · · · , N, (5)

where Pmax
n and Pmin

n denote the upper and lower output limits,
respectively.

2.2.3. Ramp rate limits

{
Pn − Ppr

n ≤ URn

Ppr
n − Pn ≤ DRn

, n = 1, 2, · · · , N, (6)

where URn and DRn represent the increasing limit and decreas-
ing limit, respectively, and Ppr

n denotes the output of the previous
moment.

2.2.4. Prohibited operating zones
Prohibited operating zones (POZs) lead to a solution space with
disjoint feasible regions for individual generators. The constraints
can be described as follows (Xu et al., 2022):
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Figure 2: Flowchart of the proposed GSK-DE.
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Pn ∈

⎧⎪⎨
⎪⎩

Pn,min ≤ Pn ≤ PL
n,1

PU
n,k−1 ≤ Pn ≤ PL

n,k

PU
n,pzn

≤ Pn ≤ Pn,max

, k = 2, 3, . . . pzn, (7)

where pzn is the number of POZs of the nth generator, and PL
n,k

and PU
n,k are the lower and upper bounds of the kth POZ of the nth

generator, respectively.

3. Proposed GSK-DE
3.1. Gaining–sharing knowledge-based

algorithm
GSK was inspired by the process of acquiring and sharing knowl-
edge throughout the human life cycle (Mohamed et al., 2020).
There are two important stages in this method including the ju-
nior acquiring–sharing and senior acquiring–sharing.

In GSK, a population includes NP individuals and an individual
xi in a D-dimensional space is expressed as xi = (xi1, xi2, . . . , xiD ).
Djunior and Dsenior are to use the junior and senior schemes to up-
date the dimension of individuals, respectively. They are given by

Djunior = D × (1 − G
GEN

)
K

(8)

Dsenior = D − Djunior, (9)

where G and GEN are the current generation and the maximum
number of generations, respectively. K denotes the knowledge
rate.

3.1.1. Junior acquiring and sharing phase
We first arrange all individuals in ascending order, i.e.,
xbest, . . . , xi−1, xi, xi+1, . . . , xworst. For an individual xi, the near-
est best neighbor xi−1 and the worst neighbor xi+1 are selected
as the source of knowledge. If xi is the best individual, the order
would be xbest, xbest+1, xbest+2. If xi is the worst one, the order
would be xworst−2, xworst−1, xworst. Finally, if a knowledge ratio kr (>
0) is smaller than a random number rand(0, 1) generated within
(0, 1), xi retains its original value. Otherwise, the individual xi is
updated according to the following formula:

xnew
i =

{
xi +k f · [(xi−1 − xi+1) + (xr − xi )] , if f (xi ) > f (xr )
xi +k f · [(xi−1 − xi+1) + (xi − xr )] , otherwise

, (10)

where k f > 0 denotes the knowledge factor.

3.1.2. Senior acquiring and sharing phase
The individuals are divided into three groups after sorting in as-
cending order: the best group, the middle group, and the worst
group. After that, two individuals of the best and worst NP ×
100p% are selected as the gaining part, while one of the middle
NP − (2 × 100p%) is randomly selected as the sharing part. Finally,
if rand(0, 1) > kr, xi retains its original value. Otherwise, the indi-
vidual xi is updated according to the following formula:

xnew
i

=
{

xi +k f · [
(xp−best − xp−worst ) + (xm − xi )

]
, if f (xi ) > f (xm )

xi +k f · [
(xp−best − xp−worst ) + (xi − xm )

]
, otherwise

,

(11)

where p ∈ [0, 1] is a constant. xp−best denotes a random individual
in the best group. xp−worst denotes a random individual in the worst
group. xm belongs to the middle group.

Algorithm 1 gives the pseudo-code of GSK.

3.2. Differential evolution
DE guides the direction of optimization search by mutation,
crossover, and selection among individuals in a population (Storn
& Price, 1997).

First, two different individuals are selected randomly and their
vector differences are scaled on another different random indi-
vidual to generate a mutant vector:

vi = xr1 + F · (xr2 − xr3) , (12)

where vi denotes the mutant vector. F denotes the scaling factor,
and r1, r2, and r3 and i are mutually different individuals.

Then, the crossover operation between xi, j and the mutant vec-
tor vi, j is performed to generate the test individual ui, j, as shown
below:

ui, j =
{

vi, j, if (rand(0, 1) ≤ CR) or(j = jrand)
xi, j, otherwise

, (13)

where CR denotes the crossover rate. jrand represents a random
dimension of {1, 2, . . . , D}.

Subsequently, the better individual is selected for the new pop-
ulation by comparing the objective functions of individuals ui and
xi, as shown below:

xnew
i =

{
ui, if( f (ui ) ≤ f (xi ))
xi, otherwise

. (14)
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Table 1: Defining parameters.

Algorithm Parameters

ABC (Karaboga, 2010) NP = 50, FoodNumber = NP/2, limit = 100
BBO (Simon, 2008) NP = 50, MutationProb = 0.01
CLPSO (Liang et al., 2006) NP = 50, c = 1.49445
CPA (Tu et al., 2021) NP = 50
DE (Storn & Price, 1997) NP = 50, CR = 0.9, F = 0.6
DE-WOA (Xiong et al., 2018) NP = 50, CR = 0.9, F = 0.6, p = rand(0, 1)
EHO (Wang et al., 2015) NP = 50, nClan = 5, α = 0.5, β = 0.1
EWA (Wang et al., 2018) NP = 50, mutate = 0.01, α = 0.98, β = 1, γ = 0.9
GSK (Mohamed et al., 2020) NP = 50, kf = 0.5, kr = 0.3, K = 35, p = 0.1
HHO (Heidari et al., 2019) NP = 50, p = rand(0, 1)
HGS (Yang et al., 2021) NP = 50
IJAYA (Chen et al., 2020) NP = 50, rand1 = rand2 = rand(0, 1)
MBO (Wang et al., 2019) NP = 50, Smax = 1, BAR = p = 5/12, peri = 1.2
MS (Wang, 2018) NP = 50, ϕ = [(5)1/2 − 1)/2], β = 1.5, Smax = 1
PPSO (Ghasemi et al., 2019) NP = 50, w = 0
PSO (Kennedy & Eberhart, 1995) NP = 50, c = 1.49618, w = 0.7298
QILDE (Xiong et al., 2020) NP = 50, CR = 0.9, F = 0.6
RUN (Ahmadianfar et al., 2021) NP = 50, a = 20, b = 12
SATLBO (Yu et al., 2017) NP = 50
SMA (Li et al., 2020) NP = 50, z = 0.03
WOA (Mirjalili and Lewis, 2016) NP = 50, r1 = r2 = p = rand(0, 1)
GSK-DE NP = 50, kf = 0.5, kr = 0.3, K = 35, p = 0.1, CR = rand(0, 1), F = 0.1+0.9∗rand(0, 1)

Figure 3: Convergence curves for case 1.

Figure 4: Fuel cost distribution for case 1.

Algorithm 2 reports the pseudo-code of DE.

4. Hybrid GSK/DE
4.1. Motivations

(1) For metaheuristic algorithms, exploration and exploita-
tion are key building elements. Although DE has an ap-
titude for exploring and discovering the global optimal
area, it takes a long time to solution convergence since
it uses three random individuals to update the target
individual, as shown in equation (12). On the contrary,
as shown in equations (10) and (11), GSK starts from
the target individual, and combines the subtraction of
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Table 2: Simulation results ($/h) for case 1.

