
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Faculty Journal Articles

8-31-2022

RC Parasitic-Aware Layout Analysis and Routing Optimization RC Parasitic-Aware Layout Analysis and Routing Optimization

Methodology Methodology

Mohamed Saleh Abouelyazid
The American University in Cairo (AUC), mohsaleh@aucegypt.edu

Sherif Hammouda

Yehea Ismail
The American University in Cairo (AUC), Y.ISMAIL@AUCEGYPT.EDU

Follow this and additional works at: https://fount.aucegypt.edu/faculty_journal_articles

Recommended Citation Recommended Citation

APA Citation
Saleh Abouelyazid, M. Hammouda, S. & Ismail, Y. (2022). RC Parasitic-Aware Layout Analysis and Routing
Optimization Methodology. IEEE Access, 10, 92740–92759. 10.1109/access.2022.3203077
https://fount.aucegypt.edu/faculty_journal_articles/4722

MLA Citation
Saleh Abouelyazid, Mohamed, et al. "RC Parasitic-Aware Layout Analysis and Routing Optimization
Methodology." IEEE Access, vol. 10, 2022, pp. 92740–92759.
https://fount.aucegypt.edu/faculty_journal_articles/4722

This Research Article is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted
for inclusion in Faculty Journal Articles by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact fountadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/faculty_journal_articles
https://fount.aucegypt.edu/faculty_journal_articles?utm_source=fount.aucegypt.edu%2Ffaculty_journal_articles%2F4722&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/access.2022.3203077
https://fount.aucegypt.edu/faculty_journal_articles/4722?utm_source=fount.aucegypt.edu%2Ffaculty_journal_articles%2F4722&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/faculty_journal_articles/4722?utm_source=fount.aucegypt.edu%2Ffaculty_journal_articles%2F4722&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fountadmin@aucegypt.edu

1

RC Parasitic-Aware Layout Analysis and
Routing Optimization Methodology

MOHAMED SALEH ABOUELYAZID1,2, (Member, IEEE), SHERIF HAMMOUDA1,
AND YEHEA ISMAIL2, (Fellow, IEEE)
1Siemens, EDA, 11835, Cairo, Egypt
2The American University in Cairo, 11835, Cairo, Egypt.

Corresponding author: Mohamed Saleh Abouelyazid (e-mail: mohamed_saleh@mentor.com, mohsaleh@aucegypt.edu).

ABSTRACT A parasitic-aware routing optimization and analysis methodology for integrated circuits is

developed based on an incremental parasitic extraction and a fast optimization methodology. Existing routing

optimization methodologies rely on many circuit simulations, detailed sensitivity analysis, and inefficient

simple parasitic models to optimize routes. Moreover, they do not provide a mechanism to help layout

designers in identifying problematic layout geometries that have a bad impact on a route’s performance. The

proposed methodology works on overcoming such problems by providing three features. First, it provides

novel sensitivity circuit models to analyze the integrity of signals in layout routes. Such circuit models are

based on an accurate matrix circuit representation, a cost function, and an accurate parasitic sensitivity

extraction. The circuit models identify critical parasitic elements along with the corresponding layout

geometries in a certain route, where they measure the sensitivity of a route’s performance to corresponding

layout geometries very fast. Therefore, they can correlate the problems of a route’s performance to specific

layout geometries. Second, the proposed methodology uses a nonlinear programming technique to optimize

problematic routes with pre-determined degrees of freedom using the proposed circuit models. Third, the

proposed methodology uses a novel incremental parasitic extraction method to extract parasitic elements of

modified geometries efficiently. The incremental extraction is used as a part of the routing optimization

process to improve the optimization runtime and increase the optimization accuracy. The proposed

methodology is tested over different designs of 7nm and 65nm process nodes. The results show that the

proposed methodology managed to identify and optimize the problematic geometries in critical routes

efficiently with up to 10% performance improvements and a speedup of 3 to 9X as compared to traditional

template-based methods.

INDEX TERMS layout routing; routing optimization; parasitic-aware; incremental extraction

I. INTRODUCTION

The continuous scaling down of process technology nodes

enabled the integration of more functionalities and systems

together on a single chip. Such an integration significantly

increased the complexity and density of layouts introducing

more parasitic elements. The impact of interconnect parasitic

elements on the overall circuit performance keeps increasing

from one technology generation to the next. Moreover, the

number of interconnect parasitic elements significantly

increased in recent advanced processes. Therefore, the

effects of interconnect parasitic elements are no longer

second order effects. They are now dominating the overall

circuit performance [1]–[3]. As a result, it is very important

to consider the parasitic effects during placement and routing

processes to reduce the overall turn-around-time of a circuit

design and improve the yield.

The current optimization flows do not deal with the effects

of parasitic elements as dominant factors. They are still

dealing with the parasitic effects as second order effects.

Moreover, current flows do not provide proper layout

analysis and debugging methodologies to help circuit

designers in identifying the problematic parasitic elements

and the corresponding layout geometries. As a result, circuit

designers need to manually analyze the impact of

interconnect parasitic elements on a circuit performance,

which is a very time-consuming and error-prone operation.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

Nowadays, the time consumed in analyzing the post-layout

simulation results is more critical than post-layout simulation

runtime itself. Therefore, there is an increasing demand to

provide algorithms that help circuit designers in

understanding the impact of parasitic elements on post-

layout simulation results and identifying the most

problematic parasitic elements along with the corresponding

layout geometries in a given layout.

Automatic layout generation and optimization tools are

used by layout designers to generate a layout that meets the

required circuit specifications. Such tools are commonly

used for digital circuit designs, where cell-based tools are

employed to cover circuit synthesis, mapping, and physical

design steps [4]. On the other hand, analog layout generation

tools do not provide full automation environment for analog

circuits, where analog circuit designers still need to do many

manual analysis and layout modifications in order to meet

the required circuit specifications. In analog designs, the

layout optimization tools are usually used to determine

device sizes, circuit topologies, and routing paths. However,

they still deal with the effects of interconnect (i.e., route)

parasitic elements as second order effects ignoring that the

interconnect parasitic effects became one of the dominant

factors on a circuit performance in advanced process nodes,

especially those parasitic effects that are associated with

critical nets. In order to control the effects of parasitic

elements, the corresponding routes need to be routed in a

way that reduces the associated parasitic elements [5], [6].

Routing is the process of creating connections between

devices. The routing is mainly divided into two stages that

include global and detailed routing. The global routing is

responsible for identifying general paths of each connection.

It usually divides the routing region into windows and

identifies the general window-to-window paths for all

connections (i.e., routes) [7]. On the other hand, the detailed

routing is responsible for identifying exact paths, metal

layers, and vias for each net in a certain layout. The routing

processes usually consider multiple constraints, such as

maintaining net symmetry, minimizing wire lengths, having

a maximum number of vias, and minimizing parasitic

elements [6], [8].

In net symmetry constraints, the layout geometrical

matching is no longer enough to achieve a net symmetry as

it does not necessarily provide a performance matching

across the required nets. This problem significantly increases

in advanced process technology nodes because layouts

became more complicated and the parasitic coupling

interactions with the surrounding polygons significantly

increased. In order to achieve the performance matching, the

parasitic elements of the target nets need to be considered

while applying the net symmetry constraint. In other words,

the accuracy requirements of parasitic-aware routing

processes significantly increased in advanced process nodes

requiring more accurate parasitic models [6].

Parasitic-aware routing processes aim to reduce the

parasitic elements that are mainly associated with critical

routes in order to meet the required circuit’s specifications.

This is done by modifying layout geometries of critical

routes in a way that reduces the effects of associated parasitic

elements. However, modifying layout geometries will not

only impact the associated parasitic elements, but it will also

impact the parasitic interactions among surrounding and

nearby metals. Therefore, a full layout parasitic extraction is

required with every change in routes in order to accurately

measure the impact of modifying the routes [6].

Many efforts were done to provide parasitic-aware routing

optimization methods; however, they use either simplified

parasitic models such as in [5], [9]–[14], or a full layout

parasitic extraction such as in [15]–[17] to extract the

parasitic elements of a layout design during the optimization

processes. As for the methods that use simplified parasitic

models, they provide a faster layout routing optimization;

however, they are less accurate, and their parasitic extraction

accuracy cannot cope with the accuracy requirements of

advanced process nodes [18], [19]. On the other hand, the

methods that use a full layout parasitic extraction provide

more accurate layout optimization; however, they are very

slow as they require a full layout parasitic extraction with

every iteration in the optimization loop. Therefore, such

methods are inefficient for designs with many nets (e.g.,

more than 100K nets), where the runtime of a single full

layout parasitic extraction, using a rule-based extractor, may

exceed several hours according to our experimental results.

Moreover, previous efforts did not provide a systematic

method to analyze the impact of parasitic elements and

geometry modifications on a circuit performance.

This paper aims to develop a new parasitic-aware routing

optimization methodology. The proposed methodology can

be applied either after or within the detailed routing step. The

proposed methodology enables circuit designers to debug

and analyze the impact of parasitic elements on a circuit

performance. Also, it provides a mechanism to identify the

problematic parasitic elements and correlate them with

specific layout geometries. Moreover, it uses nonlinear

programming to re-route the problematic paths (i.e., routes)

in order to achieve the required specifications with a full

consideration of the surrounding environment. The proposed

methodology uses a novel incremental parasitic extraction

method in order to extract the parasitic elements of a

modified layout during the optimization process. The

proposed incremental extraction method provides very

accurate parasitic extraction results with a maximum error <

1% as compared to a full layout extraction.

The contributions of this paper are:

a. Circuit models to measure and analyze the impact of

parasitic elements and corresponding layout geometries

on a pre-defined cost function, such as net symmetry and

maximum delay cost functions. In other words, they

measure the sensitivity of system’s performance cost

function to layout geometries.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

b. The proposed models are used in an algorithm that

identifies the geometries and parasitic elements that the

system’s performance is most sensitive to without any

circuit simulations.

c. A parasitic-aware routing optimization algorithm that

uses nonlinear programming to automatically modify

the most critical routes in order to meet the required

performance cost function without circuit simulations.

The proposed algorithm accepts pre-determined degrees

of freedom (e.g., route’s corners) and dynamic

constraints. Therefore, the proposed routing algorithm

optimizes a performance cost function taking the

corresponding RC parasitic elements into consideration.

d. A novel incremental parasitic extraction methodology

that considers second order parasitic capacitance effects

efficiently. The proposed incremental methodology is

applied on top of a full layout parasitic extraction tool,

Calibre xRC, rule-based extractor [20]. It provides very

accurate parasitic extraction results with a maximum

error < 1% and a speedup of up to 40X as compared to

a full layout extraction.

e. The testing of the proposed routing algorithm is

performed by using a template-based layout

optimization flow. We replaced the routing optimization

algorithm of the template-based layout optimization

flow with the proposed routing optimization algorithm.

f. The proposed methodology is tested on different designs

of 7nm, 40nm, and 65nm process nodes.

The rest of the paper is organized as follows. Section II

provides the related work. Section III provides a background

on parasitic-aware layout optimization methods and system

moments. Section IV introduces the proposed incremental

parasitic extraction method. Section V describes the

proposed parasitic-aware layout routing optimization

methodology. Section VI shows the experimental results.

Section VII provides the conclusion and future works.

Moreover, Table 1 shows a list of abbreviations and symbols

that are commonly used in this work.

II. RELATED WORK

Most of existing parasitic-aware routing methods suffer from

two problems. First, they use either simplified parasitic

formulas or a full layout parasitic extraction in order to

measure the parasitic elements for each layout modification

in the design loop. The simplified parasitic models are not

accurate and cannot cope with the increasing parasitic

extraction accuracy requirements in advanced nodes leading

to inaccurate layout optimization. On the other hand, the use

of a full layout extraction is very time-consuming and not

suitable for optimizing large layout designs. Second, the

existing routing optimization methods do not provide a

systematic way to help circuit designers in understanding the

impact of parasitic elements and the corresponding layout

geometries on a system’s (i.e., route) performance.

Table 1. List of abbreviations and symbols.

Abbreviation

or symbol

Definition

PDK Process design kit

RO Ring oscillator

VCO Voltage-controlled oscillator

CF Cost function

RCF Relative cost function

DCF Delay cost function

MR Maximum coupling capacitance interaction range

BW Band width

PM Phase margin

GM Gain margin

G Admittance matrix

C Capacitance matrix

Pi A parasitic element

Ri A parasitic resistive element

Ccj A parasitic capacitive element

mk A circuit moment at kth order

rt A threshold voltage to a maximum voltage ratio

Si A circuit (i.e., network) response

Ge Route geometries

Π RC pi model

In [21], a parasitic-aware routing method was developed

based on simplified parasitic formulas. This approach aims

to reduce the delay and routing area considering the

interconnect parasitic elements of a given layout. This

method identifies multiple candidate routes for each

connection. Then, it evaluates the performance of each

candidate until the candidates that meet the required

performance are achieved. This method has three main

problems. First, it uses simplified parasitic formulas that

cannot cope with the new accuracy requirements of advanced

process nodes [18], [19]. Second, this method does not deal

with the parasitic effects as dominant factors on a circuit’s

performance. Third, this method relies on a pre-determined

set of candidate routes that do not necessarily achieve the

required performance.

