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Abstract: Aluminum (Al)–aluminum–carbon nanotube (Al–CNT) dual-matrix (DM) composites
are a novel class of nanocomposite materials that combine the ductility of the Al matrix with the
hardness and wear resistance of the Al–CNT composite and thus can offer a unique combination
of properties that make them suitable for a wide range of wear applications such as cutting tools,
bearings, brake pads, wear-resistant coatings, etc. However, the specific properties of the DM Al–
(Al–CNT) composite will depend on several factors related to the material’s composition and the
friction conditions. This study investigates the wear behavior of DM Al–(Al–CNT) composites
consisting of a primary matrix of soft aluminum in which milled hard particles of (Al–CNT) are
dispersed as affected by five parameters: (1) wt.% CNT in the reinforcement particles, (2) mixing
ratio between the reinforcement particles and the soft Al matrix, (3) sliding speed, (4) applied load,
and (5) distance. The experimental design used a Taguchi fractional factorial orthogonal array (OA)
L27 to reduce the number of experiments, and analysis of variance (ANOVA) was used to determine
the significance and to model the effect of each control parameter. Results showed that the wear rate
could be reduced by up to 80% by tailoring the composition and controlling the friction conditions.
It was found that the mixing ratio significantly impacts the wear behavior of DM Al–(Al–CNT)
composites. A mixing ratio of 50% and a CNT content of 3 wt.% at the lowest applied load gave the
lowest wear rate and coefficient of friction. Scanning electron microscopy investigations showed
fragmentations in the reinforced matrix at higher loads and mixing ratios, which negatively impacted
the wear behavior. Our findings confirm that DM Al–(Al–CNT) composites are promising for wear
applications. However, the wear behavior depends on the composition and microstructural design of
the composite, which needs to be carefully studied and understood.

Keywords: metal–matrix composites; carbon nanotube composites; dual-matrix; powder processing;
wear behavior

1. Introduction

Over the past two decades, aluminum–carbon nanotube (Al–CNT) composites have re-
ceived the attention of many researchers due to their numerous promising applications [1,2].
Agglomeration of the CNTs has been highlighted as a key challenge that researchers have
focused on. Mechanical milling combined with thermo–mechanical processing was found
to lead to well-densified composites with favorable strength, hardness, and wear resistance
properties [3–8]. Investigations of the tribological behavior of Al–CNT composites showed
that adding CNTs to aluminum enhances the wear resistance of the matrix [9–20]. It has
been proposed that the crushed CNTs on the worn surface form a carbon film that works
as a solid lubricating film. The wear rate was found to be affected by the weight percent
(wt.%) of CNTs as well as the friction conditions such as sliding speed and applied load.
Wear rate investigations for Al–CNT composites showed that the wear rate decreased by
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increasing both sliding speed and the wt.% of CNT and increased by increasing the applied
load to a certain critical value, after which the relation was inverted [6,11,12]. Investigations
by various researchers also reported enhanced hardness of Al–CNT composites. However,
this increase in hardness was accompanied by a severe loss in ductility [11,13,14,21,22].

Dual-phase materials consisting of a soft and a hard phase have been used for years
in wear applications due to their outstanding combination of desirable properties. One
common example is the tungsten carbide–cobalt (WC–Co) composite. The hard WC
phase provides excellent wear resistance, while the soft Co matrix provides toughness and
reduced friction, making the composite ideal for use in wear applications such as cutting
tools, milling inserts, and wear-resistant coatings. Dual-matrix composites are similar
to dual-phase materials. Typically, the reinforcement phase is distributed throughout
one matrix, then embedded in the other matrix. Such microstructural design has the
advantage of combining enhanced strength, hardness, wear resistance, toughness, and
ductility. Accordingly, dual-matrix composites have been increasingly investigated as
potential materials for wear applications. Various reinforcements and volume fractions
have been investigated. A major advantage is the ability to tailor the characteristics of both
the matrix and the reinforced composites to achieve the desired performance [23–27]. A
dual composite of WC–Co was developed by Fang et al. [28] by embedding fully dense,
large WC–Co particles in a cobalt matrix. The new material was found to have higher
fracture toughness at the same wear resistance compared to conventional WC–Co.