Algorithm Minimum Maximum Average
Standard
deviation

Average CPU
time (s)

ABC 32758.0768 33021.9735 32875.8413 51.6310 0.5625
BBO 32693.0586 32698.6505 32694.9159 1.1923 0.3294
CLPSO 32692.5796 32696.3495 32693.9316 0.8474 0.7245
DE-WOA 32692.4010 32692.4423 32692.4137 0.0082 0.4952
IJAYA 32692.4035 32692.4794 32692.4284 0.0159 0.4035
PSO 32704.8486 32783.3540 32737.4793 16.2014 0.6264
PPSO 32692.3965 32692.6409 32692.4384 0.0783 0.7625
QILDE 32692.3983 32692.4779 32692.4052 0.0114 0.8873
SATLBO 32692.3970 32692.5946 32692.4280 0.0468 0.6987
WOA 32692.4684 32724.9243 32696.8186 7.1013 0.6529
CPA 32692.5358 32721.3543 32696.9899 8.2989 0.6133
EHO 32693.3268 32703.0514 32696.1468 2.2703 0.6484
EWA 32754.5062 33024.0618 32869.8206 57.7430 0.5568
HGS 32692.3967 32692.4125 32692.3979 0.0034 0.4410
HHO 32692.5315 32692.5755 32692.5438 0.0171 0.5837
MBO 32701.8191 32937.6803 32835.1581 45.3703 0.5387
MS 32696.3569 32740.0716 32715.3513 13.2282 0.6757
RUN 32692.5414 32713.4684 32697.6633 4.8035 0.6459
SMA 32692.4022 32692.5522 32692.4207 0.0203 0.5246
DE 32692.3966 32692.3972 32692.3969 1.5630E-04 0.3679
GSK 32692.4020 32692.4276 32692.4121 0.0053 0.3929
GSK-DE 32 692.3964 32 692.3971 32 692.3967 1.4927E-04 0.3969

Table 3: Simulation results ($/h) for case 2.

Algorithm Minimum Maximum Average
Standard
deviation

Average CPU
time (s)

HHS (Fesanghary & Ardehali, 2009) 9417 325 9417 466 9417 336 NA NA
HS (Fesanghary & Ardehali, 2009) 9419 960 9427 466 9421 056 NA NA
PSO_TVAC (Chaturvedi et al., 2009) 9500 448.307 NA NA NA NA
New_PSO (Chaturvedi et al., 2009) 9516 448.312 NA NA NA NA
ABC 9417 245.7095 9417 319.2998 9417 270.8379 16.2102 0.4519
BBO 9418 421.4408 9423 359.2923 9420 377.7761 1423.1055 0.6225
CLPSO 9417 814.0080 9419 100.9668 9418 472.1254 265.7059 1.0356
DE-WOA 9417 261.5796 9417 341.5836 9417 297.1218 20.4463 0.6241
IJAYA 9417 395.9228 9417 592.2990 9417 461.7801 45.8085 0.4557
PSO 9420 941.5801 9443 360.6343 9428 233.1719 4471.0368 0.4870
PPSO 9417 236.6978 9417 253.4038 9417 240.9340 3.6754 1.0669
QILDE 9417 236.6386 9417 243.5056 9417 238.5651 1.4328 0.8036
SATLBO 9417 236.6672 9417 263.3901 9417 242.2887 6.2402 0.7057
WOA 9417 394.3570 9418 227.4177 9417 667.7679 178.1776 0.6075
CPA 9419 171.3897 9429 951.9933 9423 317.4902 2380.2966 0.7346
EHO 9509 316.1209 9588 229.6955 9555 390.0068 17 990.9888 0.6594
EWA 9441 166.2716 9502 976.1277 9465 842.0383 13 326.3170 0.8850
HGS 9417 235.7878 9417 374.2202 9417 239.5745 19.9346 0.6314
HHO 9476 382.6741 9550 358.2837 9507 898.0946 12 217.8650 0.8276
MBO 9423 178.6072 9454 216.1709 9436 372.6519 6460.7401 0.6164
MS 9431 431.0684 9485 715.3040 9453 822.8676 13 701.9560 0.6317
RUN 9418 955.5821 9475 216.8806 9426 220.5137 8450.3115 0.6813
SMA 9417 236.2740 9417 277.5731 9417 238.5444 6.3277 0.5815
DE 9417 237.7371 9417 242.4068 9417 239.1236 1.0005 0.4871
GSK 9417 237.0052 9417 238.4658 9417 237.5702 0.3627 0.4404
GSK-DE 9417 235.7863 9417 236.2969 9417 236.0026 0.0903 0.4405

neighboring individuals and the difference between the
best individual and the worst individual to guide the
search. This search strategy makes GSK apt at finding lo-
cal solutions with higher searching capability and faster
convergence. However, it will reduce the population diver-
sity and thus easily lead to falling into local optimum.

Therefore, our primary motivation is to integrate GSK and
DE to avoid early convergence and speed up the global
search.

(2) The second motivation is that heterogeneity is a valid
means to improve the optimization performance. The basic
idea for hybridization is to maximize the complementary

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/2/615/7081313 by guest on 22 January 2024



622 | Hybrid metaheuristic method for economic dispatch problems

Figure 5: Convergence curves for case 2.

Figure 6: Fuel cost distribution for case 2.

strengths of various algorithms so that difficult optimiza-
tion problems can be solved more efficiently.

(3) The third motivation is that this is the first time of the GSK
and DE being hybridized as far as we know in solving the
ED problems.

(4) The fourth motivation is that the dual-population evolu-
tionary framework used in this work is beneficial for solv-
ing optimization problems. It can ensure both the popu-
lation diversity and convergence speed, and thus to equili-
brate the local search and global search abilities effectively.
In addition, the optimization efficiency can be improved
with two subpopulations based on parallel search.

4.2. Dual-population evolution framework
Step 1: In each iteration, the population is first divided into two
subpopulations randomly with the same size.

Step 2: These two subpopulations are optimized using different
optimization algorithms. DE is used for one group for maintaining
the population diversity. The other group uses the GSK algorithm
to boost the convergence.

Step 3: At the later stage, the two groups of generated offspring
individuals are compared with their respective parent individuals
to compete the opportunity into the next iteration.

Step 4: Finally, a new population is formed by combing the
fittest members of these two subpopulations.

Compared with the basic DE and GSK, the proposed GSK-DE
does not increase the overall computational complexity signifi-
cantly. For the basic DE and GSK, the fitness of each individual is
calculated once in each iteration and the corresponding complex-
ity is O(D). Therefore, the complexity of all individuals in each it-
eration is O(NP · D) and the total complexity is O(GEN · NP · D). For
the proposed GSK-DE, the additional complexity is coming from
the population partition and its complexity is O(NP). Hence, the
total complexity of GSK-DE is O(GEN · NP · (D + 1)), which is com-
parable to that of GSK and DE.

Algorithm 3 shows the pseudo-code of GSK-DE and Fig. 2 shows
the flowchart of GSK-DE. It can be seen that GSK-DE employs a
dual-population evolution framework to hybridize both GSK and
DE harmoniously. In this way, the consistency of evolution is en-
sured. Moreover, it can improve the efficiency based on paral-
lel search, thus balancing the exploitation and exploration effec-
tively.

5. Case Studies and Results
GSK-DE is applied to six ED problems with different characteris-
tics. The first case (case 1) contains 15 units. The second case (case
2) contains 38 units. The third case (case 3) contains 40 units. The
fourth case (case 4) triples case 3 to a system with 120 units. The
fifth case (case 5) contains 110 units, which is a highly complex
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Table 4: Simulation results ($/h) for case 3.

Algorithm Minimum Maximum Average
Standard
deviation

Average CPU
time (s)