In [10], an automatic optimization-based sizing and

routing methodology was developed for analog circuits. This

methodology uses a layout generator that computes the

optimal electrical current correct wire topology and global

routing in loop for each different sizing solution. Such a

methodology relies on simplified parasitic models in order to

achieve reasonable optimization runtime as it requires many

optimization loops (i.e., iterations). This methodology has

three main problems. First, it requires many iterations to

achieve good results. Second, it uses simplified parasitic

formulas that cannot cope with the new accuracy

requirements of advanced process nodes. Third, it does not

deal with the parasitic effects as dominant factors on circuit’s

performance.

In [22]–[24], parasitic-aware routing methodologies based

on circuit moments were developed. The proposed

methodologies aim to optimize layout routes by minimizing

a cost function. The cost function considers parasitic

resistance, capacitance, self-inductance, and mutual

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

coupling inductance effects (RLCK), and it provides a

representation of the delay and ringing of the signals.

Therefore, the minimization of the developed cost function

helps in achieving a good balance between route’s delay and

ringing. These efforts have five problems. First, they require

a full layout parasitic extraction in order to evaluate the

corresponding cost function with every optimization

iteration. Second, the cost function is only valid for delay and

ringing effects. Third, they are not suitable for both net

symmetry constraints and analog designs. Fourth, they do

not provide good understanding to the impact of parasitic

effects on a route’s performance. Fifth, they do not correlate

parasitic elements to certain geometries.

In [13], a template-based parasitic-aware layout

optimization method was developed. As for the routing

optimization, traditional template-based methods optimize

layout routes in x and y directions separately. This method

aims to overcome this problem by optimizing layout routes

in x and y directions simultaneously. Such a method uses a

hybrid algorithm that consists of nonlinear programming and

graph-based algorithms in order to achieve more accurate

layout optimization. However, this method has three

problems. First, it does not deal with the parasitic effects as

dominant factors on a circuit’s performance as it uses very

simple parasitic formulas to extract the parasitic elements of

a given layout. Such formulas cannot cope with the new

accuracy requirements of advanced process nodes. Second,

it does not provide a mechanism to help circuit designers in

understanding the impact of parasitic effects on a system’s

(i.e., route) performance. Third, it only considers rectilinear

and Manhattan geometries, and it cannot handle non-

Manhattan geometries.

In [5], [12], [14], [25], template-based parasitic-aware

routing optimization methodologies were proposed. They

aim to create a symbolic template with a set of constraints

such as net symmetry, connectivity, parasitic bounds, and

corresponding design rules. The calculations of parasitic

bounds rely on multiple circuit simulations in order to

identify a parasitic bound for each parasitic element. The

parasitic model for each route is represented by a simple RC

Π (i.e., pi) model in order to speed up the calculations of

parasitic bounds. Such methodologies are fast; however, they

are suffering from three problems. First, they use simplified

parasitic formulas that cannot cope with the new accuracy

requirements of advanced nodes. Second, they do not

provide a mechanism to help circuit designers in

understanding the impact of parasitic effects on a system’s

(i.e., route) performance. Third, most of them cannot handle

non-Manhattan geometries.

In [26], analog layout design tool called LAYGEN II was

developed. It uses a symbolic template (i.e., template-based)

approach in order to perform placement and routing. This

approach is very efficient in achieving a good initial layout

for a given circuit design; however, it requires a lot of

computational resources in order to handle large layouts.

In [27], an analog layout design tool was developed. As

for the routing optimization, this method uses a combination

of symbolic template (i.e., template-based) and optimization

approaches in order to generate layouts. This method uses a

template approach in order to reduce the search (i.e.,

solution) space. This method is efficient in achieving a good

initial layout for a given circuit design; however, it requires

a lot of computational resources in order to handle large

layouts. Moreover, it is not designed to handle non-

Manhattan geometries.

In [28], a routing algorithm was developed using a discrete

particle swarm optimization and multi-stage transformation

methods. The proposed algorithm optimizes layout routes

using two types of Steiner minimal tree models that include

Manhattan and non-Manhattan Steiner minimal trees.

Therefore, the selected route structure can contain

Manhattan and non-Manhattan geometries. This flow has

two problems. First, it does not consider the impact of

parasitic elements except for a route’s delay. Second, it does

not have a mechanism to help circuit designers in

understanding the impact of parasitic elements on system’s

performance.

The problems of existing routing optimization methods

can be summarized as below:

a. They do not provide a mechanism to help circuit

designers in understanding the impact of parasitic

elements on a system’s (i.e., route) performance, such as

identifying the problematic parasitic elements along

with the corresponding layout geometries.

b. Most of existing efforts use either simplified parasitic

formulas, such as in [5], [11]–[13], [27], [29], and [30],

or a full layout extraction, such as in [15], [22]–[24], in

order to extract the parasitic elements of a given layout.

The methods that use simplified parasitic formulas

suffer from an accuracy problem as the accuracy of such

parasitic formulas cannot cope with the increasing

accuracy requirements in advanced process nodes,

whereas the methods that use a full layout extraction

suffer from a long runtime problem as they require a full

layout extraction with every optimization iteration.

c. Many efforts do not pay much attention to the nonlinear

relationship between parasitic elements and layout

geometries, such as in template-based approaches [5],

[13], [14]. These efforts optimize layout routes in the x

and y directions separately (one after another). Such a

way of optimization cannot provide efficient results

when it comes to the nonlinearity of parasitic

constraints.

d. Many of existing efforts perform circuit simulations

inside the optimization loops as in [31], [32].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

This work focuses on overcoming these problems. First, it

provides a routing optimization method that can be applied

either after or within the detailed routing. Second, it provides

sensitivity circuit models that help circuit designers in

understanding the impact of parasitic elements and the

corresponding layout geometries on a route’s performance.

Third, it uses a novel incremental parasitic extraction method

to extract the parasitic elements of modified layouts during

the optimization process. Such an incremental method

provides very accurate results (<1% error) with a speedup of

up to 40X as compared to a full layout extraction. Fourth, it

does not require multiple circuit simulations. Table 2

provides a functional comparison among related works and

our work.

Table 2. A comparison among state-of-the art routing optimization works including our work.

 Routing methodology and its main limitations Contrib-

ution in

circuit

sizing

Parasitic

extraction

Requires a

circuit

simulation

Handling

of Non-

Manhattan

geometries

Models to analyze

the impact of

layout geometries

on a system’s

performance

Smey et al.,

[21]

Routing Methodology:

• This method optimizes routes in two steps. First, it generates a set of

candidate routes for each connection. Then, it selects the candidate route

with minimum area and minimum delay for each connection.

Main limitations:

• It relies on pre-determined candidate routes that do not necessarily

achieve the required performance.

• It uses simplified RC parasitic formulas that cannot handle complicated

layout structures in advanced nodes.

No Simplified

2D cross-

section
models for

RC

elements.

Yes No No

Lourenco et al.,

[10]

Routing Methodology:

• Automatic electromigration-aware wire topology and global routing in-

loop for each different sizing solution.

Main limitations:

• It requires many iterations to achieve good results.

• It uses simplified RC parasitic formulas that cannot handle complicated

layout structures in advanced nodes.

Yes Simplified

2D cross-
section

models for

RC
elements.

Yes No No

Bhaduri and

Vemuri
[22]–[24]

Routing Methodology:

• They optimize routes by minimizing a cost function that provides a

balance between the delay and ringing effects.

• They use template-based approach to generate routing candidates.

Main limitations:

• They use a full layout parasitic extraction to evaluate the cost function,

which consumes a lot of time.

• The developed cost function has limited applications as it only considers

the delay and ringing effects.

No A full

layout
extraction

for RLCK

elements.

No No No

Zhang et al.,

[14],

Liu and Zhang

[5], [25], and

Bhattacharya et

al., [12].

Routing Methodology:

• A symbolic template approach that is used to minimize parasitic effects

and a route’s area.

Main limitations:

• They use simple RC parasitic formulas that cannot handle complicated

layout structures in advanced nodes.

No Simplified

2D cross-

section

models for

RC

elements.

Yes No No

Naguib et al.,

[27]

Routing Methodology:

• A symbolic template approach that is used to minimize parasitic effects

and a route’s area.

Main limitations:

• It requires a lot of computational resources in order to handle large

layout designs.

Yes Simplified

2D cross-
section

models for

RC
elements.

Yes No No

Liu et al., [28] Routing Methodology:

• Swarm optimization algorithms that are used to minimize parasitic

effects and a route’s area.
Main limitations:

• It does not consider the impact of parasitic elements except for a route’s

delay.

No A full
layout

extraction

for RC
elements.

No Yes No

This work Routing Methodology:

• Nonlinear programming to minimize a performance cost function based

on circuit moments and sensitivity models.

Main limitation:

• It only considers RC parasitic elements. Hence, this model is appropriate

for local interconnect at any frequency and global interconnect at a lower

frequency. For high frequency global interconnect, inductance and more

complex models are needed.

No Incremental

layout

parasitic
extraction

for RC

elements

No Yes Yes

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

III. BACKGROUND

A. TEMPLATE-BASED PARASITIC-AWARE LAYOUT
OPTIMIZATION

A layout optimization is the process of modifying and

optimizing layout designs in order to meet the required

circuit specifications. One of the most efficient layout

optimization methods is the template-based method. The

template-based method is used to either migrate a layout

design from one process node to another or optimize an

existing layout to meet the required constraints and

specifications. It consists of two main steps that include

symbolic template extraction and layout generation steps as

shown in Figure 1.

Figure 1. Template-based layout optimization flow [13], [14].

The Symbolic template step is responsible for generating

a set of geometrical and electrical constraints (i.e., symbolic

template) for an existing layout considering the required

circuit specifications [5], [12]–[14]. The symbolic template

is usually represented by mathematical formulas (e.g.,

compaction formulas) such as in Figure 2. On the other hand,

the layout generation step is responsible for optimizing and

generating a layout that meets the required specifications

taking into consideration the obtained symbolic template

constraints and the new design requirements. As shown in

Figure 1, the layout generation (or optimization) step starts

with a device sizing followed by a routing optimization,

which is performed in the horizontal and vertical directions

separately.

The routing optimization processes must consider the

impact of parasitic elements on a circuit performance to

achieve more accurate optimization results. Therefore,

parasitic constraints are obtained and converted into

geometrical constraints.

Figure 2. An Example of template geometrical constraints, in the x-
direction, for a simple layout [14].

B. SYSTEM MOMENTS

Assuming an RC linear circuit, the corresponding general

nodal analysis equations are given by:

𝐺 𝑉 + 𝐶 𝑉̇ = 𝑏, (1)

where G is an n×n admittance matrix that is obtained from

the interconnections among the resistive elements, C is an

n×n capacitance matrix that is obtained from the

interconnections among the capacitive elements, 𝑏 is a vector

of size n that represent the inputs at each node, V is a vector

with n state variables that represent the capacitor voltages

(i.e., voltage response at each node), whereas n represent the

number of nodes (or capacitor voltages) for a linear system

with RC elements. The response, V(s), at any node in a given

linear circuit can be expressed by a Taylor series expansion

as below [33]:

𝑉(𝑠) = 𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠
2 + 𝑚3 𝑠

3 + ⋯, (2)

 where mi represents the ith moment of a given linear

system at a given node.

Substitute (2) in (1), we get:

𝐺[𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠
2 + ⋯]

+ 𝐶 𝑠[𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠
2

+ ⋯] = 𝑏 . (3)

Equating the coefficients of sn in both sides of (3), we get

[33]:

𝐺 𝑚0 = 𝑏

𝑚0 = 𝐺−1 𝑏

𝑚1 = 𝐺−1 𝐶 𝑚0

𝑚2 = 𝐺−1 𝐶 𝑚1

⋮

𝑚𝑛 = 𝐺−1 𝐶 𝑚𝑛−1. (4)

Therefore, the moments of a linear system provide a detailed

representation of its response (i.e., a system response) as

shown in (2), and system moments can be obtained by (4)

[33].