More recently, efforts to fabricate dual-matrix composites have continued to report
enhanced properties. For example, significant enhancement in ductility and wear resistance
was reported by Lakra et al. [29], who fabricated a dual-matrix composite consisting of Al–
Al3Ti–Al2O3 separated by ductile unmilled outer Al matrix. A study by Eltaher et al. [30]
investigated the mechanical and wear resistance of dual-matrix Al–Mg/Al2O3. The Al2O3
particles were first milled with Mg before mixing with Al, which ensured their uniform
dispersion. The composite exhibited improved wear resistance and high hardness and
compressive strength while maintaining a high ductility. Overall, these studies demonstrate
the potential of dual-matrix materials for wear applications. However, further research
is needed to optimize the fabrication and processing of dual-matrix materials and to
investigate their performance in a range of wear applications.

The investigation of Al–(Al–CNT) dual-matrix composites consisting of a primary
matrix of soft aluminum in which milled hard particles of (Al–CNT) are dispersed was
presented in previous work by Esawi and co-workers [31,32]. The Al–(Al–CNT) dual-
matrix composites exhibited enhanced properties; however, the achieved enhancements
depended on the mixing ratio between the reinforced particles and the soft Al matrix. For
example, tensile test investigations showed that the highest tensile strength and elongation
occur at a mixing ratio of 50%. Debonding between the hard reinforced phase and the
soft Al limited further enhancements when using higher mixing ratios [32]. The wear and
hardness properties of Al–(Al–CNT) dual-matrix composites were previously investigated
by our research group for a composition of Al-5 wt.% CNT reinforced particles and 50%
mixing ratio between reinforced particles to Al matrix equivalent to an overall CNT con-
tent of 2.5 wt.% [33]. The dual-matrix composites were compared with pure un-milled
aluminum and single matrix Al-2.5 wt.% CNT. Results showed that the dual-matrix com-
posites have better wear and hardness characteristics than pure un-milled aluminum but
are lower than the single-matrix composite. It was proposed that the dual microstructure
can be tailored by changing the mixing ratio of reinforced particles to aluminum matrix
and wt.% CNT in the reinforced particles to obtain the optimized matrix composition at
certain hardness and friction conditions for the required applications [33]. This motivates
the present investigation.

In the present study, a more detailed investigation was carried out for hardness and
wear rate using different compositions of Al–(Al–CNT) dual-matrix composites and various
tribological conditions. A pin-on-disk test rig was used to investigate the wear rate against
five control parameters: (1) wt.% CNT in the reinforced particles (C), (2) the mixing ratio
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between the reinforced particles and the soft Al matrix (M), (3) sliding speed (S), (4) applied
load (L), and (5) covered distance (D). To reveal the nonlinear effect of the parameters, each
parameter was tested at three levels. A fractional statistical design based on the Taguchi
approach was used to reduce the number of experiments [34,35]. Analysis of variance
(ANOVA) was used to determine the significance of the control parameters and to derive
mathematical regression models to model their effects on hardness and wear rate [36–40].
Response surface methodology (RSM) was used to represent the combined responses
graphically. Scanning electron microscopy (SEM) was used to study the microstructure
and to analyze the worn surfaces after the wear test in order to understand the wear
mechanisms.

2. Materials and Methods

A Retsch® high energy planetary ball mill (PM400 MA-type) was used to produce
3, 4, and 5 wt.% Al–CNT composite powders. Gas-atomized ALPOCO© Al powder
(purity > 99.7% and average particle size 75 µm) and Elicarb© MWCNTs (purity 70–90%,
average diameter 10–12 nm, length tens of µm and density range 1.7–1.9 g/cm3, shown
in Figure 1) were added in stainless steel milling jars of 250 mL volume, with 42 stainless
steel milling balls of 10 mm diameter, and milled under Argon. Ball to powder ratio (BPR)
of 5:1 and a milling speed of 400 rpm was used. The mixtures were milled for 1 h but
interrupted every 10 min by a 20 min pause for cooling. High-purity ethyl alcohol supplied
by SIGMA–ALDRICH® was used as a process control agent (PCA) with varying volumetric
amounts relative to the CNT concentrations. For 3, 4, and 5 wt.% CNTs, the amount of ethyl
alcohol used was 110, 70, and 50 µL, respectively. The milled Al–CNT powders were mixed
with powders of unmilled pure Al using mechanical mixing in a Retsch® turbula mixer
at a speed of 96 rpm for 30 min. Powders were prepared with mixing ratios of 25, 50, and
75% of reinforced particles to soft unreinforced Al. Figure 2 presents an illustration of the
various dual-matrix microstructures prepared in the current study. The darker reinforced
particles have higher CNT contents, and the larger number of particles in the microstructure
represents higher mixing ratios. The mixed DM powders were subsequently compacted
into 20 mm diameter compacts under a pressure of 350 MPa at room temperature for 1 h
using a single-acting FOSTER® hydraulic press. The compacts were then sintered at a
temperature of 500 ◦C for 1 h and extruded into 10 mm diameter rods. Finally, the die
and the extrudate were covered by thermal insulation and left to cool slowly to room
temperature.
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Figure 1. (a) SEM image showing the morphology of the CNTs used in the current study. (b) Further
magnification of the CNT sample shows CNTs with diameters ranging between 8 and 23 nm.
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Figure 2. Illustration of the dual-matrix microstructures investigated in the current study.