TSARGA (Subbaraj et al., 2011) 121 463.07 124 296.54 122 928.31 NA NA
NCS (Ciornei & Kyriakides, 2011) 121 430 121 645 121 525 35.758 NA
DEC-SQP (Coelho & Mariani, 2006) 121 741.98 NA 122 295.13 NA NA
GA-PS-SQP (Alsumait et al., 2010) 121 458.14 NA 122 039 NA NA
QPSO (Meng et al., 2009) 121 448.21 NA 122 225.07 NA NA
FAPSO-NM (Niknam, 2010) 121 418.3 121 419.8 121 418.803 NA NA
CCPSO (Park et al., 2009) 121 412.5362 121 534.4934 121 454.3296 32.4898 NA
aBBOmDE (Lohokare et al., 2012) 121 414.8734 121 568.3254 121 487.8532 NA NA
IHSWM (Pandi et al., 2011) 121 416.2652 121 855.5521 121 553.4208 90.1271 NA
HMAPSO (Kumar et al., 2011) 121 412.57 121 415.78 121 413.3879 NA NA
SQP-CLPSO (Wang et al., 2010) 121 515.8 121 820.4 121 677.2 62.8009 NA
NPSO (Tsai & Yen, 2011) 121 855.114 NA NA NA NA
IFEP (Sinha et al., 2003) 122 624.35 125 740.63 123 382 NA NA
EPUSPSO (Wu et al., 2016) 122 897.69 123 121.78 NA NA NA
RN-MAPSO (Tang et al., 2012) 122 402.28 123 256.18 122 654.53 NA NA
THS (Al-Betar et al., 2016) 121 425.15 NA 121 528.65 50.48 NA
CTLBO (He et al., 2015) 121 553.83 122 116.18 121 790.23 150 NA
CSO (Guo & Xiong, 2017) 121 467.40 121 748.20 121 550.16 59.39 NA
ICSO (Guo & Xiong, 2017) 121 423.03 121 529.29 121 469.25 31.99 NA
ABC 121 418.1073 121 516.3408 121 457.1952 29.5663 4.0896
BBO 121 540.4482 122 207.8294 121 719.2843 116.1870 6.9617
CLPSO 121 462.9499 121 639.6798 121 537.1507 34.3218 12.3080
DE-WOA 121 421.2417 121 878.1390 121 530.7721 78.7937 6.0436
IJAYA 121 420.9110 121 756.4038 121 562.1977 94.8717 4.4808
PSO 121 603.9138 122 035.0364 121 784.9532 105.5785 4.0662
PPSO 121 536.7732 123 353.8999 122 148.4971 388.7109 12.3938
QILDE 121 415.5596 121 785.7928 121 552.1303 75.1653 13.6618
SATLBO 121 489.2483 122 546.4144 122 027.3334 223.0096 10.4820
WOA 121 570.9713 123 218.3472 121 954.2960 314.3370 9.9919
CPA 121 973.8518 123 835.7823 122 763.9552 420.3704 9.3274
EHO 122 759.1348 125 432.4822 124 214.1911 697.6182 6.8156
EWA 122 508.0536 125 610.3693 123 616.1339 704.8387 7.4515
HGS 121 509.5770 122 629.4682 121 940.3440 238.8059 7.6705
HHO 121 734.2013 121 814.2720 121 790.0531 33.4326 7.9784
MBO 122 917.7923 123 459.3824 123 194.1727 142.8960 6.7350
MS 121 951.2208 124 078.8569 122 838.7590 475.3829 8.4685
RUN 122 739.6918 125 664.0636 124 068.4510 712.7100 6.9118
SMA 121 443.1512 121 522.2280 121 448.9615 36.3049 7.5212
DE 121 420.8933 121 587.3117 121 479.7156 42.8857 4.0309
GSK 121 421.1734 121 605.7015 121 481.4039 53.8158 4.6404
GSK-DE 121 412.5346 121 506.6590 121 451.1886 28.1149 7.0656

system. The last case (case 6) expands case 5 three times to a sys-
tem with 330 units. For these six cases, Table 1 shows the peer
compared algorithms. Fifty separate experiments have been con-
ducted for them. For the 40-unit system, the maximum number
of function evaluations (Max_FEs) is set to D∗10000, for the 120-
unit system, the Max_FEs is set to D∗5000, and for the other three
systems, the Max_FEs is set to D∗1000. All the numerical studies
were conducted on a 2.3-GHz i7 PC with 8 GB of RAM in MATLAB
R2018b.

5.1. Simulation results
5.1.1. Case 1: 15-unit system
This case consists of 15 generators considering ramp rate limits,
POZ, and transmission network losses (Liu et al., 2022). Figure 3
shows the convergence curves. Figure 4 depicts the detailed dis-
tribution of the total fuel costs of GSK, DE, and GSK-DE over 50
independent trials. Table S-1 in the supplemental file gives the
best solution produced by GSK-DE. Table 2 shows the fuel cost in-
formation for involved algorithms.

5.1.2. Case 2: 38-unit system
This is a conventional ED (Coelho & Mariani, 2006). On the one
hand, as indicated in Table 3, GSK-DE is compared to those
achieved by the methods listed in Table 1. On the other hand,
the reported results of some advanced algorithms are also used
to compare with GSK-DE. Figure 5 shows the convergence curves.
Figure 6 depicts the detailed distribution of the total generation
costs of GSK, DE, and GSK-DE over 50 independent trials. Table
S-2 in the supplemental file gives the best solution produced by
GSK-DE.

5.1.3. Case 3: 40-unit system
The valve-point effects are crucial for this complex system con-
taining a large number of local minima. The system’s specifics can
be found in Sinha et al. (2003). Table 4 shows the fuel cost informa-
tion for involved algorithms. Figure 7 depicts the cost convergence
curves. Figure 8 depicts the detailed distribution of the total gen-
eration costs of GSK, DE, and GSK-DE over 50 independent trials.
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Figure 7: Convergence curves for case 3.

Figure 8: Fuel cost distribution for case 3.

Table S-3 in the supplemental file shows the best solution pro-
duced by GSK-DE.

5.1.4. Case 4: 120-unit system
This system is a threefold extension of case 3. The load require-
ment of this system is 31 500 MW. The objective function of case
4 considers the valve-point effects. This case’s solution space
is broader and more complicated, placing particularly high de-
mands on the search capability of the solution method to get rid
of the adsorption of local optimal points to locate the global op-
timal region. Table 5 shows the data of fuel cost. Figure 9 depicts
the convergence curves, while Fig. 10 depicts the fuel cost distri-
bution. Table S-4 in the supplemental file shows the best solution
found by GSK-DE.

5.1.5. Case 5: 110-unit system
As a traditional ED, the specific details are available in Vish-
wakarma and Dubey (2012). Table 6 shows the fuel cost data. Fig-
ure 11 depicts the convergence curves, while Fig. 12 depicts the
distribution of fuel costs. Table S-5 in the supplemental file shows
the best solution found by GSK-DE.

5.1.6. Case 6: 330-unit system
By tripling the 110-unit system, the final case comprises 330 units.
Table 7 shows the fuel cost data. Figures 13 and 14, respectively,

depict the convergence curves and the distribution of fuel costs.
Table S-6 in the supplemental file shows the best solution pro-
duced by GSK-DE.

5.2. Comparisons
5.2.1. Solution quality
Overall, the suggested GSK-DE method shows better results as
shown in Tables 2–7.

For case 1, although its fuel cost characteristics are quadratic,
its solution space is discontinuous due to the restrictions of the
POZ. Even so, GSK-DE shows an encouraging performance, obtain-
ing the best cost that is 32 692.3964 $/h. As can be seen from Ta-
ble 2, all the minimum, maximum, and average costs obtained by
GSK-DE are minimal compared to other methods.

For case 2, it is a typical single-peaked (i.e., unimodal) multicon-
straint optimization problem. The solution method is required to
have a good local search capability to improve the search accu-
racy. In Table 3, it is shown that GSK-DE demonstrates its superi-
ority in the ability to search the solution space locally.

For cases 3 and 4, the valve-point effects make systems’ lo-
cal minima massive. To solve this difficult situation, the ED so-
lution methods need to be highly explorative. Tables 4 and 5 show
that GSK-DE achieves the minimum costs of 121 412.5346 and
364 277.7156 $/h, respectively. They are better than or highly com-
petitive to the other peer algorithms. Compared with the original
GSK and DE, the optimization performance of GSK-DE is superior,
which indicates that the algorithm can effectively get rid of the
adsorption of local minima and has stronger global search ability.
This demonstrates that the designed enhancements successfully
overcome the inadequacies of the GSK and DE algorithms. The
comparison of the optimization results with some previous liter-
ature also further demonstrates the superiority of GSK-DE.

For cases 5 and 6, their mathematical models are larger scale
single-peaked multiconstraint optimization problems. They are
difficult for many solution methods because their solution spaces
are broader and it is hard to achieve accurate enough solutions
for them. Even so, as can be seen from Tables 6 and 7, GSK-DE
shows an encouraging performance to obtain the optimal fuel
costs of 197 988.1765 and 593 965.9437 $/h, respectively, superior
to the other methods consistently. Additionally, other fuel cost
indexes provided by GSK-DE are considerably highly competitive
as well compared to other algorithms. Moreover, GSK-DE is much
better than the original GSK and DE, reflecting that GSK-DE has
better local search capability compared to the original GSK and
DE. The comparison with some previous optimization results in
the literature also further verifies the validity of GSK-DE.

From the above comparative analysis, obviously, GSK-DE suc-
cessfully equilibrates local and global optimization capabilities
and is highly competitive with other peer algorithms, stressing its
ability in improving greater solution quality.

