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Abstract: Multidrug resistance (MDR) is one of the most problematic issues in chemotherapeutic
carcinoma therapy. The ABCB1 transporter, a drug efflux pump overexpressed in cancer cells, has
been thoroughly investigated for its association with MDR. Thus, discovering ABCB1 inhibitors
can reverse the MDR in cancer cells. In the current work, a molecular docking technique was
utilized for hunting the most prospective ABCB1 inhibitors from the Toxin and Toxin-Target Database
(T3DB). Based on the docking computations, the most promising T3DB compounds complexed
with the ABCB1 transporter were subjected to molecular dynamics (MD) simulations over 100 ns.
Utilizing the MM-GBSA approach, the corresponding binding affinities were computed. Compared
to ZQU (calc. −49.8 kcal/mol), Emamectin B1a (T3D1043), Emamectin B1b (T3D1044), Vincristine
(T3D4016), Vinblastine (T3D4017), and Vindesine (T3D2479) complexed with ABCB1 transporter
demonstrated outstanding binding affinities with ∆Gbinding values of −93.0, −92.6, −93.8, −92.2, and
−90.8 kcal/mol, respectively. The structural and energetic investigations confirmed the constancy of
the identified T3DB compounds complexed with the ABCB1 transporter during the 100 ns MD course.
To mimic the physiological conditions, MD simulations were conducted for those identified inhibitors
complexed with ABCB1 transporter in the presence of a POPC membrane. These findings revealed
that Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine, and Vindesine are promising ABCB1
inhibitors that can reverse the MDR. Therefore, subjecting those compounds to further in-vitro and
in-vivo investigations is worthwhile.

Keywords: MDR; ABCB1 transporter; Toxin and Toxin-Target Database (T3DB); docking computa-
tions; MD simulations

1. Introduction

Chemotherapy is one of the most efficient treatment approaches for patients with
advanced or metastatic cancers [1]. However, a critical problem in treating cancer is
the multidrug resistance (MDR) phenomenon that emerges when cancer cells simultane-
ously develop resistance to a variety of anticancer therapeutics [2]. Cancer cells become
multidrug-resistant cells by using a variety of resistance development pathways, including
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efflux pumps, apoptosis control, transcriptional regulation, autophagy control, and his-
tone modifications [3]. Indeed, the augmented efflux of chemotherapy regulated through
transmembrane transporters is the most common one [4,5]. These transporters, known
as ATP-binding cassette (ABC) transporters, consist of 48 members and are found in the
plasma membranes [6]. The ABC family is divided into seven subfamilies named ABC-A to
ABC-G according to their sequence similarity [7]. An ATP hydrolysis process is required for
those transporters to produce energy to efflux various foreign substances through the cell
membrane [8,9]. The ABCB1 transporter, an ABC-B subfamily member, is well known for
being a key player in the development of MDR in cancer cells [10]. ABCB1 is a membrane
protein with a molecular weight of 170 kDa and was first reported in 1976 as an overex-
pressed protein in a cell line that was resistant to Colchicine [11]. The ABCB1 transporter is
typically expressed in the epithelium of many various tissues, like the blood-brain barrier
(BBB), placenta, and kidney [12]. The ABCB1 structure consists of two transmembrane
domains (TMDs) and two nucleotide-binding domains (NBDs) [13]. The drug-binding
pocket is located at the interface of the two TMDs of the ABCB1 transporter as Figure 1
demonstrates.
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It is well known that inhibiting the ABCB1 transporter’s efflux activity can reverse
the MDR phenomenon in cancer cells. The MDR phenomenon mediated by the ABCB1
transporter can be reversed in cancer cells by inhibiting its efflux function [14]. Several in-
hibitors experimentally demonstrated promising efficiency against the ABCB1 transporter;
however, most of them failed in clinical trials because of their poor selectivity, insufficient
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efficiency, or significant cytotoxicity [15]. Therefore, identifying novel ABCB1 inhibitors is
urgently needed to reverse the MDR in cancer cells.