Hardness was evaluated for nine compositions according to Taguchi L9 orthogonal
array using Vickers hardness tester HV-50A (Vickers, London, UK) under an applied load
of 10 N and dwell time of 10 s. Five readings were taken for each sample, and three
samples were investigated for each composition. Wear rate investigations were carried out
according to ASTM G99-95 Standard Test Method for wear [41]. The apparatus used was
Plint TE/P indexing Pin-on-Disk with a steel disk (EN31 high chrome tool steel) of hardness
25 HRC. The wear specimen (pin) of 8 mm diameter and 20 mm height was cut from the
extruded rods, machined, and polished metallographically to ensure surface roughness is
below 0.8 µm. The mass of the pin was recorded before and after the test, and the wear
rate was calculated as mass loss per second (µg/s). The tangential force due to friction was
recorded using a load cell attached to the arm that carries the pin, where the coefficient of
friction (COF) was calculated as the ratio between the normal load acting on the pin to the
tangential force. LEO SUPRA 55-Field Emission Scanning Electron Microscope (SEM, Zeiss,
Selangor, Malaysia) was used to investigate the sample’s microstructure and worn surfaces
after the wear test.

Wear investigation was conducted for five control parameters, with each having three
level values (Table 1) according to Taguchi L27 orthogonal array (313) (Table 2) [40]. The
wear rate was recorded for three replicates at each sample condition. To study the effect
of the control parameters in maximizing or minimizing the response, the signal-to-noise
ratio (S/N) was calculated. ANOVA analysis was used to determine the significance of
each control parameter [42–45]. A mathematical regression model was built to capture
the effects of the control parameters on the response [34]. The model was used to plot
response surfaces that represent the combined effects of the control parameters on the wear
rate [42,46,47].

Table 1. Levels of control parameters for wear rate investigation.

Control Variables Symbol Level 1 Level 2 Level 3

wt.% CNT in reinforced matrix C 3 4 5
Linear speed of pin on disk (m/s) S 0.5 1 1.5

Load applied on pin (N) L 8 14 20
Distance covered by pin against disk (Km) D 0.6 1 1.4
Mixing ratio of reinforced to unreinforced

particles M 25 50 75
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Table 2. Layout of the L27 orthogonal array.

Sample No. CNT (%) Speed (m/s) Load (N) Distance
(Km)

Mixing
Ratio (%)

1 3 0.5 8 0.6 25
2 3 0.5 14 1 50
3 3 0.5 20 1.4 75
4 3 1 8 1 75
5 3 1 14 1.4 25
6 3 1 20 0.6 50
7 3 1.5 8 1.4 50
8 3 1.5 14 0.6 75
9 3 1.5 20 1 25
10 4 0.5 8 0.6 25
11 4 0.5 14 1 50
12 4 0.5 20 1.4 75
13 4 1 8 1 75
14 4 1 14 1.4 25
15 4 1 20 0.6 50
16 4 1.5 8 1.4 50
17 4 1.5 14 0.6 75
18 4 1.5 20 1 25
19 5 0.5 8 0.6 25
20 5 0.5 14 1.4 50
21 5 0.5 20 1.4 75
22 5 1 8 1 75
23 5 1 14 1.4 25
24 5 1 20 0.6 50
25 5 1.5 8 1.4 50
26 5 1.5 14 0.6 75
27 5 1.5 20 1 25

3. Results and Discussion

Figure 3a presents the typical microstructure of Al–(Al–CNT) dual-matrix composites
showing both the unreinforced Al (dark phase) and the reinforced Al–CNT (light phase).
Upon further magnification, as in Figure 3b, the Al grains are seen to have large uniform
sizes, whereas the milled reinforced phase is composed of small scattered particles. It is
also apparent that the sintering temperature was sufficient for consolidating the aluminum
while preserving the small grain sizes of the milled particles.
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Figure 3. (a) Typical microstructure of Al–(Al–CNT) dual-matrix composites of Al-4 wt.% CNT and
75% mixing ratio. (b) Further magnification.