5.2.2. Convergence
The convergence speed and the accuracy of the convergence curve
are two important indicators to examine the effectiveness of an
algorithm. Figures 3, 5, 7, 9, 11, and 13 provide the convergence
curves of GSK-DE and the other involved algorithms. As shown
in Figs. 5, 11, and 13, it is more uniformly and comprehensively
for the GSK-DE algorithm to exploit the solutions with an over-
all faster speed. As shown in Figs. 3, 7, and 9, the GSK-DE algo-
rithm is more capable of skipping local extrema and can reach
better points. Moreover, in the beginning, although some algo-
rithms such as QILDE, PPSO, IJAYA, HHO, and WOA converge faster
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Table 5: Simulation results ($/h) for case 4.

Algorithm Minimum Maximum Average
Standard
deviation

Average CPU
time (s)

CSO (Guo & Xiong, 2017) 364 503.37 365 130.43 364 649.05 131.33 NA
ICSO (Guo & Xiong, 2017) 364 388.17 364 747.08 364 575.56 92.69 NA
ABC 364 408.7275 364 672.2249 364 540.8825 67.2764 12.1653
BBO 364 991.6232 366 564.9237 365 405.5925 298.4494 35.6322
CLPSO 365 336.9212 365 830.1879 365 600.6670 102.9413 39.7063
DE-WOA 364 606.1018 365 584.6349 364 956.5202 201.1553 31.5502
IJAYA 364 497.5480 366 446.2050 365 135.5332 422.8091 15.7579
PSO 370 850.1989 376 531.6036 372 560.5972 1029.7200 28.9983
PPSO 365 144.3749 369 353.2516 367 143.6853 780.6499 62.8449
QILDE 364 533.0035 365 464.7403 364 989.6659 256.4785 33.0904
SATLBO 366 272.4874 372 354.8907 368 222.7421 1273.4160 72.5774
WOA 364 690.2144 366 376.8266 365 363.3156 361.2936 67.1191
CPA 386 874.8069 396 255.9785 389 924.0067 1830.5308 38.4326
EHO 381 891.6190 383 948.7903 383 221.7287 428.9756 36.5271
EWA 376 804.4041 381 546.4833 379 300.2626 846.8604 43.0291
HGS 364 724.8655 365 962.5821 364 845.7630 208.5128 33.5762
HHO 373 567.3347 382 407.1716 374 095.9787 1208.1994 31.5833
MBO 376 804.4041 381 546.4833 379 300.2626 846.8604 41.2990
MS 383 632.6185 386 779.2156 385 676.2605 616.5349 38.3902
RUN 381 497.1444 387 000.0227 384 491.8464 1184.0562 37.8294
SMA 365 068.3306 365 208.3205 365 099.5326 35.4442 42.6249
DE 364 346.9152 364 544.1285 364 441.4859 44.8628 17.2175
GSK 364 414.9566 365 554.4175 364 882.4932 302.5617 18.0328
GSK-DE 364 277.7156 364 590.8126 364 405.8217 62.2550 23.7193

Figure 9: Convergence curves for case 4.

Figure 10: Fuel cost distribution for case 4.

than GSK-DE slightly, they quickly fall into local search and are
surpassed by GSK-DE. As for DE and GSK, although their conver-
gence trends are similar to that of GSK-DE, they converge more
slowly. In a word, GSK-DE is able to obtain the optimal solution
faster and has better convergence characteristics.

5.2.3. Robustness
This is a significant metric for evaluating consistency of meta-
heuristic algorithms. The standard deviation values generated
by GSK-DE are 1.4927E-04, 0.0903, 28.1149, 62.2550, 0.000117,
and 0.3071, respectively. They are lower than other peer algo-
rithms and most of the reported ED solutions, demonstrating
that the GSK-DE algorithm has greater robustness. Moreover,
Figs. 4, 6, 8, 10, 12, and 14 show that GSK-DE also has superior
robustness.

In addition, we use an error percentage metric (Mokarram et
al., 2019) defined below to further illustrate the robustness of the
proposed GSK-DE more closely.

Error% =
∣∣final value − best value

∣∣
best value

× 100% (15)

The values of error% for 50 independent runs of case 1 are
shown in Fig. S-1 in the supplementary file. It shows the great ro-
bustness of GSK-DE, as the error% is smaller than 0.000000025%.
Similarly, its outstanding robustness in other cases is also shown
in Figs. S-2 to S-6 in the supplementary file.

Furthermore, we also draw the box plots of solution distribu-
tion of GSK, DE, and GSK-DE in Figs. S-7 to S-12 in the supplemen-
tary file to compare their robustness more visually. Apparently,
the average value of the results achieved by GSK-DE (see the red
lines in Figs. S-7 to S-12 in the supplementary file) is smaller than
those provided by GSK and DE. For the 38-unit system, the ob-
tained minimum, average, maximum, and standard deviation of
GSK-DE are better than the original GSK and DE algorithms. For
the 15-unit, 40-unit, and 120-unit systems, GSK-DE is the best, DE
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Table 6: Simulation results ($/h) for case 5.

Algorithm Minimum Maximum Average
Standard
deviation

Average CPU
time (s)

SAB (Vishwakarma & Dubey, 2012) 206 912.91 NA 207 764.73 NA NA
SAF (Vishwakarma & Dubey, 2012) 207 380.52 NA 207 813.37 NA NA
SA (Vishwakarma & Dubey, 2012) 198 352.64 NA 201 595.19 NA NA
ORCCRO (Bhattacharjee et al., 2014) 198 016.29 198 016.89 198 016.32 NA NA
CSO (Guo & Xiong, 2017) 198 023.98 198 053.82 198 036.74 7.04 NA
ICSO (Guo & Xiong, 2017) 197 995.21 198 000.95 197 995.21 2.01 NA
ABC 197 997.3271 198 026.6394 198 010.6699 6.4941 1.9911
BBO 198 340.4729 198 982.9466 198 564.0391 118.8951 5.5624
CLPSO 198 129.5661 198 236.9431 198 194.4675 20.8834 4.7928
DE-WOA 198 047.1180 198 139.0507 198 091.9985 23.4335 4.6651
IJAYA 198 054.2047 198 143.6200 198 093.4490 15.9289 2.9727
PSO 201 905.6200 209 791.5546 204 302.4878 1360.0922 3.0141
PPSO 197 989.8482 198 006.3411 197 996.5654 4.2178 5.2909
QILDE 197 992.0676 197 997.8835 197 994.1675 1.1097 5.0795
SATLBO 197 988.2243 198 033.1583 197 995.0874 8.9412 11.6996
WOA 198 076.7834 198 309.0437 198 177.7725 55.4238 10.3354
CPA 202 262.5564 206 581.3918 204 144.6012 1121.1992 5.1781
EHO 210 272.7513 214 303.8607 212 878.3043 742.8523 4.9144
EWA 199 061.7317 200 461.6279 199 607.6286 355.6936 3.4511
HGS 198 092.1899 199 442.8731 198 773.6190 336.2303 5.6740
HHO 198 067.1479 198 148.2223 198 072.2729 11.2656 4.9276
MBO 202 708.5163 204 339.7074 203 520.0706 375.4799 5.4713
MS 202 133.0647 207 127.0233 204 008.8140 977.0969 4.7808
RUN 198 890.3281 204 879.7653 200 464.9064 1142.2070 5.5744
SMA 197 992.9751 198 095.3547 198 007.1438 20.0246 3.8547
DE 198 056.9931 198 140.3893 198 103.9231 20.8581 3.1076
GSK 197 990.8224 197 992.0896 197 991.3532 0.3043 3.0012
GSK-DE 197 988.1765 197 988.1769 197 988.1767 0.000117 2.8828

Figure 11: Convergence curves for case 5.

is the second, and GSK is the worst. For the 110-unit and 330-unit
systems, GSK-DE is the best, GSK is second, and DE is the worst.
Besides, the results obtained by GSK-DE in 50 independent runs
are more compact than those of GSK and DE (see the blue boxes
in Figs. S-7 to S-12 in the supplementary file). This presents again
that GSK-DE is considerably superior to GSK and DE in achieving
higher quality solutions.