Toxins can be used as chemotherapeutic drugs to treat many illnesses when they are
not harmful to humans [16]. It has been documented that eleven drugs approved by the
Food and Drug Administration (FDA) are identified as toxins, such as Lixisenatide, Exanta,
Exenatide, and Ziconotide [17]. Drug repurposing can reduce the trial steps, time, and cost
for the medicine to reach the market. Recent research has concentrated on assessing the ef-
fectiveness of numerous repurposed medications as potential anticancer treatments [18,19].
Thus, the Toxin and Toxin-Target Database (T3DB), containing more than 3600 compounds,
is a valuable source for hunting potential ABCB1 inhibitors [20]. Herein, the T3DB database
was filtrated against the ABCB1 transporter utilizing AutoDock4.2.6 software. According
to the docking scores, the top promising T3DB compounds as ABCB1 inhibitors were
subsequently subjected to molecular dynamics (MD) simulations. Additionally, throughout
100 ns MD simulations, in the absence and presence of a lipid bilayer membrane, the binding
energies and stability of the potent ABCB1 inhibitors were further examined. Figure 2 shows
an illustrative representation of the computational methods utilized for the T3DB database
filtration. The outcomes of the current work may offer valuable insights into the suitability of
the identified T3DB compounds as prospective clinical candidates for cancer treatment.
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Figure 2. Flowchart diagram of the utilized computational methods employed in steps 1-4 displayed
in the arrows for identifying potential ABCB1 inhibitors from the T3DB database.

2. Results and Discussion
2.1. In-Silico Protocol Validation

The efficiency of AutoDock4.2.6 software in predicting the binding mode of the co-
crystallized zosuquidar (ZQU) within the ABCB1 binding pocket was first assessed ac-
cording to the accessible experimental data. The docking pose of ZQU was compared to
its native structure (PDB ID: 6QEE [21]) (Figure 3). From Figure 3, the experimental and
predicted binding modes of ZQU were matched (RMSD = 0.18 Å). ZQU exhibited a docking
score with a value of −8.4 kcal/mol without forming any hydrogen bonds inside the ABCB1
binding pocket. Nevertheless, the potency of ZQU inside the ABCB1 binding pocket may be
ascribed to further interactions, such as pi-pi T-shaped and carbon H-bond interactions with
PHE302, PHE335, and GLN989 residues (Figure 3). By comparing the results, it was noticed
that the AutoDock4.2.6 software was efficient in predicting the appropriate docking pose.
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cyan) and the experimental pose (in gray) for ZQU against the ABCB1 transporter.

2.2. Virtual Screening of the T3DB Database

Virtual screening of large chemical databases containing hundreds of thousands of
molecules could be accelerated by applying multiple filters to concentrate on molecules
with drug-like characteristics [22]. However, in the current study, the T3DB database was
filtered against the ABCB1 transporter based on the docking scores using AutoDock4.2.6
software. According to the estimated docking scores, only 103 T3DB compounds exhibited
lower scores than that of ZQU (calc. −8.4 kcal/mol) against the ABCB1 transporter. The
anticipated docking scores for the 103 T3DB compounds with the ABCB1 transporter are
displayed in Table S1. Table 1 summarizes two-dimensional chemical structures, docking
scores, n-octanol/water partition coefficient (milogP), and binding features of the top five
potent T3DB compounds. Additionally, the three- and two-dimensional molecular inter-
actions for these five T3DB compounds inside the ABCB1 binding pocket are depicted in
Figure 4 and Figure S1, respectively. The milogP value, which measures permeability across
the cell membrane, was less than five, indicating that these compounds have acceptable
membrane permeability. Notably, these five T3DB compounds were picked out according
to further binding affinity estimations throughout 10 ns MD simulations, discussed in
Section 3.3.
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Table 1. Two-dimensional chemical structures, predicted docking scores (in kcal/mol), binding features, and origin for the top five scoring T3DB compounds and
ZQU inside the ABCB1 transporter.

No. Compound
Name/Code Origin a miLog P Two-Dimensional Chemical Structures Docking Score

(kcal/mol) Binding Features

ZQU ------ 4.9
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3.20 Å), TRP231 
(Pi-Pi Stacked, 

4.64 Å), PHE342 
(Pi-Pi Stacked, 
4.58, 5.88 Å), 

GLN346 (Conven-
tional H-bond, 

2.05 Å; Carbon H-
bond, 2.91 Å), 

GLU874 (Conven-
tional H-bond, 

2.00 Å; Carbon H-
bond, 2.46, 3.06, 

3.11 Å; Attractive 
charge, 4.26 Å) 

−11.8

TRP231 (Conventional H-bond, 2.30 Å;
Pi-Sigma, 2.70 Å),

GLN837 (Conventional H-bond, 2.04 Å),
GLN989 (Conventional H-bond, 2.16 Å;

Carbon H-bond, 2.67 Å), SER343 (Carbon
H-bond, 2.34 Å), ILE339 (Carbon H-bond,

2.70, 2.80 Å)
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Table 1. Cont.