3.1. Hardness Investigation

As presented in Figure 4, hardness increases with the increase of mixing ratio and wt.%
CNT in the reinforced particles (and, accordingly, the overall wt.% CNT in the composite).
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The maximum hardness (66.55 HV) occurred at the composition of Al-5 wt.% CNT in
reinforced particles and a mixing ratio of 75%, whereas minimum hardness (25.56 HV)
occurred for the composition of Al-3 wt.% CNT in reinforced particles and mixing ratio of
25%. ANOVA analysis of the S/N ratio was conducted to determine the significance of each
parameter in maximizing hardness. The results showed that the mixing ratio (M) is the
most significant parameter that increases hardness. This was followed by the wt.% CNT in
the reinforced particles (C). Using regression analysis, Equation (1) was obtained to express
the relation between Vickers hardness (HV) and the significant control variables: mixing
ratio (M) and wt.% CNT in reinforced particles (C). With regards to the microhardness of the
various regions in the samples, the current authors presented in an earlier publication [33]
that the average micro-hardness of the pure Al unmilled zone was 57.5 HV, whereas that of
the Al-5 wt.% CNT zone was 65.6 HV and have noted that both values are lower than those
for samples made entirely of either pure unmilled Al or single matrix samples with 5 wt.%
CNT. The lower hardness of the different regions in the dual-matrix material is attributed
to the effect of the interaction with the neighboring hard/soft phase as well as the strength
of the interface between them.

HV = 42.23 − 12.303C − 0.227M + 1.494C2 + 0.0002M2 + 0.187M ∗ C (1)
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3.2. Wear Investigation

Wear rates and COF of the Al–(Al–CNT) dual-matrix composites are presented in
Figures 5 and 6, respectively. The lowest wear rate (WR = 12.6 µg/s) and coefficient of
friction (COF = 0.384) were observed for sample no.7 (C = 3%, M = 50%, S = 1.5 m/s,
L = 8 N, and D = 1.4 Km). It is worth noting that, according to the hardness investigation,
this sample has an average hardness of 33 HV, which is about half of the hardness of some
of the other tested samples. Accordingly, the sample has the advantage of combining
high wear resistance with good formability, which is typically difficult to achieve. The
worn surface of the sample is presented in Figure 7a and shows a smooth surface with
shallow grooves. No debris was observed. The governing wear mechanism appears to
be adhesive wear with smeared layers that indicate the presence of plastic deformation.
Further magnification in Figure 7b shows that the reinforced matrix has a flat surface where
CNT is believed to have worked effectively as a lubricant. The COF time plot presented in
Figure 8 shows low variation in COF values reflecting smooth sliding. This is believed to
be due to the lubricating effect of the CNTs in the reinforced particles.
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Figure 5. Wear rate results of dual-matrix Al–(Al–CNT) composites.
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Figure 7. SEM worn surfaces for samples with (a) the lowest wear rate (sample 7: C3%, M50%,
D1.4 Km, L8 N, S1.5 m/s), (c) the highest wear rate (sample 27: C5%, M25%, D1 Km, L20 N,
S1.5 m/s), (b,d) are magnified images of (a,c).
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Figure 8. COF time plot of sample no.7 (lowest wear rate sample: C3%, M50%, D1.4 Km, L8 N,
S1.5 m/s) and COF time plot of sample no.27 (highest wear rate sample: C5%, M25%, D1 Km, L20 N,
S1.5 m/s).