5.2.4. Computation time
Tables 2–7 present the average CPU time results for the proposed
algorithm and other compared algorithms. The average CPU time

Figure 12: Fuel cost distribution for case 5.

values of GSK-DE are 0.3969, 0.4405, 7.0656, 23.7193, 2.8828, and
33.7255 s, respectively, for these six cases. On the whole, GSK-DE
consumes slightly more time than GSK and DE, but the difference
is not significant. This is mainly because the computational com-
plexity of GSK-DE is comparable to that of GSK and DE, as shown
in the analysis of Subsection 4.2. In addition, the computation
speed of GSK-DE is highly competitive compared with other al-
gorithms. In fact, the computation speed of GSK-DE is fully capa-
ble of meeting the practical needs of the power system, since the
actual system generally requires only 15 min for a single compu-
tation (Xiong & Shi, 2018).
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Table 7: Simulation results ($/h) for case 6.

Algorithm Minimum Maximum Average
Standard
deviation

Average CPU
time (s)

CSO (Guo & Xiong, 2017) 594 212.72 594 302.51 594 258.67 27.82 NA
ICSO (Guo & Xiong, 2017) 593 992.51 594 022.00 594 007.06 7.14 NA
ABC 594 055.2351 594 140.5939 594 090.1884 18.9323 14.0444
BBO 597 338.7332 599 605.4973 598 391.3135 497.2178 54.4164
CLPSO 594 475.1565 594 662.3522 594 571.3372 38.2978 34.6367
DE-WOA 594 786.7548 595 464.1029 595 080.6109 158.0850 60.8164
IJAYA 594 296.9131 594 477.6573 594 368.8508 33.6956 26.0707
PSO 618 546.2544 644 331.2420 629 262.1670 5732.5116 34.3193
PPSO 593 983.1759 594 037.8721 593 999.3795 12.5244 49.2944
QILDE 594 003.6041 594 021.4598 594 010.7590 3.6309 56.8853
SATLBO 593 981.8074 594 451.1088 594 073.9685 95.0426 168.7618
WOA 594 375.3398 594 765.5284 594 594.2647 87.6611 136.1464
CPA 620 023.4754 649 682.0042 628 627.2683 6468.0730 51.9682
EHO 660 761.8463 670 895.6998 665 805.6153 2251.3015 44.9668
EWA 620 068.2582 639 510.1738 627 298.7521 4323.0321 45.2550
HGS 602 162.7923 605 797.2165 604 067.8779 844.1009 50.8761
HHO 594 156.7112 594 378.0305 594 171.9674 33.7799 36.8185
MBO 629 030.3297 633 192.7696 631 346.5197 936.5686 47.4090
MS 595 871.2843 601 496.1260 596 663.6509 1098.4535 53.7810
RUN 604 438.5492 648 148.0540 613 284.5219 5877.7215 42.4866
SMA 594 235.3988 595 442.7436 594 486.2273 257.3242 53.0160
DE 594 275.6698 594 634.4288 594 407.5995 61.5660 27.5203
GSK 593 968.2729 593 969.5760 593 968.9423 0.3325 24.7301
GSK-DE 593 965.9437 593 967.0437 593 966.5379 0.3071 33.7255

Table 8: P values and Wilcoxon’s rank sum test result.

GSK-DE vs. 15-unit 38-unit 40-unit 120-unit 110-unit 330-unit

DE 2.0438E-07 + 7.9022E-08 + 4.7617E-05 + 1.1106E-05 + 3.1193E-15 + 3.4298E-17 +
GSK 2.9711E-03 + 2.1285E-02 + 7.4929E-13 + 3.2857E-33 + 7.5657E-04 + 1.6921E-02 +
ABC 3.8966E-18 + 1.4074E-07 + 4.8770E-01 + 9.1689E-08 + 1.6491E-09 + 3.5229E-12 +
BBO 2.1073E-03 + 1.5122E-17 + 2.3033E-19 + 9.2046E-20 + 3.2505E-20 + 1.1983E-24 +
CLPSO 7.1072E-06 + 2.1148E-18 + 1.2147E-20 + 1.4973E-26 + 4.2697E-20 + 1.0739E-21 +
DE-WOA 1.9512E-05 + 3.1743E-01 + 1.3627E-10 + 2.3381E-22 + 2.3127E-14 + 7.3102E-21 +
IJAYA 8.7968E-07 + 1.1672E-06 + 4.4879E-12 + 2.7828E-13 + 2.7893E-09 + 1.5003E-10 +
PSO 5.5962E-18 + 4.4248E-24 + 4.9846E-26 + 8.9772E-32 + 6.9694E-27 + 1.9481E-29 +
PPSO 1.8529E-12 + 6.1386E-01 ≈ 5.2507E-26 + 1.4584E-26 + 4.9987E-02 + 2.4372E-03 +
QILDE 8.6915E-11 + 1.6586E-02 + 3.2145E-01 + 4.1167E-12 + 2.0870E-01 ≈ 3.8639E-02 +
SATLBO 2.0752E-05 + 4.5394E-06 + 2.4468E-21 + 4.5498E-28 + 9.3930E-05 + 4.7418E-11 +
WOA 8.7378E-04 + 2.0988E-09 + 4.5704E-20 + 6.8101E-17 + 4.0704E-13 + 1.7296E-15 +
CPA 8.5761E-14 + 4.1394E-18 + 3.8966E-18 + 4.0162E-18 + 4.1394E-18 + 4.0162E-18 +
EHO 1.8631E-07 + 4.0152E-18 + 4.2663E-18 + 4.2663E-18 + 4.3971E-18 + 4.0162E-18 +
EWA 4.0162E-18 + 4.0159E-18 + 3.8966E-18 + 4.1394E-18 + 4.0162E-18 + 4.0162E-18 +
HGS 3.7589E-18 + 7.3431E-17 + 2.8380E-15 + 3.8966E-18 + 3.2876E-08 + 3.8966E-18 +
HHO 4.9610E-18 + 3.7589E-18 + 4.0751E-08 + 3.8966E-18 + 8.4462E-03 + 6.0843E-07 +
MBO 3.8966E-18 + 3.8966E-18 + 6.7024E-18 + 4.1394E-18 + 4.0162E-18 + 4.3971E-18 +
MS 4.0161E-18 + 5.9889E-17 + 6.5361E-17 + 3.8966E-18 + 3.8966E-18 + 4.0162E-18 +
RUN 1.8331E-07 + 7.3431E-17 + 7.3338E-18 + 4.0162E-18 + 7.6014E-15 + 8.5191E-18 +
SMA 4.2663E-18 + 7.3431E-18 + 6.5041E-18 + 7.3431E-17 + 4.5645E-13 + 4.6042E-17 +

5.2.5. Statistical test
We perform the Wilcoxon’s rank sum test at a 5% confidence level
to test the performance of GSK-DE. It is helpful to confirm the
significance of the difference between the results of GSK-DE and
other peer algorithms in Table 1.

Table 8 gives the P values and the significant differences. The
symbol “+” indicates that GSK-DE produces a remarkably supe-
rior result than the compared algorithms as the P value is smaller
than 0.05. The symbol “≈” indicates no statistical difference be-

tween two algorithms. Clearly, GSK-DE has an observably statisti-
cal advantage over most algorithms in most cases. To be specific,
in case 2 and case 5, PPSO and QILDE achieve statistically com-
parable results compared with GSK-DE, respectively. However, in
the other three cases, GSK-DE has greater advantages. It beats all
the compared algorithms consistently. These results clearly show
again that the GSK-DE algorithm can obtain higher quality solu-
tions and the improvement in its performance is statistically sig-
nificant.
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Figure 13: Convergence curves for case 6.

Figure 14: Fuel cost distribution for case 6.

5.3. Effect of population size on GSK-DE
Determining an appropriate population size NP is an important
part of solving optimization problems using metaheuristics. An
appropriate NP is helpful in improving the effectiveness of an al-
gorithm. To assess the impact of NP on GSK-DE, a simulation is
conducted on the 120-unit system (case 4). The value is set from
30 to 300, as presented in Fig. 15. Figure 15 shows the box plots
of fuel cost distribution of 50 independent trials versus the popu-
lation size. The best solutions related to each population size are
presented in Table S-7 in the supplementary file.

Obviously, a small or a large NP is detrimental to the effective-
ness of GSK-DE. The reason could be that although a large NP
can enhance the population diversity, it decreases the likelihood
of finding more promising solutions, which could lead to ineffi-
ciencies, especially for multipeaked problems. On the other hand,
a smaller NP can result in premature solution and failure to find
the optimal solution. Hence, the use of a medium size is highly
suggested.