No. Compound
Name/Code Origin a miLog P Two-Dimensional Chemical Structures Docking Score

(kcal/mol) Binding Features

3 T3D4017
(Vinblastine)

Synthetic
compound

(treatment of breast
cancer)

5.6
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2.00 Å; Carbon H-
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−10.0

GLN194 (Conventional H-bond, 3.20 Å),
TRP231 (Pi-Pi Stacked, 4.64 Å), PHE342

(Pi-Pi Stacked, 4.58, 5.88 Å), GLN346
(Conventional H-bond, 2.05 Å; Carbon

H-bond, 2.91 Å),
GLU874 (Conventional H-bond, 2.00 Å;

Carbon H-bond, 2.46, 3.06, 3.11 Å; Attractive
charge, 4.26 Å)

4 T3D4016
(Vincristine)

Synthetic
compound

(treatment of acute
lymphocytic

leukemia)

4.9
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(Vindesine)
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agent)

3.7
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Figure 4. Three-dimensional molecular interactions of the predicted binding positions of (a) Emamectin
B1a, (b) Emamectin B1b, (c) Vincristine, (d) Vinblastine, and (e) Vindesine inside the ABCB1 binding
pocket. Additionally, the green dashed lines represent the conventional hydrogen bonds.

Figure S1 implies that the investigated T3DB compounds interacted with the essential
residues of the ABCB1 binding pocket, forming several hydrogen bonds, such as GLN989,
GLN346, and GLU874 residues. Other interactions, such as van der Waals, hydrophobic,
and pi-based interactions, were also exhibited between the identified T3DB compounds
and ABCB1 transporter (Figure S1). Notably, those noncovalent interactions can have a
significant contribution to the binding of the identified compound [23].

Emamectin B1a (T3D1043) and Emamectin B1b (T3D1044) belong to the family of aver-
mectins with strong anthelmintic properties that are effective against various nematodes
and arthropods [24]. Emamectin B1a and Emamectin B1b demonstrated docking scores with
values of −11.8 and −12.0 kcal/mol with the ABCB1 transporter, respectively. Emamectin
B1a and Emamectin B1b formed three hydrogen bonds inside the ABCB1 binding pocket
(Figure 4). More specifically, the C=O group of Emamectin B1a and Emamectin B1b inter-
acted with the NH group of TRP231 with bond lengths of 2.30 and 2.32 Å, respectively. As
well, two OH groups of (3aR,7S,7aS)-6-methyl-2,3,7,7a-tetrahydrobenzofuran-3a,7(4H)-diol
ring of Emamectin B1a and Emamectin B1b interacted with GLN837 and GLN989 with
bond lengths of 2.04, 2.00 Å and 2.16, and 2.14 Å, respectively.

Additionally, Vincristine (T3D4016), Vinblastine (T3D4017), and Vindesine (T3D2479)
belong to the family of vinca alkaloids. They are plant-derived natural products that were
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FDA-approved as chemotherapeutic drugs for the treatment of various cancers [25,26]. Conse-
quently, these three drugs were repurposed towards ABCB1 transporter using in-silico compu-
tations. Vincristine, Vinblastine, and Vindesine exhibited docking scores with values of −9.9,
−10.0, and −8.9 kcal/mol with the ABCB1 transporter, respectively (Table 1). For Vincristine
and Vinblastine, NH and OH groups of the (1S,8S,10S,Z)-10-ethyl-1-azabicyclo[6.3.1]dodec-
4-en-10-ol ring formed two hydrogen bonds with GLN346 (2.03 and 2.05 Å) and GLU874
(2.09 and 2.00 Å). For Vinblastine, the OH group of (S)-3-ethylpiperidin-3-ol ring formed a
hydrogen bond with the NH group of GLN194 (3.20 Å).