Existing

Layout Design

Original
Design Rules

Target

Design Rules
Device sizes

Symbolic

template
Output Layout

Design

A layout template extractor
Layout

optimizer and

generator
Corner stitching data

structure

Net and device

extraction

Generate design rules and

connectivity constraints

Generate symmetry
constraints

Integrate the target

design rules

Device Resizing

Transform Equi-
distance constraints

Solve constraint

graph

Individual rectangle

minimization

First, Horizontal.

Then, Vertical.

Left bound (X
l
) Right bound (X

r
)

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

min(X
r
 - X

l
), subject to:

(x
1
 - X

l
) ≥ 0, (x

3
 - X

l
) ≥ 0, …

(X
r
 – x

12
) ≥ 0, (X

r
 – x

10
) ≥ 0, …

(x
2
 – x

1
) ≥ 2, (x

12
 – x

11
) ≥ 2, …

(x
3
 – x

2
) = 0, (x

11
 – x

10
) = 0, …

(x
4
 – x

3
) = (x

10
 – x

9
), (x

13
 – x

4
) = (x

9
 – x

13
), …

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

IV. INCREMENTAL RC PARASITIC EXTRACTION

The layout parasitic extraction is an essential step in

conventional integrated circuit (IC) design flows. It is used

to extract parasitic elements of a given layout in order to

perform a post-layout simulation. If the post-layout

simulation results did not meet the required circuit’s

specifications, layout designers would modify the

corresponding layout until its post-layout simulation results

meet the required specifications. Usually, this process

requires several iterations of layout modifications, parasitic

extractions, and post-layout simulations until convergence.

There are two approaches to reduce the turn-around-time

of the layout parasitic extraction step in design loops. First,

some approaches use simplified parasitic models to speed up

the extraction process and reduce the parasitic network such

as in [12]–[14]. This approach is not efficient in advanced

process technology nodes as it handles the parasitic effects

as second order effects ignoring that the interconnect

parasitic effects became one of the dominant factors on a

circuit’s performance in such advanced nodes [18], [19],

[34]. Second, other approaches may use an incremental

parasitic extraction to limit the parasitic extraction process to

the modified polygons in a given layout. As a result, the

execution time (i.e., runtime) of the layout parasitic

extraction step in design loops decreases significantly with

minimal impact on the extraction accuracy as compared to

the use of a full layout parasitic extraction.

The incremental parasitic extraction aims to identify the

modified layout geometries, extract the corresponding

parasitic elements, and update the corresponding circuit

network (i.e., netlist) with the newly extracted parasitic

elements. In our work, the incremental parasitic extraction is

used to extract parasitic resistances and capacitances of

modified areas in a given layout.

A. INCREMENTAL PARASITIC RESISTANCE
EXTRACTION

As for parasitic resistances, they only depend on the

geometrical shapes of modified layouts, and they do not

depend on the surrounding environment. Therefore, the

incremental parasitic resistance extraction identifies the

modified layout polygons and re-extracts their parasitic

resistances smoothly without any consideration of the

surrounding environment. After that, the corresponding

circuit network (i.e., netlist) are updated with the newly

extracted parasitic resistive elements.

B. INCREMENTAL PARASITIC CAPACITANCE
EXTRACTION

The incremental extraction of parasitic capacitances is more

complicated than the incremental extraction of parasitic

resistances because parasitic capacitances are highly

correlated with the surrounding environment. In other words,

if a layout polygon is modified, the modifications will not

only impact the associated parasitic capacitive elements, but

also, they will impact the parasitic capacitive elements

among nearby metal polygons. Therefore, the incremental

parasitic capacitance extraction needs to select and re-extract

the parasitic capacitive elements that are impacted by layout

modifications.

Existing incremental parasitic extraction methods can re-

extract parasitic resistances efficiently; however, they cannot

efficiently re-extract parasitic capacitance. This is because

existing incremental methods only re-extract parasitic

capacitances that are directly coupled with modified shapes

(i.e., first order parasitic capacitances), and they ignore all

coupling capacitances that are not directly coupled to

modified layout shapes, such as second order coupling

capacitances as shown in Figure 3, even if those capacitances

are significantly impacted by layout modifications [35],

[36]. As a result, they provide a low extraction accuracy as

compared to a full layout parasitic capacitance extraction.

Figure 4 shows an example of modifying the position of a

nearby polygon on the second order coupling capacitance

between two other fixed polygons.

Figure 3. An example of second order coupling capacitances due to

modifying a certain metal polygon.

Figure 4. The impact of increasing the separation between the aggressor

and left victim polygons on the coupling between the aggressor and right
victim polygons. The experiment used metal5 layer of 28nm process
technology node.

A novel incremental parasitic capacitance extraction

method is developed to extract first and second order

capacitances efficiently. The developed method provides

outstanding accuracy results as compared to a full layout

extraction with a maximum relative error < 1%. Moreover,

the impact of extracting second order capacitances on the

total extraction runtime is negligible, where the time required

to extract second order capacitances represents < 5% of the

total incremental extraction runtime. The developed method

has three main steps. First, it identifies the modified shapes

and the corresponding metal layers. Second, it calculates a

maximum coupling capacitance interaction range (MR) for

each metal layer. Third, it extracts all coupling capacitances

that are enclosed inside the maximum interaction range, and

it updates the corresponding circuit’s network (i.e., netlist)

Modified

polygon

Second order coupling
capacitance

Second order coupling

capacitance

0.087

0.09

0.093

0.096

0.099

0 1 2 3 4

Aggressor Victim

C1 S

Victim

Separation (S) (µm)

C
o
u
p

li
n
g

ca
p
ac

it
an

ce

(C

1
)

(f
F

)

8.9%
increase

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

with the newly extracted parasitic capacitive elements. The

three steps of the developed incremental capacitance

extraction method are described in more details as follows.

1) IDENTIFY MODIFIED SHAPES

In this step, all metal polygons that are impacted by layout

modifications are marked, where the modified metal

polygons are marked, and the metal polygons that were

previously interacting with the modified polygons (before

modifications) are also marked. This is to ensure that all

impacted parasitic capacitances are considered during the

incremental extraction process.

2) CALCULATING THE MAXIMUM CAPACITANCE
INTERACTION RANGE

In this step, a maximum capacitance interaction range

(MR) is calculated for each metal layer and stored a pre-

characterized library in order to be later used by the

incremental extraction flow, given that each process

technology node has a pre-characterized library of MR

values. For a certain process node, the pre-characterized

library is created only once and used numerous times by the

incremental parasitic extraction flow for different layout

designs.

The maximum capacitance interaction range (MR) of a

polygon represents the range (i.e., distance) where coupling

capacitances to other polygons are negligible and do not

impact the accuracy of a parasitic capacitance extraction. In

other words, the MR identifies the valid coupling range for

each layout polygon in order to avoid unnecessarily

capacitance computations. The calculation of an MR

depends on the corresponding metal stack specifications,

where each metal layer in a certain process node has a

different MR value.

For a certain metal layer, the MR is calculated by

constructing two adjacent metal polygons using the

corresponding minimum dimensions. Then, an electrostatic

simulator is used to extract the lateral coupling capacitance

between the two polygons accurately. Also, the simulator

performs a parametric sweep over lateral spacings while it

measures the coupling capacitance between the two metal

polygons until the MR is achieved, given that the MR

represents the distance where the coupling capacitance

between the two polygons is less than or equal to 1% of the

total capacitance on one of the polygons as shown in Figure

5 [18], [19].
In [18] and [19], the MR is used in a full layout parasitic

capacitance extraction to identify the maximum coupling

interaction distance for each metal polygon; however, in this

work, the MR is used in an incremental parasitic capacitance

extraction to identify the capacitance elements that are

impacted by layout modifications, given that such impacted

capacitance elements do not necessarily have direct coupling

interactions with any modified metal polygon.

Figure 5. The impact of increasing the separation (i.e., spacing) between
two metal polygons on the lateral coupling capacitance between them
using metal5 of 28nm process technology node [18], [19].

3) CAPACITANCE EXTRACTION AND NETLIST
UPDATE:

In this step, the maximum interaction ranges of all

modified polygons are obtained from the corresponding pre-

characterized library. Then, all parasitic capacitive elements

that are enclosed inside this range are re-extracted including

second order parasitic capacitances. This ensures that all

impacted capacitive elements are extracted, whereas the

capacitive elements that are not enclosed inside the

maximum interaction ranges are not extracted as shown in

Figure 6. Eventually, the corresponding circuit’s network

(i.e., netlist) is updated with the newly extracted parasitic

capacitive elements.

Figure 6. An illustrative example of 2D cross-section metal polygons
showing some capacitive elements that are enclosed inside the maximum
capacitance interaction range of a modified polygon.

V. PARASITIC-AWARE ROUTING OPTIMIZATION

METHODOLOGY

Parasitic-aware routing optimization methodology based on

circuit moments is developed. The proposed routing

methodology is used as a part of a template-based layout

optimization flow. The proposed methodology has three

main benefits. First, it helps circuit designers in analyzing

the performance of critical routes. This is done by developing

a sensitivity circuit model that measures the sensitivity of a

route’s performance cost function to the corresponding metal

geometries. Second, the proposed methodology efficiently

considers the impact of parasitic elements during the

optimization of critical routes by using a novel incremental

0

0.09

0.18

0 0.5 1 1.5 2 2.5 3

Cc
Ct

Cc/Ct = 0.00977
Maximum range = 1.81µm Cc

ground

Separation

C
g

Metal 5

(28nm)

Ctotal (Ct) = Cc + C
g

Separation(µm)

C
ap

ac
it

an
ce

 (
fF

)

MR: Maximum range

MR

MR

MR

Layer(i-1)

Layer(i)

Layer(i+1)

Modified metal Polygon

Metal polygons outside
of maximum range

Capacitances enclosed inside the

MR

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

parasitic extraction method. Third, the proposed

methodology optimizes critical routes very fast using a cost

function and corresponding sensitivity circuit models. The

critical routes represent the routes that either hold analog

signals or have a considerable impact on a circuit’s

performance. Such routes are identified by circuit designers

after performing a sensitivity analysis across different routes,

i.e., the sensitivity of a circuit performance to a route’s

network including parasitic elements.

The proposed methodology consists of three main steps as

shown in Figure 7. First, a performance cost function is

developed, for example, a relative cost function that

measures the performance difference between two routes.

Second, sensitivity circuit models are derived to measure the

sensitivities of a cost function to route’s geometries. Third, a

nonlinear programming is used to minimize a cost function

subject to route’s geometries considering the obtained

sensitivity circuit models. The cost function minimization

process considers different geometry constraints such as

connectivity, blockages, and net symmetry constraints.

Moreover, the optimization process can handle Manhattan

and non-Manhattan geometries.

Figure 7. The proposed layout optimization flow for critical routes.

The nonlinear programming requires a layout parasitic

extraction process with every optimization iteration to

evaluate the developed cost function. Therefore, a novel

incremental parasitic extraction method is developed, as

described in section IV. The developed incremental

extraction method employs a full layout extraction tool,

Calibre xRC, rule-based extractor [20], in an incremental

manner in order to reduce the parasitic extraction runtime.

Moreover, it provides high accuracy numbers as compared

to a full layout extraction (<1% error).

A. COST FUNCTION DEVELOPMENT

Two cost functions are developed. The first one represents a

net matching (i.e., symmetry), whereas the second one

represents a route’s delay.

1) NET MATCHING COST FUNCTION:

A cost function that measures the performance difference

between two systems (i.e., routes) is developed as follows.

Assuming two systems with output responses S1 and S2. The

systems can belong to the same net, as shown in Figure 8 (a),

or different nets, as shown in Figure 8 (b). The

corresponding responses at their terminals are expressed by

Taylor series expansions as below:

𝑆1(𝑠) = 𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠
2 + 𝑚3 𝑠

3 + ⋯, (5)

and

𝑆2(𝑠) = 𝑚′
0 + 𝑚′

1 𝑠 + 𝑚′
2 𝑠

2 + 𝑚′
3 𝑠

3 + ⋯, (6)

where mi and m’i are circuit moments at ith order.

To ensure that the two systems have the same output

response, a relative cost function (RCF) is developed as

below:

relative cost function (RCF) = ∑
(𝑚𝑖 − 𝑚′

𝑖)
2

𝑚′
𝑖
2 ,

𝑞

𝑖=0

 (7)

where q represents the required order of circuit moments.

The purpose of using a relative formula is to normalize the

weights for all required moments to ensure that all required

moments are equally considered (regardless of their order of

magnitude) during the optimization process.

The RCF has two main uses. First, it is used to meet net

symmetry constraints as it measures the performance (or

response) error between two routes. Second, it is used to

optimize critical layout routes by measuring the performance

error between a certain critical route and the corresponding

shortest path route assuming no blockages.

(a)

(b)

Figure 8. Two different RC systems that belong to (a) two different routes,
or (b) the same route.