6. Conclusions and Future Works
As we know, no one method can achieve satisfactory solutions for
all optimization problems. Although GSK and DE are not suffi-
cient enough to obtain optimal solutions for complex ED prob-
lems, a reasonable combination of them can lead to powerful

Figure 15: Influence of NP on GSK-DE for the 120-unit system.

performance. This work presents an enhanced algorithm namely
GSK-DE by hybridizing DE and GSK based on a dual-population
evolutionary framework for solving large-scale ED problems. The
simulation results show that

(1) GSK-DE can quickly obtain better solutions for these cases,
especially for more complex and higher dimensional prob-
lems. The results also show that GSK-DE is better than or
comparable to many previously proposed solutions in both
robustness and quality.

(2) Comparing the standard deviation values in these six cases,
the standard deviation without the valve-point effects is
much smaller than the standard deviation with the valve-
point effects. This is because the valve-point effects make
the model highly multipeaked, which causes the solution
method easily falling into different local extremes in differ-
ent trials.

(3) Moreover, a medium-sized population is strongly suggested
for GSK-DE.

In summary, GSK-DE achieves more optimal solutions for dif-
ferent complex ED problems. In the near future, we will focus on
solving various ED problems containing renewable energy sources
and extending the proposed GSK-DE to solve them.

Supplementary data
Supplementary data is available at JCDENG Journal online.

Acknowledgments
The authors would like to thank the editor and the reviewers for
their constructive comments. This research was funded by the
Natural Science Foundation of Guizhou Province (QiankeheBasic-
ZK[2022]General121), the National Natural Science Foundation
of China (52167007), the Innovation Foundation of Guizhou Uni-
versity Institute of Engineering Investigation & Design Co., Ltd.
(GuiDaKanCha[2022]03), the Modern Power System and Its Digi-
tal Technology Engineering Research Center (QianJiaoJi[2022]043),
and the Open Project Program of Fujian Provincial Key Laboratory
of Intelligent Identification and Control of Complex Dynamic Sys-
tem (2022A0008).

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/2/615/7081313 by guest on 22 January 2024

https://academic.oup.com/jcde/article-lookup/doi/10.1093/jcde/qwad008#supplementary-data


Journal of Computational Design and Engineering, 2023, 10(2), 615–631 | 629

Conflict of interest statement
The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

References
Agrawal, P., Ganesh, T., & Mohamed, A. W. (2022). Solving knap-

sack problems using a binary gaining sharing knowledge-based
optimization algorithm. Complex and Intelligent Systems, 8, 43–63.
https://doi.org/10.1007/s40747-021-00351-8.

Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen,
H. (2021). RUN beyond the metaphor: An efficient optimiza-
tion algorithm based on Runge Kutta method. Expert Systems
with Applications, 181, 115079. https://doi.org/10.1016/j.eswa.202
1.115079.

Al-Betar, M. A., Awadallah, M. A., Khader, A. T., & Bolaji, A. L. A. (2016).
Tournament-based harmony search algorithm for non-convex
economic load dispatch problem. Applied Soft Computing, 47, 449–
459. https://doi.org/10.1016/j.asoc.2016.05.034.

Alsumait, J. S., Sykulski, J. K., & Al-Othman, A. K. (2010). A hybrid GA–
PS–SQP method to solve power system valve-point economic dis-
patch problems. Applied Energy, 87, 1773–1781. https://doi.org/10
.1016/j.apenergy.2009.10.007.

Azzam, M., Selvan, S., Lefèvre, A., & Absil, P. A. (2014). Mixed integer
programming to globally minimize the economic load dispatch
problem with valve-point effect. preprint arXiv:1407.4261v1. https:
//doi.org/10.48550/arXiv.1407.4261.

Bhattacharjee, K., Bhattacharya, A., & Dey, S. H. (2014). Oppositional
real coded chemical reaction optimization for different economic
dispatch problems. International Journal of Electrical Power & Energy
Systems, 55, 378–391. https://doi.org/10.1016/j.ijepes.2013.09.033.

Chansareewittaya, S. (2017). Hybrid BA/TS for economic dispatch
considering the generator constraint. In 2017 International Confer-
ence on Digital Arts, Media and Technology (ICDAMT)(pp. 115–119).
IEEE. https://doi.org/10.1109/ICDAMT.2017.7904946.

Chaturvedi, K. T., Pandit, M., & Srivastava, L. (2009). Particle swarm
optimization with time varying acceleration coefficients for non-
convex economic power dispatch. International Journal of Electrical
Power & Energy Systems, 31, 249–257. https://doi.org/10.1016/j.ijep
es.2009.01.010.

Chen, C., Zou, D., & Li, C. (2020). Improved Jaya algorithm for eco-
nomic dispatch considering valve-point effect and multi-fuel op-
tions. IEEE Access, 8, 84981–84995. https://doi.org/10.1109/ACCE
SS.2020.2992616.

Chen, J., & Marrani, I. H. (2020). An efficient new hybrid ICA-PSO ap-
proach for solving large scale non-convex multi area economic
dispatch problems. Journal of Electrical Engineering & Technology, 15,
1127–1145. https://doi.org/10.1007/s42835-020-00416-7.

Chiang, C. L. (2007). Genetic-based algorithm for power economic
load dispatch. IET Generation, Transmission & Distribution, 1, 261–
269. https://doi.org/10.1049/iet-gtd:20060130.

Ciornei, I., & Kyriakides, E. (2011). A GA-API solution for the economic
dispatch of generation in power system operation. IEEE Transac-
tions on Power Systems, 27, 233–242. https://doi.org/10.1109/TPWR
S.2011.2168833.

Coelho, L. S., & Mariani, V. C. (2006). Combining of chaotic differential
evolution and quadratic programming for economic dispatch op-
timization with valve-point effect. IEEE Transactions on Power Sys-
tems, 21, 989–996. https://doi.org/10.1109/TPWRS.2006.873410.

Fesanghary, M., & Ardehali, M. M. (2009). A novel meta-heuristic opti-
mization methodology for solving various types of economic dis-

patch problem. Energy, 34, 757–766. https://doi.org/10.1016/j.ener
gy.2009.02.007.

Gao, D., Wang, G. G., & Pedrycz, W. (2020). Solving fuzzy job-shop
scheduling problem using DE algorithm improved by a selec-
tion mechanism. IEEE Transactions on Fuzzy Systems, 28, 3265–3275.
https://doi.org/10.1109/TFUZZ.2020.3003506.

Ghasemi, M., Akbari, E., Rahimnejad, A., Razavi, S. E., Ghavidel, S., &
Li, L. (2019). Phasor particle swarm optimization: A simple and
efficient variant of PSO. Soft Computing, 23, 9701–9718. https://do
i.org/10.1007/s00500-018-3536-8.

Guo, Y., & Xiong, G. (2017). Large scale power system economic dis-
patch based on an improved competitive swarm optimizer. Power
System Protection and Control, 45, 97–103. https://doi.org/10.7667/
PSPC161194.

Hassan, S. A., Ayman, Y. M., Alnowibet, K., Agrawal, P., & Mohamed, A.
W. (2020). Stochastic travelling advisor problem simulation with
a case study: A novel binary gaining–sharing knowledge-based
optimization algorithm. Complexity, 2020, 6692978. https://doi.or
g/10.1155/2020/6692978.

He, X., Rao, Y., & Huang, J. (2015). A novel algorithm for economic
load dispatch of power systems. Neurocomputing, 171, 1454–1461.
https://doi.org/10.1016/j.neucom.2015.07.107.

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H.
(2019). Harris hawks optimization: Algorithm and applications.
Future Generation Computer Systems, 97, 849–872. https://doi.org/
10.1016/j.future.2019.02.028.

Hindi, K. S., Ghani, Ab, & M., R. (1991). Dynamic economic dispatch
for large scale power systems: A Lagrangian relaxation approach.
International Journal of Electrical Power & Energy Systems, 13, 51–56.
https://doi.org/10.1016/0142-0615(91)90018-Q.

Jabr, R. A., Coonick, A. H., & Cory, B. J. (2000). A homogeneous linear
programming algorithm for the security constrained economic
dispatch problem. IEEE Transactions on Power Systems, 15, 930–936.
https://doi.org/10.1109/59.871715.

Karaboga, D. (2010). Artificial bee colony algorithm. Scholarpedia, 5,
6915. https://doi.org/10.4249/scholarpedia.6915.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
In Proceedings of ICNN’95—International Conference on Neural Net-
works(Vol. 4, pp. 1942–1948). IEEE. https://doi.org/10.1109/ICNN.1
995.488968.