Vindesine formed four hydrogen bonds inside the ABCB1 binding pocket with GLN945
(2.41 Å), ALA870 (2.13 Å), GLN989 (3.26 Å), and TYR309 (2.16 Å) (Figure 4). Additionally,
the native structure of the ABCB1 bound to Vincristine (PDB code: 7A69 [27]) was com-
pared to the docked structure and presented in Figure S2. From Figure S2, the docking
pose was similar to the native structure of the co-crystallized Vincristine inhibitor with an
RMSD value of 0.68 Å. It is worth noting that Vincristine inhibits the function of the ABCB1
transporter at high concentrations [27]. These findings proved the accuracy of the utilized
in-silico approaches used in the current work.

2.3. Molecular Dynamics

Molecular dynamics (MD) simulations were conducted to assess and investigate the
time-dependent interactions of the identified inhibitors with the ABCB1 transporter. The
MD simulations were performed without considering the lipid bilayer membrane to reduce
the computational cost and time. The top 103 T3DB compounds with lower binding scores
than the reference ZQU (calc. −8.4 kcal/mol) complexed with the ABCB1 transporter under-
went MD simulations for 1 ns. Furthermore, the corresponding MM-GBSA binding energies
were evaluated (Table S1). According to the data presented in Table S1, only seven T3DB
compounds demonstrated MM-GBSA binding energies less than −80.0 kcal/mol towards the
ABCB1 transporter. A threshold value of −80.0 kcal/mol was chosen to shortlist the potential
ABCB1 inhibitors. To gain more trustworthy results, those seven potent T3DB compounds
complexed with ABCB1 transporter were subjected to longer MD simulations for 10 ns, fol-
lowed by the binding affinity estimations (Figure 5). What can be inferred from Figure 5 is
that five T3DB compounds, namely Emamectin B1a (T3D1043), Emamectin B1b (T3D1044),
Vincristine (T3D4016), Vinblastine (T3D4017), and Vindesine (T3D2479), exhibited consider-
able binding energies less than −80.0 kcal/mol against the ABCB1 transporter. Further, a
simulation course of 100 ns was run for those five T3DB compounds complexed with the
ABCB1 transporter, and their MM-GBSA binding energies were computed (Figure 5).

It is clearly seen in Figure 5 that no substantial differences were found in the estimated
binding energies of the five identified T3DB compounds over the 10 and 100 ns MD
simulations. Compared to ZQU (∆Gbinding = −49.8 kcal/mol), Emamectin B1a, Emamectin
B1b, Vincristine, Vinblastine, and Vindesine demonstrated promising MM-GBSA binding
energies with ABCB1 transporter over the 100 ns with ∆Gbinding values of −93.0, −92.6,
−93.8, −92.2, and −90.8 kcal/mol, respectively. The current results shed new light on the
potency of the identified compounds as promising anticancer agents.

Besides, the binding energies were decomposed to grasp the forces, dominating the
interaction of Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine, Vindesine, and
ZQU with the ABCB1 transporter (Figure 6). Based on the energy decomposition results, it
was observed that the ∆Evdw interactions significantly predominated the binding energies
of Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine, Vindesine, and ZQU with av-
erage values of −107.9, −101.9, −99.2, −97.8, −92.4, and −66.7 kcal/mol, respectively. The
∆Eele interactions of Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine, Vindesine,
and ZQU were also favorable with average values of −28.0, −27.0, 41.0, −42.0, −40.3, and
−15.6 kcal/mol, respectively.
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To more thoroughly examine the interactions of Emamectin B1a, Emamectin B1b,
Vincristine, Vinblastine, and Vindesine with the crucial residues of the ABCB1 binding
pocket, the per-residue energy decomposition was executed (Figure 7). Only residues
with ∆Gbinding < −0.5 kcal/mol were taken into consideration. Figure 7 illustrates that
PHE342, GLN346, GLU874, and GLN989 residues displayed promising contributions to
the binding of the Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine, and Vindesine
with ABCB1 transporter. For instance, GLN989 residue exhibited −3.6, −3.4, −3.8, −3.7,
−3.8, and −2.3 kcal/mol for Emamectin B1a-, Emamectin B1b-, Vincristine-, Vinblastine-,
and Vindesine-, and ZQU-ABCB1 complexes, respectively.