2) DELAY MINIMIZATION COST FUNCTION:

Another cost function is developed based on circuit

moments in order to minimize a route’s delay. According to

[37], for a certain network, the crossing time (trt,q) represents

the time required by a signal to reach a certain voltage as

shown in Figure 9. The crossing time (trt,q) of a signal at a

certain threshold ratio of a voltage (rt) for q moments is given

by:

𝑡𝑟𝑡,𝑞 = 𝑎1 ∙ 𝑚1 + 𝑎2 ∙
𝑚2

𝑚1
+ 𝑎3 ∙

𝑚3

𝑚1
2 + ⋯+ 𝑎𝑞 ∙

𝑚𝑞

𝑚1
(𝑞−1)

, (8)

where the valid range of rt is from 0 to 1, 𝑡𝑟𝑡,𝑞 is the time

taken by the signal to achieve (or cross) the threshold

voltage, q is the required order of moment, whereas a1 to aq

are constant coefficients that might have different values

based on the required threshold value (rt). These constants

were obtained using curve fitting operations as shown in

[37].

In this work, a delay cost function is developed based on

(8). The threshold voltage ratio of the crossing point is set to

0.5, and the maximum number of moments (q) is set to five

moments, as recommended by [37] to achieve a good

R
1
 R

2
 R

n

C
2
 C

1

V
1

C
n

S
1

R’
1
 R’

2
 R’

m

C’
2
 C’

1

V
2

C’
m

S
2

R
1
 R

2

R
n

C
2
 C

1

V
1

C
n

S
1

R
m

C
m

S
2

R
i

C
i

R
j

C
j

Design Rules

Critical routes Cost function and

Sensitivity circuit models

Identify constraints

Routing optimization
(uses sensitivity circuit models to

minimize the cost function)

Requires a layout
parasitic extraction

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

accuracy. Therefore, the delay cost function (DCF) is given

by:

Delay cost function (DCF) = 𝑡0.5,5, (9)

where the values of a1 to a5 coefficients are -3.05, 5.59, -

4.36, 1.75, and -0.291, respectively as shown in [37].

Figure 9. An illustrative example of the threshold ratio (rt) that represents
the threshold-crossing point (tp, Vth), where a time tp is required by the
signal to reach Vth voltage.

B. SENSITIVITY CIRCUIT MODELS

In order to measure the impact of modifying layout

geometries (i.e., route’s geometries) on a cost function (CF),

a circuit model that measures the sensitivity of CF to layout

geometries is proposed and derived as below:

𝜕CF

𝜕𝐺𝑒

̅̅ ̅̅ ̅
= [

𝜕CF

𝜕𝑃
]
1×𝑛

. [
𝜕𝑃

𝜕𝐺𝑒
]
𝑛×𝑚

, (10)

where P represents the associated parasitic elements, Ge

represents route’s geometries, n is the number of parasitic

elements, whereas m is the number of corresponding layout

geometries. In order to correlate the cost function with layout

geometries (Ge), the geometries are represented by using

their coordinates (or vertices). Therefore, the sensitivity of a

cost function (CF) to layout geometries is given by:

𝜕𝐶𝐹

𝜕𝐺𝑒

̅̅ ̅̅ ̅̅
=

[

𝜕𝐶𝐹

𝜕𝑅1

𝜕𝐶𝐹

𝜕𝑅2

⋮
𝜕𝐶𝐹

𝜕𝑅𝑖

𝜕𝐶𝐹

𝜕𝐶𝑐𝑖+1

𝜕𝐶𝐹

𝜕𝐶𝑐𝑖+2

⋮
𝜕𝐶𝐹

𝜕𝐶𝑐𝑛]

 .

[

𝜕𝑅1

𝜕𝑥1

𝜕𝑅1

𝜕𝑥2
…

𝜕𝑅1

𝜕𝑦𝑚−1

𝜕𝑅1

𝜕𝑦𝑚

⋮ ⋮ ⋱ ⋮ ⋮
𝜕𝐶𝑐𝑛

𝜕𝑥1

𝜕𝐶𝑐𝑛

𝜕𝑥2
…

𝜕𝐶𝑐𝑛

𝜕𝑦𝑚−1

𝜕𝐶𝑐𝑛

𝜕𝑦𝑚]

, (11)

where x and y represent the coordinates of route polygons as

shown in Figure 10, R is a parasitic resistive element,

whereas Cc is a parasitic capacitive element. In order to

provide a degree of freedom, routes are fractured into

quadrilateral polygons (e.g., rectangles). As a result, the

sensitivity and cost function calculations consider either

Manhattan or non-Manhattan geometries.

(a)

(b)

Figure 10. An illustrative example of a geometry representation in the

proposed sensitivity models showing (a) an unfractured polygon and (b) a
fractured polygon.

The proposed model in (10) has two main components.

First, the CF sensitivity to parasitic elements (𝜕CF 𝜕𝑃⁄),

which is different from one cost function to another. Second,

the sensitivity of parasitic elements to system (i.e., route)

geometries (𝜕𝑃 𝜕𝐺𝑒⁄).

As for a cost function sensitivity to parasitic elements

(𝜕CF 𝜕𝑃⁄), two sensitivity models are developed. First, the

relative cost sensitivity to a parasitic element, which is

derived from the relative cost function in (7). Second, the

delay cost sensitivity to a parasitic element, which is derived

from the delay cost function in (9). Both of them are derived

for each parasitic element (Pi) in order to fill the

corresponding matrix. As for the sensitivity of parasitic

elements to system geometries, it does not rely on the used

cost function, and it can be used in (11) regardless of the used

cost function. The three sensitivity models are derived as

follows.

1) THE RELATIVE COST FUNCTION SENSITIVITY TO A
PARASITIC ELEMENT

As for the relative cost function sensitivity (RCF) to a

parasitic element, it is obtained by differentiating (7) with a

parasitic element (Pi) as below, given that the detailed

derivations are found in the Appendix:

𝜕RCF

𝜕𝑃𝑖

=
𝜕

𝜕𝑃𝑖

 (
(𝑚0 − 𝑚′

0)
2

𝑚′
0
2 +

(𝑚1 − 𝑚′
1)

2

𝑚′
1
2 + ⋯), (12)

Let

RCFmk =
(𝑚𝑘 − 𝑚′

𝑘)
2

𝑚′
𝑘
2 .

(13)

y1

y2

x1 x2 x3 x4 x5 x6 x7 x8

y3 Polygon (P)

(x1,y1)

(x1,y2)

(x2,y1)

(x3,y1)

(x4,y1)

(x5,y1)

(x6,y1)

(x7,y1)
(x8,y1)

(x8,y2)

(x2,y3)

(x3,y3)

(x4,y3)

(x5,y3)

(x6,y3)

(x7,y3)

Polygon (P)

tp

Vth
rt =

𝑉𝑡ℎ

𝑉𝑚𝑎𝑥

tp = f (m1, m2, …)

Vmax

Time

V
o

lt
ag

e

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

Therefore, by using mk as an intermediate variable,

𝜕RCF

𝜕𝑃𝑖

= ∑
𝜕RCFmk

𝜕𝑚𝑘

𝜕𝑚𝑘

𝜕𝑃𝑖

𝑞

𝑘=0

,
(14)

where mk is a certain degree moment at a given node, q is the

maximum required degree of moments, and RCFmk is the

relative cost function for a certain moment (i.e., relative

moment cost function). This model has two components that

include the sensitivity of a relative moment cost function to

a circuit moment (𝜕RCFmk 𝜕𝑚𝑘⁄) and the sensitivity of a

moment to a parasitic element (𝜕𝑚𝑘 𝜕𝑃𝑖⁄).

As for the relative moment cost function sensitivity to a

circuit moment, it is obtained by differentiating (13) with a

moment (mk) as below:

𝜕RCFmk

𝜕𝑚𝑘

= 2
(𝑚𝑘 − 𝑚′

𝑘)

𝑚′
𝑘
2 . (15)

As for the sensitivity of each moment to a parasitic

element (𝜕𝑚𝑘 𝜕𝑃𝑖⁄), it is obtained by differentiating (4) with

a parasitic element (Pi) as below, given that the detailed

derivations are found in the Appendix:

𝜕𝑚0

𝜕𝑃𝑖

= −𝐺−1
𝜕𝐺

𝜕𝑃𝑖

𝑚0, (16)

and
𝜕𝑚𝑘

𝜕𝑃𝑖

= −𝐺−1 (
𝜕𝐺

𝜕𝑃𝑖

 𝑚𝑘 +
𝜕𝐶

𝜕𝑃𝑖

𝑚𝑘−1 + 𝐶
𝜕𝑚𝑘−1

𝜕𝑃𝑖

) ,

𝑘 ≥ 1

(17)

where C is the capacitors matrix, G is the admittance matrix,

and m0 to mk are circuit moments at a given node.

Eventually, the sensitivity of an RCF to a parasitic element

(Pi) is obtained by substituting (15), (16), and (17) in (14) as

below, given that the detailed derivations are found in the

Appendix:

𝜕RCF

𝜕𝑃𝑖

= 2
(𝑚0 − 𝑚′

0)

𝑚′
0
2

∙ (−𝐺−1
𝜕𝐺

𝜕𝑃𝑖

𝑚0) + ∑ (2
(𝑚𝑘 − 𝑚′

𝑘)

𝑚′
𝑘

2

𝑞

𝑘=1

∙ (−𝐺−1 (
𝜕𝐺

𝜕𝑃𝑖

𝑚𝑘 +
𝜕𝐶

𝜕𝑃𝑖

𝑚𝑘−1 + 𝐶
𝜕𝑚𝑘−1

𝜕𝑃𝑖

))). (18)

2) THE DELAY COST FUNCTION SENSITIVITY TO A
PARASITIC ELEMENT

As for the delay cost function (DCF) sensitivity to a

parasitic element (Pi), it is obtained by differentiating (9)

with a parasitic element (Pi) as below, given that the detailed

derivations are found in the Appendix:

𝜕𝐷𝐶𝐹

𝜕𝑃𝑖

= 𝑎1 ∙
𝜕𝑚1

𝜕𝑃𝑖

+ ∑ [𝑎𝑘 (
𝜕𝑚𝑘

𝜕𝑃𝑖

 ∙
1

𝑚1
𝑘−1

+ 𝑚𝑘 ∙
(1 − 𝑘)

𝑚1
𝑘

 ∙
𝜕𝑚1

𝜕𝑃𝑖

)] ,

𝑞

𝑘=2

 (19)

where 𝜕𝑚𝑘 𝜕𝑃𝑖⁄ is obtained in (17).

3) A PARASITIC SENSITIVITY TO LAYOUT
GEOMETRIES:

 As for parasitic sensitivities to layout geometries

(𝜕𝑃 𝜕𝐺𝑒⁄), they are measured by using the proposed

incremental parasitic extraction flow which provides very

fast and localized sensitivity numbers. For a certain parasitic

element (Pi) and geometry parameter (xj), the sensitivity is

calculated using the below formula:

𝜕𝑃𝑖

𝜕𝑥𝑗

=
𝑃𝑖(𝑥𝑗+1) − 𝑃𝑖(𝑥𝑗)

𝑥𝑗+1 − 𝑥𝑗

, (20)

where Pi(xj+1) is the value of a parasitic element (Pi) when a

geometry x equals xj+1, Pi(xj) is the value of a parasitic

element (Pi) when a geometry x equals xj.

C. PERFORMANCE ANALYSIS TO IDENTIFY CRITICAL
GEOMETRIES

It is very important to understand and analyze the impact of

layout geometries on a route’s performance. This would help

identifying the most sensitive geometries to a route’s

performance cost function, speeding up the optimization

process, and achieving better optimization results.

The performance analysis is performed by using the cost

sensitivity to layout geometries model in (11). However, the

sensitivity analysis mainly relies on the required

performance cost function. In case of performing net

matching analysis, the sensitivity models of the relative cost

function in (11), (18), and (20) are used. In case of

performing a delay analysis, the sensitivity models of the

delay cost function in (11), (19), and (20) are used. The

higher the sensitivity value, the higher the impact on a

route’s performance.

As for a general performance analysis, the sensitivity

models of the relative cost function may be used in three

steps. First, identify the critical routes. Second, create a

shortest path route assuming no blockages as a reference

route. Third, use (11), (18), and (20) in order to calculate the

sensitivity of the RCF to route’s geometries using the

moments of a shortest path route as reference moments.