Khamsawang, S., & Jiriwibhakorn, S. (2010). DSPSO–TSA for economic
dispatch problem with nonsmooth and noncontinuous cost func-
tions. Energy Conversion and Management, 51, 365–375. https://doi.
org/10.1016/j.enconman.2009.09.034.

Kumar, R., Sharma, D., & Sadu, A. (2011). A hybrid multi-agent based
particle swarm optimization algorithm for economic power dis-
patch. International Journal of Electrical Power & Energy Systems, 33,
115–123. https://doi.org/10.1016/j.ijepes.2010.06.021.

Li, C., Xiong, G., Fu, X., Mohamed, A. W., Yuan, X., Al-Betar, M. A., &
Suganthan, P. N. (2022). Takagi–Sugeno fuzzy based power system
fault section diagnosis models via genetic learning adaptive GSK
algorithm. Knowledge-Based Systems, 255, 109773. https://doi.org/
10.1016/j.knosys.2022.109773.

Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime
mould algorithm: A new method for stochastic optimization. Fu-
ture Generation Computer Systems, 111, 300–323. https://doi.org/10
.1016/j.future.2020.03.055.

Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehen-
sive learning particle swarm optimizer for global optimization of
multimodal functions. IEEE Transactions on Evolutionary Computa-
tion, 10, 281–295. https://doi.org/10.1109/TEVC.2005.857610.

Liu, T., Xiong, G., Mohamed, A. W., & Suganthan, P. N. (2022).
Opposition-mutual learning differential evolution with hy-

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/2/615/7081313 by guest on 22 January 2024

https://doi.org/10.1007/s40747-021-00351-8
https://doi.org/10.1016/j.eswa.2021.115079
https://doi.org/10.1016/j.asoc.2016.05.034
https://doi.org/10.1016/j.apenergy.2009.10.007
https://doi.org/10.48550/arXiv.1407.4261
https://doi.org/10.1016/j.ijepes.2013.09.033
https://doi.org/10.1109/ICDAMT.2017.7904946
https://doi.org/10.1016/j.ijepes.2009.01.010
https://doi.org/10.1109/ACCESS.2020.2992616
https://doi.org/10.1007/s42835-020-00416-7
https://doi.org/10.1049/iet-gtd:20060130
https://doi.org/10.1109/TPWRS.2011.2168833
https://doi.org/10.1109/TPWRS.2006.873410
https://doi.org/10.1016/j.energy.2009.02.007
https://doi.org/10.1109/TFUZZ.2020.3003506
https://doi.org/10.1007/s00500-018-3536-8
https://doi.org/10.7667/PSPC161194
https://doi.org/10.1155/2020/6692978
https://doi.org/10.1016/j.neucom.2015.07.107
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/0142-0615(91)90018-Q
https://doi.org/10.1109/59.871715
https://doi.org/10.4249/scholarpedia.6915
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.enconman.2009.09.034
https://doi.org/10.1016/j.ijepes.2010.06.021
https://doi.org/10.1016/j.knosys.2022.109773
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1109/TEVC.2005.857610


630 | Hybrid metaheuristic method for economic dispatch problems

brid mutation strategy for large-scale economic load dispatc
h problems with valve-point effects and multi-fuel options. In-
formation Sciences, 609, 1721–1745. https://doi.org/10.1016/j.ins.20
22.07.148.

Lohokare, M. R., Panigrahi, B. K., Pattnaik, S. S., Devi, S., & Mohapatra,
A. (2012). Neighborhood search-driven accelerated biogeography-
based optimization for optimal load dispatch. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42,
641–652. https://doi.org/10.1109/TSMCC.2012.2190401.

Meng, K., Wang, H. G., Dong, Z., & Wong, K. P. (2009). Quantum-
inspired particle swarm optimization for valve-point economic
load dispatch. IEEE Transactions on Power Systems, 25, 215–222.
https://doi.org/10.1109/TPWRS.2009.2030359.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Ad-
vances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j.
advengsoft.2016.01.008.

Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2020). Gaining–
sharing knowledge based algorithm for solving optimization
problems: A novel nature-inspired algorithm. International Journal
of Machine Learning and Cybernetics, 11, 1501–1529. https://doi.org/
10.1007/s13042-019-01053-x.

Mokarram, M. J., Niknam, T., Aghaei, J., Shafie-khah, M., & Catalao, J.
P. (2019). Hybrid optimization algorithm to solve the nonconvex
multiarea economic dispatch problem. IEEE Systems Journal, 13,
3400–3409. https://doi.org/10.1109/JSYST.2018.2889988.

Muralidharan, S., Srikrishna, K., & Subramanian, S. (2007). Self-
adaptive dynamic programming technique for economic power
dispatch. International Journal of Power and Energy Systems, 27, 340.
https://doi.org/10.2316/Journal.203.2007.4.203-3673.

Nanda, J., Hari, L., & Kothari, M. L. (1994). Economic emission load
dispatch with line flow constraints using a classical technique.
IEE Proceedings – Generation, Transmission and Distribution, 141, 1–
10. https://doi.org/10.1049/ip-gtd:19949770.

Niknam, T. (2010). A new fuzzy adaptive hybrid particle swarm opti-
mization algorithm for non-linear, non-smooth and non-convex
economic dispatch problem. Applied Energy, 87, 327–339. https:
//doi.org/10.1016/j.apenergy.2009.05.016.

Pandi, V. R., Panigrahi, B. K., Mohapatra, A., & Mallick, M. K. (2011).
Economic load dispatch solution by improved harmony search
with wavelet mutation. International Journal of Computational Sci-
ence and Engineering, 2, 122–131. https://doi.org/10.1504/IJCSE.20
11.041220.

Park, J. B., Jeong, Y. W., Shin, J. R., & Lee, K. Y. (2009). An improved
particle swarm optimization for nonconvex economic dispatch
problems. IEEE Transactions on Power Systems, 25, 156–166. https:
//doi.org/10.1109/TPWRS.2009.2030293.

Parouha, R. P., & Das, K. N. (2016). DPD: An intelligent parallel hy-
brid algorithm for economic load dispatch problems with various
practical constraints. Expert Systems with Applications, 63, 295–309.
https://doi.org/10.1016/j.eswa.2016.07.012.

Simon, D. (2008). Biogeography-based optimization. IEEE Transactions
on Evolutionary Computation, 12, 702–713. https://doi.org/10.1109/
TEVC.2008.919004.

Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003). Evolutionary
programming techniques for economic load dispatch. IEEE Trans-
actions on Evolutionary Computation, 7, 83–94. https://doi.org/10.1
109/TEVC.2002.806788.

Storn, R., & Price, K. (1997). Differential evolution – a simple and ef-
ficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, Berkeley, 11, 341–359. https://doi.org/
10.1023/A:1008202821328.

Subbaraj, P., Rengaraj, R., & Salivahanan, S. (2011). Enhancement of
self-adaptive real-coded genetic algorithm using Taguchi method

for economic dispatch problem. Applied Soft Computing, 11, 83–92.
https://doi.org/10.1016/j.asoc.2009.10.019.

Takeang, C., & Aurasopon, A. (2019). Multiple of hybrid lambda it-
eration and simulated annealing algorithm to solve economic
dispatch problem with ramp rate limit and prohibited operat-
ing zones. Journal of Electrical Engineering & Technology, 14, 111–120.
https://doi.org/10.1007/s42835-018-00001-z.

Tang, X., Zhou, H., Li, J., & Zhou, W. (2012). An economic load dispatch
method of power system based on multi-agent particle swarm
optimization algorithm. Power System Protection and Control, 10, 42–
47. https://doi.org/10.3969/j.issn.1674-3415.2012.10.008.

Tsai, M. T., & Yen, C. W. (2011). The influence of carbon dioxide trading
scheme on economic dispatch of generators. Applied Energy, 88,
4811–4816. https://doi.org/10.1016/j.apenergy.2011.06.025.

Tu, J., Chen, H., Wang, M., & Gandomi, A. H. (2021). The colony pre-
dation algorithm. Journal of Bionic Engineering, 18, 674–710. https:
//doi.org/10.1007/s42235-021-0050-y.