On the other hand, the highest wear rate (WR = 65.7 µg/s) and COF (0.561) occurred
for sample no.27 (C = 5%, M = 25%, S = 1.5 m/s, L = 20 N, and D = 1 Km). The worn
surface of the sample presented in Figure 7c shows deep grooves, and the dominant wear
mechanism appears to be abrasive with the presence of delamination and cracks on the
surface. Further magnification in Figure 7d shows that fragmentation occurred in the
reinforced matrix, with the resulting hard debris causing abrasive wear. The COF time
plot of sample no.27 presented in Figure 8 shows intensive fluctuation reflecting the severe
fragmentation of the reinforced particles. It is worth noting that samples no.9 and 18 also
demonstrate higher wear rates than all other tested samples, as can be clearly noticed from
Figure 5. Both samples have 25% mixing ratio which is similar to sample no.27 and were
tested under similar conditions to sample no.27 (S = 1.5 m/s, L = 20 N, and D = 1 Km). The
only difference is the lower composition of the CNT in the reinforced particles, which is 3%
and 4% in samples no.9 and 18, respectively, compared to 5% in sample no.27.

ANOVA analysis revealed that the applied load (L) is the most effective parameter
in increasing the wear rate. Figure 9 presents further analysis of the effect of load on the
interface between the Al–CNT reinforced matrix and the Al matrix. At the highest load
of 20 N in Figure 9a, the reinforced matrix is exposed to high fragmentation that appears
to reduce its lubricating effect. In addition, the wear mechanism turns abrasive. At the
applied load of 14 N in Figure 9b, the reinforced matrix has surface cracks. On the other
hand, at an applied load of 8 N in Figure 9c, the reinforced matrix is completely flat, and the
CNT works as a lubricant. The mixing ratio (M) is found to be the next effective parameter.
It was found that the wear rate decreases at (M) from 25% to 50%, but then it increases at
(M) from 50% to 75%. Local plowing resulting in pulled-out areas on the surface at a 75%
mixing ratio was observed. Typically worn surfaces showing pulled areas are presented
in Figure 10a,b for sample no.4 and sample no.17, respectively. It is believed that the high
difference in hardness between the reinforced matrix and the Al matrix caused the interface
between them to be weak, that in turn facilitated the pull-out of the reinforced matrix
even at low loads. Tensile strength investigations of dual-matrix Al–(Al–CNT) composites
were conducted in another study by our research group and showed that composites
with a mixing ratio of 75% have lower strength than dual-matrix composites with a 50%
mixing ratio. This was attributed to the weaker interface associated with the larger overall
interfacial area as the number of reinforced particles in the matrix increases [32].
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Figure 9. Typical micrograph of the worn surfaces at the interface between the Al and reinforced
matrix under different loads: (a) sample no.3 (C3%, M75%, D1.4 Km, L20 N, S0.5 m/s), (b) sample
no.2 (C3%, M50%, D1 Km, L14 N, S0.5 m/s, and (c) sample no.1 (C3%, M25%, D1.4 Km, L8 N,
S0.5 m/s).

The linear speed (S) comes next in significance. The wear rate was found to decrease at
(S) from 0.5 m/s to 1 m/s, but then it increased from 1 m/s to 1.5 m/s. While the wear rate
of Al–CNT single matrix composites was reported to decrease as linear speed increases [11],
in the present study, the behavior of the dual-matrix composites was found to be different.
The distance covered (D) was also observed to influence the wear rate, which was found to



Metals 2023, 13, 1167 10 of 14

increase from 0.6 Km to 1 Km and then decrease from 1 Km to 1.4 Km. This could be due
to the strain-hardening of the worn surfaces as the distance covered increases which are
believed to reduce the wear rate. Lastly, it was found that the CNT wt.% (C) has minimal
effect in the case of the dual-matrix composites studied, which is distinctively different
from Al–CNT single matrix composites. This is assumed to be due to the more dominating
effect of the mixing ratio. It is believed that the hard reinforced particles form islands of
high wear resistance within the soft Al matrix, as we reported in an earlier study [33], with
the overall wear resistance being influenced by the number of such particles.
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Figure 10. Pull-out areas in a reinforced matrix at a mixing ratio of 75% (a) sample no.4 (C3%, M75%,
D1 Km, L8 N, S1 m/s) and (b) sample no.17 (C4%, M75%, D0.6 Km, L8 N, S1.5 m/s).