D. GEOMETRICAL CONSTRAINTS

Once the most sensitive geometries are selected, they are

used as optimization parameters for the routing optimization

process; however, this requires maintaining constraints such

as the corresponding process design kit (PDK), net blockage

constraints, connectivity, and net symmetry constraints. The

constraints are obtained using a symbolic template approach.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

E. LAYOUT ROUTING OPTIMIZATION PROCESS

The purpose of this step is to minimize a cost function with

respect to the most sensitive route’s geometries (i.e.,

coordinates) using a nonlinear programming. The sequential

least squares quadratic programming (SLSQP) algorithm is

used as a nonlinear programming algorithm because it is an

iterative approach for nonlinear optimization problems that

accepts multiple constraints. In order to provide degrees of

freedom for the routing optimization process, the target

routes are fractured into quadrilateral shapes. The number of

fractured polygons relies on the required number of degrees

of freedom. The fracturing is done in two steps. First, the

polygons are scanned in the x direction and fractured

vertically. Second, the polygons are scanned in the y

direction and fractured horizontally as shown in Figure 10

(b). Each fractured polygon holds four vertices conforming

a quadrilateral polygon. The fractured polygons are used to

create and evaluate the sensitivity circuit models in (11).

The optimization algorithm is shown in Figure 11. The

inputs of the algorithm are: 1) the target routes and 2) the

constraints including the new design requirements, whereas

the outputs are new routes that are represented by their

coordinates. It is worth mentioning that the minimization of

a cost function uses the derived sensitivity model, in (11), to

create the Jacobean matrix that are used by the nonlinear

programming algorithm.

VI. EXPERIMENTAL RESULTS

The testing covered the proposed incremental parasitic

capacitance extraction method, the derived sensitivity

models, and the proposed parasitic-aware routing

optimization method. The testing used Calibre xRC, by

Siemens EDA, as a rule-based layout parasitic extraction tool

[20], and Eldo platform, by Siemens EDA, as a circuit

simulator [38]. Moreover, the testing is performed on Intel

Xeon(R) E5-2680, 2 CPUs, 2.50GHz, and 16GB of RAM.

A. TESTING THE PROPOSED INCREMENTAL
CAPACITANCE EXTRACTION

The accuracy and runtime of the proposed incremental

parasitic capacitance extraction were tested and compared

against a full layout parasitic capacitance extraction across

two designs that include Ring Oscillator (RO) (7nm) and

voltage-controlled oscillator (VCO) (40nm) designs. Calibre

xRC, rule-based extractor, is used as an extraction tool for

both incremental and full layout parasitic extractions. The

testing methodology involves modifying metal shapes for

some critical nets. The modifications include deleting,

moving, stretching, and adding new metal polygons. Each

modified layout is tested by running a full layout parasitic

extraction, the proposed incremental extraction, and the

incremental extraction without considering the second order

capacitances.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Inputs:

 Routes[1..n]: List of routes that require optimization, and their count is n.

 Constraints[1..m]: List of constraints, and their count is m.

Output:

 New_Routes[1..n]: final list of optimized routes

Begin

 Routes = initial current routes.

 CF = initial values of a cost function across all routes.

 for i ∈ [1..n] //foreach route

 R = Routes[i] //in case of a delay optimization, it contains one route,

 // in case of a net matching optimization, it contains the two routes.

 while (optimization is needed) //i.e., gradient is needed

 Parasitics ← extract_parasitics(R) //extract parasitics of routes in (R)

 //using the proposed incremental parasitic extraction method.

 dPdGe ← calculate_dPdGe(R, Parasitics) // 𝜕𝑃 𝜕𝐺𝑒⁄ using (20)

 Moments ← calculate_moments(Parasitics) // using (4)

 dCFdP ← calculate_dCFdP(Moments, Parasitics)

 // calculate 𝜕𝐶𝐹 𝜕𝑃⁄ using (18) or (19)

 dCFdGe ←calculate_dCFdGe (dCFdP, dPdGe)

 // calculate 𝜕𝐶𝐹 𝜕𝐺𝑒⁄ using (11) to identify the most

 //sensitive geometries for optimization.

 R ← optimize_route(R, dCFdGe, Constraints, SLSQP)

 // At this point, R holds an updated route.

 New_Parasitics← extract_parasitics(R) //extract parasitics of new

 //routes in (R) using the proposed incremental parasitic

 //extraction method.

 New_Moments←calculate_moments(New_Parasitics) //using (4)

 CF[i]←calculate_cost_value(New_Moments)

 // using (7) or (9) to calculate new cost value

 end while

 New_Routes[i] = R

 end for

End

Figure 11. The proposed routing optimization algorithm pseudo code.

As for the RO (7nm), some input and output nets of RO

stages were modified in three different ways: 1) modifying

two metal layers with 1075 parasitic capacitive elements

(i.e., small), 2) modifying three metal layers with 2037

parasitic capacitive elements (i.e., medium), and 3)

modifying four metal layers with 3524 parasitic capacitive

elements (i.e., large). As shown in Table 3, The maximum

relative errors in the three scenarios after applying the

proposed incremental parasitic extraction flow as compared

to the full parasitic extraction are 0.14%, 0.25%, and 0.5%,

respectively. Moreover, the relative speedup of the proposed

incremental flow as compared to the full layout extraction in

the three scenarios is 40.4, 27.8, and 21.15, respectively.

Furthermore, the results show that the consideration of the

second order parasitic capacitances has a very small impact

on the runtime as compared to the incremental extraction that

does not consider the second order parasitic capacitances.

Table 4 shows the simulated RO delay results in case of

using the proposed incremental parasitic extraction and the

full layout extraction across the three different modification

scenarios. The simulation results show that the RO delay

relative errors in three modification scenarios are 2.4e-4%,

0.001%, and 0.0057%, respectively.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

Table 3. A comparison between the proposed incremental capacitance

extraction method and a full layout capacitance extraction using an RO
with 31 stages (7nm).

Component
Modification Type

Small Medium Large

Capacitive elements 1075 2037 3524

Metal layers 2 3 4

Max error of the proposed method 0.14% 0.25% 0.5%

Incremental extraction runtime in
seconds (secs)

11 secs 16 secs 21 secs

Full extraction runtime (minutes) 7.4 minutes

Relative speedup as compared to a
full extraction run

40.4 27.8 21.15

Incremental extraction runtime
without second order capacitances

10.4 secs 15.1 secs 19.5 secs

Table 4. The simulated delay results of an RO with 31 stages (7nm) in case
of using the proposed incremental capacitance extraction method and a
full layout capacitance extraction.

Full layout
parasitic

extraction

Incremental layout parasitic extraction

Small
modifications

Medium
modifications

Large
modifications

RO delay 8.47301ps 8.47303ps 8.4731ps 8.4735ps

Delay relative error as
compared to a full layout
parasitic extraction

2.4e-4% 0.001% 0.0057%

As for the VCO (40nm), several nets were modified in

three different ways: 1) modifying two metal layers with

11768 parasitic capacitive elements (i.e., small), 2)

modifying three metal layers with 12794 parasitic capacitive

elements (i.e., medium), and 3) modifying four metal layers

with 17724 parasitic capacitive elements (i.e., large). As

shown in Table 5, the maximum errors in the three scenarios

after applying the proposed incremental parasitic extraction

flow as compared to the full parasitic extraction are 0.19%,

0.38%, and 0.63%, respectively. Moreover, the relative

speedup of the proposed incremental flow as compared to the

full layout extraction in the three scenarios is 54.2, 43.07,

and 35.1, respectively.

Table 5. A comparison between the proposed incremental capacitance

extraction method and a full layout capacitance extraction using a VCO
(40nm).

Component
Modification Type

Small Medium large

Capacitive elements 11768 12794 17724

Metal layers 2 3 4

Max error of the proposed method 0.19% 0.38% 0.63%

Incremental extraction runtime in
minutes (mins)

6.67
mins

8.4
mins

10.3
mins

Full extraction runtime 6.03 hours

Relative speedup as compared to
full run

54.2 43.07 35.1

Incremental extraction runtime
without second order capacitances

6.35
mins

7.93
mins

9.65
mins

Table 6 shows the simulated VCO performance results

in case of using the proposed incremental parasitic extraction

and the full layout extraction across the three different

modification scenarios. The simulation results show that the

impact of the incremental parasitic extraction on the VCO

performance is negligible as the center frequency, tuning

ratios, and phase noise are almost identical in the case of

using the full layout extraction and the incremental layout

extraction.

Table 6. The simulated results of VCO (40nm) in case of using the
proposed incremental capacitance extraction method and a full layout
capacitance extraction.

Full layout
parasitic

extraction

Incremental layout parasitic extraction

Small
modifications

Medium
modifications

Large
modifications

Center
frequency

250GHz 250GHz 250GHz 250.01GHz

Tuning
Range (%)

4.4% 4.4% 4.4% 4.4%

Phase noise -103.5
dBc/Hz at
1MHz

-103.5 dBc/Hz
at 1MHz

-103.5 dBc/Hz
at 1MHz

-103.51
dBc/Hz at
1MHz

Tables 3-6 summarize the experimental results of the

RO (7nm) and VCO (40nm) designs, respectively. As shown

in the tables, the proposed incremental extraction flow

provides an outstanding accuracy as compared to full

extraction with maximum errors < 1% and with huge runtime

savings of up to 54X. Furthermore, the simulated results

show that the consideration of the second order parasitic

capacitances has a very small impact on the runtime as

compared to the incremental extraction that does not

consider the second order parasitic capacitances.

B. TESTING THE PROPOSED PARASITIC SENSITIVITY
MODELS AND ROUTING OPTIMIZATION USING A
SIMPLE INTERCONNECT STRUCTURE

The proposed sensitivity models were tested using the

interconnect structure shown in Figure 12. This experiment

has two purposes. First, it aims to measure the sensitivity of

the relative cost function (RCF) to each layout geometry (i.e.,

coordinate) using (11), where the relative cost function

measures Vout2 moments relative to Vout1 moments. Second, it

aims to match the signal responses at Vout1 and Vout2 by

optimizing the geometries of Vout2 route. This is done by

using a nonlinear programming to minimize the relative cost

function in (7). The circuit response is measured using Eldo

circuit simulator [38].

Figure 12 (a) shows the experimental interconnect

structure. It contains one input pin, Vin, and two output pins

that include Vout1 and Vout2. The surrounding dielectric

constant is set to 3.9, the elevation of the metal is set to 1 µm,

the metal thickness is set to 0.1µm, whereas the sheet

resistance is set to 3 Ω/□. The experiment aims to match the

signal responses of Vout1 and Vout2 without moving the fixed

nodes that represent the locations of input and output pins.

The route of Vout2 pin has four obstacles (i.e., blockages).

Therefore, Vout2 route should pass through such obstacles

with minimal impact on the performance. The dimensions of

the interconnect are shown in Figure 12 (b) and Figure 12

(c). The optimization process used Calibre xRC, rule-based

extractor [20], to extract the parasitic elements of the

interconnect structure.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

(a)

(b)

(c)

Figure 12. An experimental interconnect structure that is used for

verifying the sensitivity circuit models and the optimization algorithm
highlighting (a) the nodes, (b) the dimensions in the x-direction, and (c)
the dimensions in the y-direction, given that all dimensions are in µm.

Table 7 shows the initial values (at the original

interconnect dimensions) of the relative cost function

sensitivities to the coordinates of Vout2 route using (11). It is

worth mentioning that the sensitivities are nonlinear.

Therefore, they are calculated with every optimization

iteration.

Table 7. The values of the sensitivity of the relative cost function to each
Vout2 coordinate in the experimental interconnect structure.

Sensitivity

parameter

Value Sensitivity

parameter

Value

𝝏𝑪𝑭 𝝏𝒙𝟐⁄ 181.226 𝝏𝑪𝑭 𝝏𝒚𝟓⁄ -936.95

𝝏𝑪𝑭 𝝏𝒙𝟑⁄ -1395.2 𝝏𝑪𝑭 𝝏𝒚𝟔⁄ 937.001

𝝏𝑪𝑭 𝝏𝒙𝟒⁄ 1416.3 𝝏𝑪𝑭 𝝏𝒚𝟕⁄ -903.5

𝝏𝑪𝑭 𝝏𝒙𝟓⁄ -1020.98 𝝏𝑪𝑭 𝝏𝒚𝟖⁄ 837.4

𝝏𝑪𝑭 𝝏𝒙𝟔⁄ 1307.1 𝝏𝑪𝑭 𝝏𝒚𝟗⁄ 926.7

𝝏𝑪𝑭 𝝏𝒙𝟕⁄ -1120.98 𝝏𝑪𝑭 𝝏𝒚𝟏𝟎⁄ -843.9

𝝏𝑪𝑭 𝝏𝒙𝟖⁄ 1902.3 𝝏𝑪𝑭 𝝏𝒚𝟏𝟏⁄ 884.2

𝝏𝑪𝑭 𝝏𝒙𝟗⁄ -1813.7 𝝏𝑪𝑭 𝝏𝒚𝟏𝟐⁄ -809.7

Moreover, a nonlinear programming is applied using

SLSQP method in order to minimize the relative cost

function. The nonlinear programming uses Vout2 interconnect

geometries (i.e., coordinates) as optimization parameters.