Victoire, T. A. A., & Jeyakumar, A. E. (2006). A tabu search based hybrid
optimization approach for a fuzzy modelled unit commitment
problem. Electric Power Systems Research, 76, 413–425. https://doi.
org/10.1016/j.epsr.2005.08.004.

Vishwakarma, K. K., & Dubey, H. M. (2012). Simulated annealing
based optimization for solving large scale economic load dis-
patch problems. International Journal of Engineering Research and
Technology, 1, 1–8. https://doi.org/10.48175/ijarsct-832.

Wang, G. G. (2018). Moth search algorithm: A bio-inspired meta-
heuristic algorithm for global optimization problems. Memetic
Computing, 10, 151–164. https://doi.org/10.1007/s12293-016-021
2-3.

Wang, G. G., Deb, S., & Coelho, L. D. S. (2015). Elephant herding opti-
mization. In 2015 3rd International Symposium on Computational and
Business Intelligence (ISCBI)(pp. 1–5). IEEE. https://doi.org/10.1109/
ISCBI.2015.8.

Wang, G. G., Deb, S., & Coelho, L. D. S. (2018) Earthworm optimization
algorithm: A bio-inspired metaheuristic algorithm for global opti-
mization problems. International Journal of Bio-Inspired Computation,
12, 1–22. https://doi.org/10.1504/IJBIC.2018.093328.

Wang, G. G., Deb, S., & Cui, Z. (2019). Monarch butterfly optimization.
Neural Computing and Applications, 31, 1995–2014. https://doi.org/
10.1007/s00521-015-1923-y.

Wang, G. G., Gao, D., & Pedrycz, W. (2022). Solving multi-objective
fuzzy job-shop scheduling problem by a hybrid adaptive differen-
tial evolution algorithm. IEEE Transactions on Industrial Informatics,
18, 8519–8528. https://doi.org/10.1109/TII.2022.3165636.

Wang, G. G., & Tan, Y. (2020). Improving metaheuristic algorithms
with information feedback models. IEEE Transactions on Cybernet-
ics, 49, 542–555. https://doi.org/10.1109/TCYB.2017.2780274.

Wang, Y., Li, B., & Yuan, B. (2010). Hybrid of comprehensive learning
particle swarm optimization and SQP algorithm for large scale
economic load dispatch optimization of power system. Science
China Information Sciences, 53, 1566–1573. https://doi.org/10.1007/
s11432-010-4034-5.

Wu, C. B., Li, H. M., Liu, D., Wu, Z. Y., & Wu, L. (2016). Application of
improved particle swarm optimization algorithm to power sys-
tem economic load dispatch. Power System Protection and Control,
44, 44–48. https://doi.org/10.7667/PSPC151119.

Xiong, G., Li, L., Mohamed, A. W., Yuan, X., & Zhang, J. (2021). A new
method for parameter extraction of solar photovoltaic models
using gaining–sharing knowledge based algorithm. Energy Reports,
7, 3286–3301. https://doi.org/10.1016/j.egyr.2021.05.030.

Xiong, G., & Shi, D. (2018). Orthogonal learning competitive swarm
optimizer for economic dispatch problems. Applied Soft Comput-
ing, 66, 134–148. https://doi.org/10.1016/j.asoc.2018.02.019.

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/2/615/7081313 by guest on 22 January 2024

https://doi.org/10.1016/j.ins.2022.07.148
https://doi.org/10.1109/TSMCC.2012.2190401
https://doi.org/10.1109/TPWRS.2009.2030359
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1007/s13042-019-01053-x
https://doi.org/10.1109/JSYST.2018.2889988
https://doi.org/10.2316/Journal.203.2007.4.203-3673
https://doi.org/10.1049/ip-gtd:19949770
https://doi.org/10.1016/j.apenergy.2009.05.016
https://doi.org/10.1504/IJCSE.2011.041220
https://doi.org/10.1109/TPWRS.2009.2030293
https://doi.org/10.1016/j.eswa.2016.07.012
https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1109/TEVC.2002.806788
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.asoc.2009.10.019
https://doi.org/10.1007/s42835-018-00001-z
https://doi.org/10.3969/j.issn.1674-3415.2012.10.008
https://doi.org/10.1016/j.apenergy.2011.06.025
https://doi.org/10.1007/s42235-021-0050-y
https://doi.org/10.1016/j.epsr.2005.08.004
https://doi.org/10.48175/ijarsct-832
https://doi.org/10.1007/s12293-016-0212-3
https://doi.org/10.1109/ISCBI.2015.8
https://doi.org/10.1504/IJBIC.2018.093328
https://doi.org/10.1007/s00521-015-1923-y
https://doi.org/10.1109/TII.2022.3165636
https://doi.org/10.1109/TCYB.2017.2780274
https://doi.org/10.1007/s11432-010-4034-5
https://doi.org/10.7667/PSPC151119
https://doi.org/10.1016/j.egyr.2021.05.030
https://doi.org/10.1016/j.asoc.2018.02.019


Journal of Computational Design and Engineering, 2023, 10(2), 615–631 | 631

Xiong, G., Shuai, M., & Hu, X. (2022a). Combined heat and power
economic emission dispatch using improved bare-bone multi-
objective particle swarm optimization. Energy, 244, 123108. https:
//doi.org/10.1016/j.energy.2022.123108.

Xiong, G., Yuan, X., Mohamed, A. W., Chen, J., & Zhang, J. (2022c). Im-
proved binary gaining–sharing knowledge-based algorithm with
mutation for fault section location in distribution networks. Jour-
nal of Computational Design and Engineering, 9, 393–405. https://doi.
org/10.1093/jcde/qwac007.

Xiong, G., Yuan, X., Mohamed, A. W., & Zhang, J. (2022b). Fault sec-
tion diagnosis of power systems with logical operation binary
gaining–sharing knowledge-based algorithm. International Jour-
nal of Intelligent Systems, 37, 1057–1080. https://doi.org/10.1002/in
t.22659.

Xiong, G., Zhang, J., Shi, D., Zhu, L., & Yuan, X. (2020). Parameter ex-
traction of solar photovoltaic models via quadratic interpolation
learning differential evolution. Sustainable Energy & Fuels, 4, 5595–
5608. https://doi.org/10.1039/D0SE01000F.

Xiong, G., Zhang, J., Yuan, X., Shi, D., He, Y., & Yao, G. (2018). Pa-
rameter extraction of solar photovoltaic models by means of a
hybrid differential evolution with whale optimization algorithm.

Solar Energy, 176, 742–761. https://doi.org/10.1016/j.solener.2018
.10.050.

Xu, S., Xiong, G., Mohamed, A. W., & Bouchekara, H. R. (2022). For-
getting velocity based improved comprehensive learning parti-
cle swarm optimization for non-convex economic dispatch prob-
lems with valve-point effects and multi-fuel options. Energy, 256,
124511. https://doi.org/10.1016/j.energy.2022.124511.

Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger
games search: Visions, conception, implementation, deep analy-
sis, perspectives, and towards performance shifts. Expert Systems
with Applications, 177, 114864. https://doi.org/10.1016/j.eswa.202
1.114864.

Yu, K., Chen, X., Wang, X., & Wang, Z. (2017). Parameters identification
of photovoltaic models using self-adaptive teaching-learning-
based optimization. Energy Conversion and Management, 145, 233–
246. https://doi.org/10.1016/j.enconman.2017.04.054.

Zhang, M., Hu, Z., Suo, J., & Zhang, Z. (2013). A new hybrid al-
gorithm for economic dispatch considering the generator con-
straints. In 2013 IEEE International Conference of IEEE Region 10 (TEN-
CON 2013)(pp. 1–4). IEEE. https://doi.org/10.1109/TENCON.2013.
6718481.

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/2/615/7081313 by guest on 22 January 2024

https://doi.org/10.1016/j.energy.2022.123108
https://doi.org/10.1093/jcde/qwac007
https://doi.org/10.1002/int.22659
https://doi.org/10.1039/D0SE01000F
https://doi.org/10.1016/j.solener.2018.10.050
https://doi.org/10.1016/j.energy.2022.124511
https://doi.org/10.1016/j.eswa.2021.114864
https://doi.org/10.1016/j.enconman.2017.04.054
https://doi.org/10.1109/TENCON.2013.6718481

	Hybridizing gaining–sharing knowledge and differential evolution for large-scale power system economic dispatch problems
	Recommended Citation
	APA Citation
	MLA Citation


	tmp.1705925883.pdf.Bc3HA