Furthermore, the average structures for Emamectin B1a-, Emamectin- B1b-, Vincristine-,
Vinblastine-, Vindesine-, and ZQU-ABCB1 complexes during the 100 ns MD simulations in
an explicit water solvent are shown in Figures 8 and S3. The top promising T3DB compounds
maintained stable hydrogen bonds over the simulated time with the appearance of new
bonds. For instance, Emamectin B1a showed new hydrogen bonds with ALA986 (1.75 Å)
and GLN945 (1.83 Å). Remarkably, those bonds were not present in the docked structure,
highlighting the necessity of executing MD simulations. Moreover, the presented results
proved the significance of GLN989 residue inside the ABCB1 binding pocket as proposed
by the per-residue decomposition.
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2.4. Post-Dynamics Analyses
2.4.1. Binding Energy Per-Trajectory

The energetical constancy of Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine,
Vindesine, and ZQU in complex with the ABCB1 transporter was estimated by gauging the
binding energy vs. time correlation (Figure 9a). From Figure 9a, it is obvious that there is
outstanding stability for Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine, Vinde-
sine, and ZQU in complex with the ABCB1 transporter over the 100 ns MD simulations
with average ∆Gbinding values of −93.0, −92.6, −93.8, −92.2, −90.8, and −49.8 kcal/mol,
respectively. These findings demonstrated the consistency of the interactions between the
identified T3DB compounds complexed with the ABCB1 transporter.
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2.4.2. Root-Mean-Square Deviation (RMSD)

The structural variations of the identified inhibitors complexed with the ABCB1
transporter were assessed employing the RMSD analysis (Figure 9b). As shown in Figure 9b,
the average RMSD values were found to be 0.42, 0.34, 0.39, 0.36, 0.37, and 0.60 Å for
Emamectin B1a-, Emamectin B1b-, Vincristine-, Vinblastine-, and Vindesine-, and ZQU-
ABCB1 complexes, respectively. These outcomes indicated that these inhibitors are tightly
bound and generally stable inside the ABCB1 binding pocket.

2.4.3. Center-of-Mass (CoM) Distance

To gain a better understanding of the stability of the identified T3DB-ABCB1 complexes,
the CoM distances between the identified inhibitors and the ABCB1 transporter were exam-
ined. Figure 9c demonstrates the CoM distances between the inhibitor and GLN989 residue of
the ABCB1 transporter. The average CoM distances for Emamectin B1a-, Emamectin B1b-,
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Vincristine-, Vinblastine-, Vindesine-, and ZQU-ABCB1 complexes were 5.8, 6.3, 8.0, 7.8,
9.0 and 6.3 Å, respectively. Notably, Emamectin B1a and B1b, Vincristine, Vinblastine, and
Vindesine showed similar fluctuations to those of ZQU with the ABCB1 transporter. As a
consequence, the entire stabilization of the identified inhibitors within the ABCB1 binding
pocket can be deduced from these results.

2.4.4. Root-Mean-Square Fluctuations (RMSF)

RMSF of the alpha carbon atoms was evaluated in order to comprehend the impacts
of the binding of the identified inhibitors on the structural fluctuation of the ABCB1
transporter (Figure 10a). Figure 10a elucidates that the apo-ABCB1 transporter, Emamectin
B1a-, Emamectin B1b-, Vincristine-, Vinblastine-, Vindesine-, and ZQU-ABCB1 complexes
exhibited average RMSF values of 0.34, 0.30, 0.35, 0.31, 0.28, 0.29, and 0.32 nm, respectively.
The current outcomes indicated that the apo- and ligand-soaked structures of the ABCB1
transporter remained relatively stable.
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2.4.5. Radius of Gyration (Rg)

Rg was measured and plotted in Figure 10b to identify ABCB1 transporter compactness
in the presence and absence of the inhibitors. The apo-, Emamectin B1a-, Emamectin B1b-
, Vincristine-, Vinblastine-, Vindesine-, and ZQU-ABCB1 complexes exhibited average
Rg values of 4.05, 4.01, 4.02, 4.07, 3.99, 4.05, and 4.10 nm, respectively. These results
demonstrated that the ABCB1 transporter preserved its compressibility when Emamectin
B1a, Emamectin B1b, Vincristine, Vinblastine, Vindesine, and ZQU were present during the
simulation time.