Figure 13 shows the optimized interconnect structure.

Figure 14 (a) shows the signal responses at Vout1 and Vout2

before the optimization process, whereas Figure 14 (b)

shows the signal responses after the optimization process. As

for the cost values, the value of the relative cost function

before the optimization is 0.391, whereas the value of the

relative cost function after the optimization is 0.002047.

Figure 13. The experimental interconnect structure after the optimization
process.

(a)

(b)

Figure 14. The output response of the experimental interconnect structure

at Vout1 and Vout2 (a) before the optimization process and (b) after
optimization process.

C. TESTING THE LAYOUT ROUTING OPTIMIZATION
METHOD USING CIRCUIT DESIGNS

The routing optimization algorithm, shown in Figure 11, was

tested across different designs that include Ring Oscillators

(RO) of 7nm process node, folded cascode operational

amplifiers with common mode feedback of 65nm process

node, and voltage-controlled oscillator (VCO) of 40nm

process node. The proposed routing algorithm was integrated

in a template-based layout optimization flow, where the

proposed routing optimization method replaced the

template-based router. The performance of the proposed

optimization method was tested in terms of the generated

layout performance and the routing optimization runtime.

The responses of generated layouts were measured in two

steps. First, the parasitic elements of layouts were extracted

using Calibre xRC, rule-based extractor [20], in order to be

V
in
= 5V V

out1

V
out2

Fixed node

Fixed

node

Blockage (connected to ground)

Fixed

node

3µm

1µm

0.5µm 0.5µm

0.5µm 0.5µm 0.5µm

0.1µm

0.1µm

0.7µm 0.7µm 0.7µm

0.6µm

0.1µm 0.1µm 0.1µm

0.1µm
0.1µm

0.1µm 0.1µm

x
1
=1

x
2
=2 x

3
=2.1 x

4
=2.8 x

5
=2.9 x

6
=3.6 x

7
=3.7 x

8
=4.4 x

9
=4.5

x
10

=5.1

x
11

=5.1

0.7µm 0.2µm

0.2µm

0.2µm

0.3µm

0.2µm
0.1µm

0.1µm

0.2µm
0.2µm

0.2µm

0.2µm

0.2µm

0.3µm 0.2µm

0.4µm

0.9µm

y
1
=0

y
2
=0.2

y
4
=0.4

y
3
=0.3

y
6
=-0.2

y
5
=-0.1

y
8
=-0.9

y
7
=-0.8

y
9
=-0.8

y
10

=-0.9

y
11

=-0.1

y
12

=-0.2

3µm 0.1µm

1µm

0.2µm
0.1µm

1.4µm
0.12µm

0.18µm 0.2µm

0.9µm

0.7µm

0.1µm

0.2µm

0.1µm

0.1µm
0.1µm

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

used as inputs to a circuit simulator. Second, the circuit

responses (or performances) were measured using Eldo

circuit simulator [38]. Moreover, the simulated circuit

responses of the layouts, which were generated by using the

proposed optimization method, were compared against the

simulated circuit responses of the layouts, which were

generated by using the traditional template-based layout

optimization method that is described in [13], [14], [25],

[27].

1) RING OSCILLATOR (7NM)

As for the RO(7nm), six different RO designs each with

31 stages were tested using 0.75V as an operating voltage.

The routing optimization, shown in Figure 11, used the delay

cost function in (9) and its corresponding sensitivity circuit

models. The testing of the proposed routing optimization

algorithm considered two different scenarios of cost

functions. The first one considered a cost function with three

circuit moments, whereas the second one considered a cost

function with five circuit moments. The optimization of RO

routes included the input and output pins (i.e., input and

output routes) for each RO stage. As shown in Table 8, the

proposed routing method managed to achieve better

simulated delay results in case of using a cost function with

five moments. Moreover, the proposed method managed to

reduce the delay of the six RO designs by 9.32%, 10.33%,

10.79%, 9.68%, 10.65%, and 11.1%, respectively, as

compared to traditional template-based methods. The

relative speedup of the proposed method (using five

moments) as compared to the traditional template-based

method for the six designs is 9.06, 8.91, 9.48, 8.7, 9.27, and

8.54, respectively.

The reason behind such improvements is that traditional

template-based optimization methods use multiple circuit

simulations in order to identify the parasitic bounds, and each

simulation consumes around 29 minutes. As for the delay

improvements, traditional template-based methods use

simplified parasitic formulas that are not suitable for

advanced process technology nodes, whereas the proposed

method uses the proposed incremental extraction method. As

for the area, both optimization methods provided almost the

same area.

Table 8. The simulated results of the proposed routing optimization

method as compared to a traditional template-based method across six
different RO (7nm) designs.
 Traditional

template-based

routing Method

Proposed Method

three moments five moments

Delay Opt.

runtime

Delay Opt.

runtime

Delay Opt.

runtime

RO1 7.51ps 4.23 hours 6.96ps 23 minutes 6.81ps 28 minutes

RO2 8.13ps 4.31 hours 7.83ps 24 minutes 7.29ps 29 minutes

RO3 9.27ps 4.11 hours 9.01ps 20 minutes 8.27ps 26 minutes

RO4 8.47ps 4.35 hours 8.07ps 24 minutes 7.65ps 30 minutes

RO5 8.26ps 4.17 hours 8.1ps 22 minutes 7.38ps 27 minutes

RO6 9.10ps 4.41 hours 8.91ps 26 minutes 8.09ps 31 minutes

 Opt. runtime: Optimization runtime.

2) FOLDED CASCODE DIFFERENTIAL AMPLIFIER
WITH COMMON MODE FEEDBACK (65NM)

Folded cascode differential amplifiers with common mode

feedback (CMFB) circuits were tested using three different

specifications. The Amplifiers were developed using 65nm

process node. Figure 15 shows a block diagram of the

amplifiers, whereas Figure 16 shows a schematic circuit

design of the folded cascode differential amplifier.

The routing optimization, shown in Figure 11, used the

relative cost function in (7) and its corresponding sensitivity

circuit models using three and five circuit moments. The

optimization was performed over seven routes, Route1 to

Route7, as shown in Figure 16. The optimization aimed to

match the responses (i.e., net matching) at the output

terminal of each two similar routes, where Route1 was

matched with Route2, Route3 was matched with Route4, and

Route5 was matched with Route6. Moreover, the responses

at the output terminals (i.e., t1 and t2) of Route7 were also

matched.

Figure 15. Block diagram of a fully differential folded cascode amplifier
with common mode feedback circuit.

Figure 16. A circuit design of an experimental folded cascode operational
amplifier (65nm) showing the optimized routes.

CMFB

V
in

+

V
in

-

V
out

+

V
out

-

V
ref

Folded cascode differential

Amplifier

V
CM

I
bias

VDD

V
in

+
 V

in

-

Vb1

ground

Route1

Route2

Route7

Route3

Vb2

V
CM

V
out

+

Vb3

V
out

-

C
L
 C

L

Route4

Route5 Route6

Route1 = Route2

Route3 = Route4

Route5 =Route6
Route7(t1) = Route7(t2)

t1 t2

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16

Tables 9, 10, and 11 show the layouts simulated

performance results over the three different specifications in

the case of: 1) removing interconnect (i.e., routes) parasitic

elements, 2) using traditional template-based optimization

method, 3) using the proposed optimization method with a

cost function of three moments, and 4) using the proposed

optimization method with a cost function of five moments.

The simulated results show that the proposed optimization

method (using five moments) managed to achieve better

results that meet the required specifications as compared to

the traditional template-based method with minimal impact

on the area. Moreover, the optimization runtimes of the

proposed method (using five moments) for the three

specification scenarios were faster than the traditional

template-based method with a speedup of 3.18X, 3.2X, 3.2X,

respectively.

Table 9. The simulated results of the proposed routing optimization
method as compared to a traditional template-based method over the first
layout design of a folded cascode differential amplifier.
 Specs Without

routes

parasitic

elements

Opt. using

Traditional

Method

Opt. using the

proposed Method

three

moments

five

moments

Gain (dB) 60.0 63.9 61.1 60.3 62.3

GBW (Hz) 350M 365M 361M 352M 362M

PM (o) 60.0 63.7 63.1 61.5 62.9

Output

swing (V)

0.8 0.79 0.76 0.78 0.78

Routing optimization runtime 4.3 minutes 1.2 minutes 1.35 minutes

Area (µm)2 2958 2962 2955

Opt. : Optimization.

Table 10. The simulated results of the proposed routing optimization
method as compared to a traditional template-based method over the
second layout design of a folded cascode differential amplifier.
 Specs Without

routes

parasitic

elements

Opt. using

The

traditional

Method

Opt. using the proposed

Method

three

moments

five

moments

Gain (dB) 50.0 53.3 51.2 51.1 52.7

GBW

(Hz)

300M 313M 309M 303M 311M

PM (o) 50.0 53.1 51.8 50.7 51.7

Output

swing (V)

0.9 0.89 0.88 0.89 0.89

Routing optimization runtime 4.5minutes 1.34 minutes 1.41 minutes

Area (µm)2 3162 3150 3145

Opt. : Optimization.

Table 11. The simulated results of the proposed routing optimization
method as compared to a traditional template-based method over the third
layout design of a folded cascode differential amplifier.
 Specs Without

routes

parasitic

elements

Opt. using

The

traditional

Method

Opt. using the proposed

Method

three

moments

five

moments

Gain (dB) 60.0 62.7 61.3 60.8 61.7

GBW (Hz) 600M 615M 612M 604M 613M

PM (o) 55.0 59.1 57.1 55.6 58.8

Output

swing (V)

0.8 0.79 0.78 0.79 0.79

Routing optimization runtime 4.7 minutes 1.38 minutes 1.47 minutes

Area (µm)2 3364 3352 3348

Opt. : Optimization.

3) VOLTAGE CONTROLLED OSCILLATOR (40NM)

As for the VCO (40nm), the routing optimization, shown

in Figure 11, used the relative cost function in (7) to optimize

the matching nets and the delay cost function in (9) to

optimize the oscillators nets along with the corresponding

sensitivity circuit models. The testing of the proposed

routing optimization algorithm considered two different

scenarios of cost functions. The first one considered cost

functions with three circuit moments, whereas the second

one considered cost functions with five circuit moments.

Table 12 shows the simulated performance results of the

VCO designs in the case of 1) removing interconnect (i.e.,

routes) parasitic elements, 2) using traditional template-

based optimization method, 3) using the proposed

optimization method with a cost function of three moments,

and 4) using the proposed optimization method with a cost

function of five moments. The simulated results show that

the proposed routing optimization algorithm, using cost

functions with five moments, managed to optimize the center

frequency and the phase noise by percentages of 1.96%,

1.23%, and 7.1%, respectively, as compared to traditional

template-based methods. Moreover, the optimization

runtime of the proposed method is 6.8X faster than the

traditional template-based method.

Table 12. The simulated results of the proposed routing optimization
method as compared to a traditional template-based method over VCO
(40nm) design.

 Without

routes

parasitic

elements

Opt. using

Traditional

Method

Opt. using the proposed

Method

three

moments

five

moments
Center

frequency

269.9GHz 255GHz 256GHz 260GHz

Tuning

Range (%)

6.1% 4.4% 4.46% 5.8%

Phase noise -75.7 dBc/Hz
at 1MHz

-87.5 dBc/Hz
at 1MHz

-85.2 dBc/Hz
at 1MHz

-81.3 dBc/Hz
at 1MHz

Routing optimization

runtime

3.4 hours 23 minutes 27 minutes

Area (µm)2 10,375 10,380 10,350

Opt. : Optimization.

VII. CONCLUSION AND FUTURE WORK

A parasitic-aware layout routing optimization methodology

is developed. Existing layout routing optimization methods

suffer from three main problems. First, they rely on many

circuit simulations to calculate the parasitic bounds. Second,

they rely on either simple parasitic models, which provide

poor accuracy, or a full layout extraction, which consumes a

lot of time, in order to extract the parasitic elements of a

given layout during the optimization process. Third, they do

not provide a mechanism to analyze the impact of parasitic

elements and corresponding geometries on a system’s

performance. The proposed methodology overcomes such

limitations by providing novel sensitivity circuit models that

help circuit designers in analyzing the impact of parasitic

elements and corresponding layout geometries on a system’s

performance. Moreover, it provides a novel incremental

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

17

parasitic capacitance extraction methodology that helps in

providing a significant speeding up in the optimization

runtime with minimal impact on the accuracy as compared

to those methods that use a full layout extraction. The

proposed optimization method uses a nonlinear

programming technique to modify and optimize the

problematic routes based on the proposed sensitivity circuit

models. The proposed methodology is tested over different

ring oscillator designs of 7nm process node and folded

cascode differential amplifiers of 65nm process node. The

experimental results show that the proposed methodology

managed to achieve better accuracy and runtime results as

compared to traditional template-based layout routing

optimization methods. The proposed methodology managed

to identify and optimize the problematic geometries in

critical routes with up to 10% improvements in the

performance and a speed up of 3 to 9X as compared to

traditional template-based methods.