A mathematical regression model expressing the relation between the wear rate and
the significant parameters is presented in Equation (2). A three-dimensional response
surface graph is plotted in Figure 11a to represent the relation between wear rate and
load- speed. It shows that the relation is proportional (as speed and load increase, the
wear rate increases). The lowest wear rate occurs at levels of about 8 N and 0.8 m/s for
load and speed, respectively. The relation between the wear rate and the speed-mixing
ratio is presented in Figure 11b, where it is shown that the lowest wear rate occurs at
levels of about 0.8 m/s and 57% for speed and mixing ratio, respectively. The relation
between wear rate and speed-distance is presented in Figure 11c, where the lowest wear
rate occurs at about 0.8 m/s and 0.6 Km, respectively. It can be observed that the minimum
wear rate takes place at 0.6 Km and that the surface concaved up at a covered distance
of 1 KM, then it inverted down again. This can be attributed to strain-hardening of the
worn surfaces. Finally, the relation between wear rate and the load-mixing ratio is shown
in Figure 11d, where the lowest wear rate occurs at levels 8 N and 57% for load and mixing
ratio, respectively.

WR = 8.095 − 45.146 S − 0.14 L + 139.794 D − 1.7 M + 28.205 S2 + 0.057 L2 − 69.6 D2 + 0.015 M2 (2)

Response surfaces graphs show that increasing speed over 1 m/s increases the wear
rate; where it was observed during wear investigations that increasing the speed causes
noise and vibrations in the system leading to high variations in the COF time plot. Figure 12
shows the COF time plot of a sample exposed to a higher speed. It is clear that the response
is rougher than an equivalent sample exposed to a lower speed. Analysis of the worn
surfaces of the two samples in Figure 13 shows that the crushed reinforced area is bigger
at higher speeds and that the crushed particles changed to debris, which increased the
severity of the abrasion wear.
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Figure 11. (a–d) Response surface graphs of the combined effects of the control parameters on the
wear rate.
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Figure 13. Effect of speed on worn surfaces of (a) sample (C4%, M25%, D1.4 Km, L14 N, 1 m/s) and
(b) sample (C4%, M25%, D1.4 Km, L14 N, 1.5 m/s).

4. Conclusions

The current study investigated the effect of several factors, namely, wt.% CNT, mixing
ratio, sliding speed, applied load, and covered distance on hardness and wear rate of
Al–(Al–CNT) dual-matrix composites. It was found that the mixing ratio is significant in
impacting the wear behavior of DM Al–(Al–CNT) composites. A mixing ratio of 50% and
a CNT content of 3 wt.% at the lowest applied load were found to give the lowest wear
rate and coefficient of friction, according to our experiments. A significant reduction in
wear rate of up to 80.8% was achieved under such conditions. This was attributed to the
novel dual-matrix design in which the harder, more wear-resistant reinforced phase formed
islands within the softer phase and have accordingly strongly influenced the overall wear
behavior of the composite. In addition to the tested conditions, our model predicted that
decreasing the mixing ratio below a critical value of 57% would increase the wear rate.

The multifactorial experimental study, which combined the effects of parameters
related to the composite itself (wt.% CNT and mixing ratio between the reinforcement
particles and the Al matrix), as well as parameters related to the wear process (sliding speed,
applied load, and distance), showed that the dual-matrix microstructural design is very
promising for wear applications provided that the reinforced matrix is kept consolidated
and not fragmented under the applied friction condition. As conditions become more
severe, fragmentation in the reinforced matrix occurs at the interface between it and the soft
matrix and progresses to severe plowing of the reinforced area, especially at high mixing
ratios. Both adhesive and abrasive wear mechanisms were observed depending on the
material composition and the test conditions. However, because of the hard reinforcement
phase and the fragmentation which occurred, abrasive wear appeared to be more dominant.
In addition to understanding the complex wear mechanisms, true COF dependence on the
hardness difference between the friction pairs, which has recently been reported to have a
major influence on the tribological behavior of AA7075-TiB2 nanocomposites, can further
enhance the understanding of the performance of dual-matrix composites in various wear
applications [48].

Overall, the wear resistance of Al–(Al–CNT) dual-matrix composites can be further
improved through the optimization of the matrix and reinforcement phase, control of the
distribution and size of the reinforcement phase, strengthening the interface between the Al
matrix and the Al–CNT composite, and optimization of the processing parameters during
the composite fabrication in order to reach a balance between strength and ductility in the
reinforced particles while still ensuring uniform dispersion of the CNTs.
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