2.5. Lipid Bilayer-Enhanced MD

MD simulations can be employed to understand the transmembrane protein interface
in a lipid bilayer environment [28]. Therefore, an MD simulation course of 100 ns in a POPC
lipid bilayer was re-conducted for the identified inhibitors complexed with the ABCB1
transporter. The MM-GBSA binding energies were then calculated in the presence of the
POPC lipid bilayer, as demonstrated in Figure 11. The presented data implies no significant
differences between the two estimated values. Minutely, without the POPC membrane,
the binding energies were −93.0, −92.6, −93.8, −92.2, −90.8, and −49.8 kcal/mol for
Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine, Vindesine, and ZQU, respectively.
On the other hand, the energies of Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine,
Vindesine, and ZQU in the presence of the POPC were −91.2, −93.3, −92.1, −103.2, −89.6
and −48.7 kcal/mol, respectively (Figure 11).
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3. Computational Methods
3.1. ABCB1 Preparation

The cryo-EM structure of the ABCB1 transporter complexed with zosuquidar (ZQU)
inhibitor (PDB code: 6QEE, resolution: 3.90 Å [21]) was obtained from the PDB database
and considered as a template for all computations. The ABCB1 transporter preparation
included the removal of co-crystallized ligands and heteroatoms. The missing residues were
constructed with the help of Modeller software [29]. States of protonation were checked
using the H++ web-based server [30]. As well, the missing hydrogen atoms were inserted.

3.2. T3DB Database Preparation

The Toxin and Toxin-Target Database (T3DB) compounds, containing >3600 compounds,
were obtained and prepared for the screening against the ABCB1 transporter [20]. All com-
pounds were downloaded in the format of two-dimensional structural data (SDF). The
duplicated compounds were excluded depending on the International Chemical Identifier
(InChIKey) [31]. The three-dimensional structures were then created using Omega2 soft-
ware [32,33] and subjected to energy minimization using MMFF94S implemented within
SZYBKI software [34,35]. The fixpka tool implemented within the QUACPAC software was
applied to scrutinize the protonation states of the inspected compounds [36]. The Gasteiger
method was used to determine the partial charges of the inspected compounds [37]. The
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CompChem database (www.compchem.net/ccdb, accessed on 1 July 2023) provides all
prepared files accessible to users.

3.3. Molecular Docking

In the present work, the T3DB database was filtered against the ABCB1 transporter via
the AutoDock4.2.6 software [38]. The pdbqt file of the ABCB1 transporter was generated
utilizing the MGL tools (version 1.5.6) [39]. The genetic algorithm (GA) runs, and the
maximum number of energy evaluations (eval) variables were set to 150 and 15,000,000,
respectively. Other parameters were left at their defaults. The dimensions of the grid box
were set to encompass the ABCB1 binding pocket (60 Å× 60 Å × 60 Å), with a spacing
value of 0.375 Å. The grid box was centered at 167.308, 170.672, and 165.91 concerning
the X, Y, and Z coordinates, respectively. As well, the partition coefficient (milogP) of the
most potent compounds was estimated using Molinspiration online server (http://www.
molinspiration.com, accessed on 1 July 2023).

3.4. Molecular Dynamics

The docked structures of T3DB-ABCB1 complexes underwent molecular dynamics
(MD) simulations using the AMBER20 software [40]. The information regarding the param-
eters of the MD simulations is detailed in Refs. [41–44]. Briefly, the ABCB1 transporter and
the T3DB compounds were defined utilizing the AMBER force field of 14SB and the general
AMBER force field (GAFF2), respectively [45,46]. The restricted electrostatic potential
(RESP) approach was employed to estimate the partial charges of the T3DB compounds at
the HF/6-31G* level with the help of Gaussian09 software [47,48]. Solvation of the T3DB-
ABCB1 complexes took place in an octahedron box of the TIP3P model [49]. The solvated
complexes were thereafter neutralized utilizing Na+ and Cl– ions. The prepared complexes
were minimized for 5000 steps before progressively heating from 0 to 310 K over 50 ps. The
T3DB-ABCB1 complexes were equilibrated over 10 ns. Subsequently, the production phases
were executed for 1, 10, and 100 ns within periodic boundary conditions and under an
NPT ensemble. The SHAKE algorithm was used with a 2 fs integration step to constrain all
bonds involving hydrogen atoms [50]. The temperature of the systems was held constant at
310 K employing a Langevin thermostat [51]. As well, the pressure was controlled through
the use of Berendsen barostat [52]. The GPU version of pmemd (pmemd.cuda) within AM-
BER20 software was used to run all MD simulations. The CompChem GPU/CPU hybrid
cluster was utilized to execute all computations (hpc.compchem.net). Finally, with the help
of the Biovia Discovery Studio visualizer, all molecular interactions were displayed [53].
Besides, the conventional H-bond was defined using the default parameters implemented
inside the Biovia Discovery Studio visualizer (i.e., distance 3.40 Å and angle at 120◦).