As for future works, the proposed methodology only

considers the RC parasitic elements. Hence, their models are

appropriate for local interconnect at any frequency and

global interconnect at a lower frequency. For high frequency

global interconnect, inductance and more complex models

need to be included. Therefore, the future work aims to

extend this work to consider the different inductance effects.

Appendix

A. MOMENTS SENSITIVITY TO A PARASITIC
ELEMENT

The derivations of moments sensitivity to a parasitic

element, in (16) and (17), are as below:

By differentiating (4) with a certain parasitic element (Pi)

we get:

for m0: differentiating (G m0 = b) with Pi
𝜕

𝜕𝑃𝑖

(𝐺 𝑚0) =
𝜕

𝜕𝑃𝑖

(𝑏), (21)

Therefore,

𝜕𝐺

𝜕𝑃𝑖

 𝑚0 + 𝐺
𝜕𝑚0

𝜕𝑃𝑖

= 0. (22)

Then,

𝜕𝐺

𝜕𝑃𝑖

 𝑚0 = −𝐺
𝜕𝑚0

𝜕𝑃𝑖

, (23)

Multiplying both sides by 𝐺−1 , we get:
𝜕𝑚0

𝜕𝑃𝑖

= −𝐺−1
𝜕𝐺

𝜕𝑃𝑖

𝑚0, (24)

for m1: differentiating (G m1 + C m0 = 0) with Pi
𝜕

𝜕𝑃𝑖

(𝐺 𝑚1) +
𝜕

𝜕𝑃𝑖

(𝐶 𝑚0) = 0. (25)

Therefore, (26)

𝜕𝐺

𝜕𝑃𝑖

 𝑚1 + 𝐺
𝜕𝑚1

𝜕𝑃𝑖

+
𝜕𝐶

𝜕𝑃𝑖

 𝑚0 + 𝐶
𝜕𝑚0

𝜕𝑃𝑖

= 0,

 Eventually,

𝜕𝑚1

𝜕𝑃𝑖

= −𝐺−1 ∙ (
𝜕𝐺

𝜕𝑃𝑖

 𝑚1 +
𝑑𝐶

𝜕𝑃𝑖

 𝑚0 + 𝐶
𝜕𝑚0

𝜕𝑃𝑖

). (27)

Similarly, for m2 till mk , where (G mk + C mk-1 = 0) :
𝜕

𝜕𝑃𝑖

(𝐺 𝑚𝑘) +
𝜕

𝜕𝑃𝑖

(𝐶 𝑚𝑘−1) = 0.

⋮
𝜕𝑚𝑘

𝜕𝑃𝑖

= −𝐺−1∙ (
𝜕𝐺

𝜕𝑃𝑖

 𝑚𝑘 +
𝜕𝐶

𝜕𝑃𝑖

𝑚𝑘−1 + 𝐶
𝜕𝑚𝑘−1

𝜕𝑃𝑖

) ,

𝑘 ≥ 1, (28)

where mk is an n vector of moments and n is the number of

nodes in an RC network. This model represents a general

model for moments sensitivity to a certain parasitic element.

For a certain target node, the moment sensitivity to a

parasitic element (Pi) is given by:

𝜕𝑚0

𝜕𝑃𝑖

= −𝐺−1
𝜕𝐺

𝜕𝑃𝑖

𝑚0, and (29)

𝜕𝑚𝑘

𝜕𝑃𝑖

= −𝐺−1∙ (
𝜕𝐺

𝜕𝑃𝑖

 𝑚𝑘 +
𝜕𝐶

𝜕𝑃𝑖

𝑚𝑘−1 + 𝐶
𝜕𝑚𝑘−1

𝜕𝑃𝑖

) ,

𝑘 ≥ 1,
(30)

where C is the capacitors matrix, G is the admittance matrix,

and m0 to mk are circuit moments at a given node.

The parasitic element (Pi) in (29) and (30) can be either a

resistive or capacitive element. The derivations for both

cases are as follows.

1) MOMENTS SENSITIVITY TO A PARASITIC
RESISTIVE ELEMENT:

The moment sensitivity to a parasitic resistive element (Ri) is

obtained by substituting a parasitic element parameter (Pi) in

(29) and (30) with a resistive element (Ri) as below:
𝜕𝑚0

𝜕𝑅𝑖

= −𝐺−1
𝜕𝐺

𝜕𝑅𝑖

𝑚0, and (31)

𝜕𝑚𝑘

𝜕𝑅𝑖

= −𝐺−1 (
𝜕𝐺

𝜕𝑅𝑖

 𝑚𝑘 +
𝜕𝐶

𝜕𝑅𝑖

𝑚𝑘−1 + 𝐶
𝜕𝑚𝑘−1

𝜕𝑅𝑖

) ,

𝑘 ≥ 1.
(32)

However, some terms might have special values when they

are differentiated with a parasitic resistive element (Ri) as

below:
𝜕𝐶

𝜕𝑅𝑖

= 0, (33)

because C is the capacitance matrix and differentiating it

with a resistive element gives zero. Moreover, 𝑑𝐺/𝑑𝑅𝑖is

obtained as below:

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

18

𝜕𝐺

𝜕𝑅𝑖

=
𝜕𝐺

𝜕𝑔𝑖

𝜕𝑔𝑖

𝜕𝑅𝑖

 , (34)

where 𝑔𝑖 = (1/𝑅𝑖). Therefore,
𝜕𝐺

𝜕𝑅𝑖

=
𝜕𝐺

𝜕𝑔𝑖

𝜕(1/𝑅𝑖)

𝜕𝑅𝑖

, (35)

𝜕𝐺

𝜕𝑅𝑖

= −
1

𝑅𝑖
2

𝜕𝐺

𝜕𝑔𝑖

. (36)

As a result, the moments sensitivity to a parasitic resistive

element (Ri) is given by:

for m0:
substitute (36) in (31), we get:

𝜕𝑚0

𝜕𝑅𝑖

= 𝐺−1
1

𝑅2

𝜕𝐺

𝜕𝑔𝑖

𝑚0, (37)

which represents the moment (m0) sensitivity to a certain

parasitic resistive element at a given node.

for mk , k ≥1, substitute (33) and (36) in (32), we get:

𝜕𝑚𝑘

𝜕𝑅𝑖

= −𝐺−1 (−
1

𝑅𝑖
2

𝜕𝐺

𝜕𝑔𝑖

 𝑚𝑘 + 𝐶
𝜕𝑚𝑘−1

𝜕𝑅𝑖

) ,

𝑘 ≥ 1,

(38)

which represents the moment (mk) sensitivity to a certain

parasitic resistive element when k ≥ 1 at a given node.

2) MOMENTS SENSITIVITY TO A PARASITIC
CAPACITIVE ELEMENT:

The moment sensitivity to a parasitic capacitive element

(Ccj) is obtained by substituting a parasitic element

parameter (Pi) in (29) and (30) with a capacitive element

(Ccj) as below:
𝜕𝑚0

𝜕𝐶𝑐𝑗
= −𝐺−1

𝜕𝐺

𝜕𝐶𝑐𝑗
𝑚0, and (39)

𝜕𝑚𝑘

𝜕𝐶𝑐𝑗
= −𝐺−1 (

𝜕𝐺

𝜕𝐶𝑐𝑗
 𝑚𝑘 +

𝜕𝐶

𝜕𝐶𝑐𝑗
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝐶𝑐𝑗
) ,

𝑘 ≥ 1.

(40)

However, some terms might have special values when they

are differentiated with a parasitic capacitive element (Ccj) as

below:
𝜕𝐺

𝜕𝐶𝑐𝑗
= 0, (41)

because G is the admittance matrix and differentiating it with

a capacitive element gives zero.

As a result, the moments sensitivity to a parasitic capacitive

element (Ccj) is given by:

for m0, substitute (41) in (39), we get:
𝜕𝑚0

𝜕𝐶𝑐𝑗
= 0, (42)

which represents the moment (m0) sensitivity to a certain

parasitic capacitive element at a given node.

for mk , k ≥1, substitute (41) in (40), we get:

𝜕𝑚𝑘

𝜕𝐶𝑐𝑗
= −𝐺−1 (

𝜕𝐶

𝜕𝐶𝑐𝑗
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝐶𝑐𝑗
) , 𝑘 ≥ 1 (43)

which represents the moment (mk) sensitivity to a certain

parasitic capacitive element when k ≥ 1 at a given node.

B. RELATIVE COST FUNCTION SENSITIVITY TO A
PARASITIC ELEMENT

The derivations of the relative cost function sensitivity to a

parasitic element, in (18), are as below:

Assuming two systems, the output response of the first

system is given by:

𝑆1(𝑠) = 𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠
2 + 𝑚3 𝑠

3 + ⋯, (44)

whereas the output response of the second system is given

by:

𝑆2(𝑠) = 𝑚′
0 + 𝑚′

1 𝑠 + 𝑚′
2 𝑠

2 + 𝑚′
3 𝑠

3 + ⋯. (45)

Therefore, the relative cost function (RCF) between the two

systems is given by:

RCF = ∑
(𝑚𝑖 − 𝑚′

𝑖)
2

𝑚′
𝑖
2 ,

𝑞

𝑖=0

where q represents the required order of circuit

moments.

(46)

differentiating (46) with a parasitic element (Pi) gives:

𝜕RCF

𝜕𝑃𝑖

=
𝜕

𝜕𝑃𝑖

 (
(𝑚0 − 𝑚′

0)
2

𝑚′
0
2 +

(𝑚1 − 𝑚′
1)

2

𝑚′
1
2 + ⋯). (47)

Let

RCFmk =
(𝑚𝑘 − 𝑚′

𝑘)
2

𝑚′
𝑘
2 . (48)

Therefore,
𝜕RCF

𝜕𝑃𝑖

=
𝜕

𝜕𝑃𝑖

 (RCFm0 + RCFm1 + ⋯), (49)

Use m0 to mk as intermediate variables for

differentiation, we get:

𝜕RCF

𝜕𝑃𝑖

=
𝜕RCFm0

𝜕𝑚0

𝜕𝑚0

𝜕𝑃𝑖

+
𝜕RCFm1

𝜕𝑚1

𝜕𝑚1

𝜕𝑃𝑖

+ ⋯. (50)

As a result,

𝜕RCF

𝜕𝑃𝑖

= ∑
𝜕RCFmk

𝜕𝑚𝑘

𝜕𝑚𝑘

𝜕𝑃𝑖

 .

𝑛

𝑘=0

 (51)

This model has two components. The first component is

(𝜕𝑅𝐶𝐹𝑚𝑘 𝜕𝑚𝑘⁄). It is obtained by differentiating (48) with a

certain moment (mk) as below:

𝜕RCFmk

𝜕𝑚𝑘

= 2
(𝑚𝑘 − 𝑚′

𝑘)

𝑚′
𝑘
2 , (52)

The second component (𝜕𝑚𝑘 𝜕𝑃𝑖⁄) is already obtained in

(29) and (30). By substituting (29), (30) and (52) in (51), we

get:

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

19

𝜕RCF

𝜕𝑃𝑖

= 2
(𝑚0 − 𝑚′

0)

𝑚′
0
2

∙ (−𝐺−1
𝜕𝐺

𝜕𝑃𝑖

𝑚0) + ∑ (2
(𝑚𝑘 − 𝑚′

𝑘)

𝑚′
𝑘

2

𝑛

𝑘=1

∙ (−𝐺−1 (
𝜕𝐺

𝜕𝑃𝑖

𝑚𝑘 +
𝜕𝐶

𝜕𝑃𝑖

𝑚𝑘−1 + 𝐶
𝜕𝑚𝑘−1

𝜕𝑃𝑖

))), (53)

which represents the relative cost function (RCF) sensitivity

to a certain parasitic element (Pi) at a given node.