3.5. Lipid Bilayer-Enhanced MD

The T3DB-ABCB1 complexes immersed in a lipid bilayer were constructed by the
CHARMM-GUI web server [54]. For the lipid bilayer-enhanced MD simulations, a bilayer
of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) was adopted, along with a TIP3P
solvent model. The Lipid14 force field was utilized to describe the lipid bilayer [55]. Na+

and Cl– counterions were added to neutralize the system. Besides, MD simulations of the
created systems were run using the same standard parameters stated in the former section.

3.6. MM-GBSA Binding Energy

Utilizing the molecular mechanical-generalized Born surface area (MM-GBSA) ap-
proach, the binding energies (∆Gbinding) of the investigated T3DB compounds with the
ABCB1 transporter were calculated [56]. The modified GB model (igb = 2) was also used [57].
For the MM-GBSA computations, the snapshots were assembled individually every 10 ps
during the production stages. The ∆Gbinding was estimated as follows:

∆Gbinding = GComplex − (GT3DB + GABCB1) (1)

www.compchem.net/ccdb
http://www.molinspiration.com
http://www.molinspiration.com
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The G term was driven mathematically through:

G = GGB + GSA + Eele + Evdw (2)

where GGB, GSA, Eele, and Evdw are solvation-free energy, nonpolar solvation-free energy,
electrostatic, and van der Waals forces, respectively. Due to the cost of computations, the
contributions of the configurational entropy (S) were ignored [58,59]. It is also important to
mention that the lipid bilayer was considered in the binding energy computations.

4. Conclusions

The ABCB1 transporter plays an important role in the effluxion of the chemothera-
peutic agents outside the targeted cell; therefore, it is considered a charming target for
reversing MDR phenomena in cancer treatment. For this purpose, the T3DB database was
herein mined to identify novel ABCB1 inhibitors using molecular docking, MD simulations,
and MM-GBSA binding energy estimations. According to the results, Emamectin B1a
(T3D1043), Emamectin B1b (T3D1044), Vincristine (T3D4016), Vinblastine (T3D4017), and
Vindesine (T3D2479) exhibited promising binding affinities against the ABCB1 transporter
over the 100 ns MD simulations with ∆Gbinding values of −93.0, −92.6, −93.8, −92.2, and
−90.8 kcal/mol, compared to ZQU (calc. −49.8 kcal/mol). The energetic and structural
investigations ensured the constancy of the identified inhibitors inside the ABCB1 trans-
porter. Additionally, the POPC simulations showed no significant difference in the binding
energies of the identified inhibitors with the ABCB1 transporter. These results suggested
that subsequent in-vivo and in-vitro investigations on these identified T3BD compounds
may provide potential ABCB1 inhibitors that can reverse MDR phenomena.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16071019/s1, Figure S1: 2D molecular interactions of the top
five T3DB compounds inside the ABCB1 binding pocket; Figure S2: (a) 3D representation of the
predicted docking pose (in cyan) and the experimental pose (in gray), and 2D representation of
interactions of the experimental pose of Vincristine inside the ABCB1 binding pocket. The docking
score is also presented (in kcal/mol). Figure S3: 3D molecular interactions of the top five T3DB
compounds and ZQU inside the ABCB1 binding pocket according to the average structures over 100
ns MD simulations (the hydrogen bonds are represented in green dashed lines); Table S1: Estimated
docking scores and MM-GBSA binding energies (in kcal/mol) over 1 ns for the top 103 T3DB
compounds compared to ZQU inside the ABCB1 binding pocket.
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