C. DELAY COST FUNCTION SENSITIVITY TO A
PARASITIC ELEMENT

The derivations of the delay cost function sensitivity to a

parasitic element, in (19), are as below:

The delay cost function (DCF) is given by, based on [37]:

DCF = 𝑎1 ∙ 𝑚1 + 𝑎2 ∙
𝑚2

𝑚1

+ 𝑎3 ∙
𝑚3

𝑚1
2
+ ⋯

+ 𝑎𝑞 ∙
𝑚𝑞

𝑚1
(𝑞−1)

, (54)

differentiating (54) with a parasitic element (Pi) gives:

𝜕DCF

𝜕𝑃𝑖

=
𝜕

𝜕𝑃𝑖

(𝑎1 ∙ 𝑚1 + 𝑎2 ∙
𝑚2

𝑚1

+ 𝑎3 ∙
𝑚3

𝑚1
2
+ ⋯

+ 𝑎𝑞 ∙
𝑚𝑞

𝑚1
(𝑞−1)

). (55)

Therefore,

𝜕DCF

𝜕𝑃𝑖

= 𝑎1 ∙
𝜕𝑚1

𝜕𝑃𝑖

+

𝑎2 ∙ (
𝜕𝑚2

𝜕𝑃𝑖

1

𝑚1

+ 𝑚2 (−𝑚1
−2)

𝜕𝑚1

𝜕𝑃𝑖

) + ⋯+

𝑎𝑞 ∙ (
𝜕𝑚𝑞

𝜕𝑃𝑖

1

𝑚1
𝑘−1

+ 𝑚𝑞 (−(𝑞 − 1)𝑚1
−𝑞)

𝜕𝑚1

𝜕𝑃𝑖

). (56)

As a result,

𝜕DCF

𝜕𝑃𝑖

= 𝑎1 ∙
𝜕𝑚1

𝜕𝑃𝑖

+

∑ [𝑎𝑘 (
𝜕𝑚𝑘

𝜕𝑃𝑖

 ∙
1

𝑚1
𝑘−1

+ 𝑚𝑘 ∙
(1 − 𝑘)

𝑚1
𝑘

𝑞

𝑘=2

∙
𝜕𝑚1

𝜕𝑃𝑖

)] , (57)

which represents the delay cost function sensitivity to a

parasitic element (Pi) at a given node.

References

[1] M. Bohr, “The new era of scaling in an SoC world,” in 2009 IEEE

International Solid-State Circuits Conference - Digest of Technical

Papers, Feb. 2009, pp. 23–28. doi: 10.1109/ISSCC.2009.4977293.

[2] “New Parasitic Extraction Requirements In Custom Design For The

Next Wave Of SoCs,” Semiconductor Engineering, Jan. 30, 2020.

https://semiengineering.com/new-parasitic-extraction-
requirements-in-custom-design-for-the-next-wave-of-socs/

(accessed Jun. 21, 2021).

[3] J. H.-C. Chen, T. E. Standaert, E. Alptekin, T. A. Spooner, and V.
Paruchuri, “Interconnect performance and scaling strategy at 7 nm

node,” in IEEE International Interconnect Technology Conference,

May 2014, pp. 93–96. doi: 10.1109/IITC.2014.6831843.
[4] A. Domic, “Layout synthesis of MOS digital cells,” in 27th

ACM/IEEE Design Automation Conference, Jun. 1990, pp. 241–

245. doi: 10.1109/DAC.1990.114861.
[5] Zheng Liu and Lihong Zhang, “Performance-constrained parasitic-

aware retargeting and optimization of analog layouts,” in 2009

Canadian Conference on Electrical and Computer Engineering,
May 2009, pp. 1194–1197. doi: 10.1109/CCECE.2009.5090314.

[6] M. P. Lin, Y. Chang, and C. Hung, “Recent research development

and new challenges in analog layout synthesis,” in 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC), Jan.

2016, pp. 617–622. doi: 10.1109/ASPDAC.2016.7428080.

[7] M. D. Moffitt, “Global routing revisited,” in 2009 IEEE/ACM
International Conference on Computer-Aided Design - Digest of

Technical Papers, Nov. 2009, pp. 805–808. doi:

10.1145/1687399.1687549.
[8] N. Gockel, R. Drechsler, and B. Becker, “A multi-layer detailed

routing approach based on evolutionary algorithms,” in Proceedings
of 1997 IEEE International Conference on Evolutionary

Computation (ICEC ’97), Apr. 1997, pp. 557–562. doi:

10.1109/ICEC.1997.592373.
[9] M. Ranjan, W. Verhaegen, A. Agarwal, H. Sampath, R. Vemuri, and

G. Gielen, “Fast, layout-inclusive analog circuit synthesis using pre-

compiled parasitic-aware symbolic performance models,” in

Automation and Test in Europe Conference and Exhibition

Proceedings Design, Feb. 2004, vol. 1, pp. 604-609 Vol.1. doi:

10.1109/DATE.2004.1268911.
[10] N. Lourenço, R. Martins, and N. Horta, “Layout-aware sizing of

analog ICs using floorplan amp; routing estimates for parasitic

extraction,” in 2015 Design, Automation Test in Europe Conference
Exhibition (DATE), Mar. 2015, pp. 1156–1161.

[11] B. Cardoso, R. Martins, N. Lourenço, and N. Horta, “AIDA-PEx:

Accurate parasitic extraction for layout-aware analog integrated
circuit sizing,” in 2015 11th Conference on Ph.D. Research in

Microelectronics and Electronics (PRIME), Jun. 2015, pp. 129–

132. doi: 10.1109/PRIME.2015.7251351.
[12] S. Bhattacharya, N. Jangkrajarng, and C.-R. Shi, “Template-driven

parasitic-aware optimization of analog integrated circuit layouts,” in

Proceedings. 42nd Design Automation Conference, 2005., Jun.
2005, pp. 644–647. doi: 10.1145/1065579.1065748.

[13] N. Jangkrajarng, L. Zhang, S. Bhattacharya, N. Kohagen, and C.-R.

Shi, “Template-Based Parasitic-Aware Optimization and
Retargeting of Analog and RF Integrated Circuit Layouts,” in 2006

IEEE/ACM International Conference on Computer Aided Design,

Nov. 2006, pp. 342–348. doi: 10.1109/ICCAD.2006.320056.
[14] L. Zhang, N. Jangkrajarng, S. Bhattacharya, and C.-R. Shi,

“Parasitic-Aware Optimization and Retargeting of Analog Layouts:

A Symbolic-Template Approach,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 27, no. 5, pp. 791–802, May 2008,

doi: 10.1109/TCAD.2008.917594.

[15] H. Habal and H. Graeb, “Constraint-Based Layout-Driven Sizing of
Analog Circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 30, no. 8, pp. 1089–1102, Aug. 2011, doi:

10.1109/TCAD.2011.2158732.
[16] A. Toro-Frías, R. Castro-López, E. Roca, and F. V. Fernández, “An

automated layout-aware design flow,” in 2012 International

Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD), Sep. 2012,

pp. 73–76. doi: 10.1109/SMACD.2012.6339420.

[17] R. Castro-Lopez, O. Guerra, E. Roca, and F. V. Fernandez, “An
Integrated Layout-Synthesis Approach for Analog ICs,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 27, no. 7, pp.

1179–1189, Jul. 2008, doi: 10.1109/TCAD.2008.923417.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

20

[18] M. S. Abouelyazid, S. Hammouda, and Y. Ismail, “Connectivity-

Based Machine Learning Compact Models for Interconnect

Parasitic Capacitances,” in 2021 ACM/IEEE 3rd Workshop on
Machine Learning for CAD (MLCAD), Aug. 2021, pp. 1–6. doi:

10.1109/MLCAD52597.2021.9531300.

[19] M. S. Abouelyazid, S. Hammouda, and Y. Ismail, “Fast and
Accurate Machine Learning Compact Models for Interconnect

Parasitic Capacitances Considering Systematic Process Variations,”

IEEE Access, vol. 10, pp. 7533–7553, 2022, doi:
10.1109/ACCESS.2022.3142330.

[20] “Calibre xRC | Siemens Digital Industries Software.”

https://eda.sw.siemens.com/en-US/ic/calibre-design/circuit-
verification/xrc (accessed Apr. 11, 2021).

[21] R. M. Smey, B. Swartz, and P. H. Madden, “Crosstalk reduction in

area routing,” in Automation and Test in Europe Conference and
Exhibition 2003 Design, Mar. 2003, pp. 862–867. doi:

10.1109/DATE.2003.1253714.

[22] A. Bhaduri and R. Vemuri, “Parasitic-Aware and Moment-driven
Constraint Satisfying Non-Linear Routing Methodology,” in 2006

49th IEEE International Midwest Symposium on Circuits and

Systems, Aug. 2006, vol. 2, pp. 84–88. doi:
10.1109/MWSCAS.2006.382214.

[23] A. Bhaduri and R. Vemuri, “Parasitic aware routing methodology

based on higher order RLCK moment metrics,” in 19th
International Conference on VLSI Design held jointly with 5th

International Conference on Embedded Systems Design
(VLSID’06), Jan. 2006, p. 6 pp.-. doi: 10.1109/VLSID.2006.129.

[24] A. Bhaduri and R. Vemuri, “Inductive and capacitive coupling

aware routing methodology driven by a higher order RLCK moment
metric,” in Design, Automation and Test in Europe, Mar. 2005, pp.

922-923 Vol. 2. doi: 10.1109/DATE.2005.182.

[25] Zheng Liu and L. Zhang, “A performance-constrained template-

based layout retargeting algorithm for analog integrated circuits,” in

2010 15th Asia and South Pacific Design Automation Conference

(ASP-DAC), Jan. 2010, pp. 293–298. doi:
10.1109/ASPDAC.2010.5419880.

[26] R. Martins, N. Lourenço, and N. Horta, “LAYGEN II—Automatic

Layout Generation of Analog Integrated Circuits,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 32, no. 11, pp. 1641–

1654, Nov. 2013, doi: 10.1109/TCAD.2013.2269050.

[27] F. A. Naguib, S. Ahmed, S. Hamed, and M. Dessouky, “Expert
Guided Analog Layout Placement and Routing Automation for

Deep Nanotechnologies,” in 2020 37th National Radio Science

Conference (NRSC), Sep. 2020, pp. 240–247. doi:
10.1109/NRSC49500.2020.9235112.

[28] G. Liu, W. Zhu, S. Xu, Z. Zhuang, Y.-C. Chen, and G. Chen,

“Efficient VLSI routing algorithm employing novel discrete PSO
and multi-stage transformation,” Journal of Ambient Intelligence

and Humanized Computing, pp. 1–16, 2020, doi:

https://doi.org/10.1007/s12652-020-02659-8.
[29] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Coupling aware

routing,” in Proceedings of 13th Annual IEEE International

ASIC/SOC Conference (Cat. No.00TH8541), Sep. 2000, pp. 392–
396. doi: 10.1109/ASIC.2000.880770.

[30] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D. T. Lee, “A fast crosstalk-

and performance-driven multilevel routing system,” in ICCAD-
2003. International Conference on Computer Aided Design (IEEE

Cat. No.03CH37486), Nov. 2003, pp. 382–387. doi:

10.1109/ICCAD.2003.159715.
[31] S. J. Patel and R. A. Thakker, “Parasitic-Aware Automatic Analog

CMOS Circuit Design Environment,” in 2019 32nd International

Conference on VLSI Design and 2019 18th International
Conference on Embedded Systems (VLSID), Jan. 2019, pp. 245–250.

doi: 10.1109/VLSID.2019.00061.

[32] S. J. Patel and R. A. Thakker, “Parasitic Aware Automatic Analog
CMOS Circuit Design Environment Using ABC Algorithm,” in

2018 31st International Conference on VLSI Design and 2018 17th

International Conference on Embedded Systems (VLSID), Jan.
2018, pp. 445–446. doi: 10.1109/VLSID.2018.105.

[33] Y. I. Ismail, “Improved model-order reduction by using spacial

information in moments,” IEEE Trans. Very Large Scale Integr.

VLSI Syst., vol. 11, no. 5, pp. 900–908, Oct. 2003, doi:

10.1109/TVLSI.2003.817138.

[34] W. Yu, M. Song, and M. Yang, “Advancements and Challenges on
Parasitic Extraction for Advanced Process Technologies,” in 2021

26th Asia and South Pacific Design Automation Conference (ASP-

DAC), Jan. 2021, pp. 841–846.
[35] W. PINELLO, A. Nieuwoudt, M. DRUT, and B. Qiu, “Determining

eco aggressor nets during incremental extraction,”

US20160350470A1, Dec. 01, 2016 Accessed: Mar. 07, 2021.
[Online]. Available:

https://patents.google.com/patent/US20160350470A1/en

[36] K. Kalafala et al., “Incremental parasitic extraction for coupled
timing and power optimization,” US9858383B2, Jan. 02, 2018

Accessed: Mar. 04, 2021. [Online]. Available:

https://patents.google.com/patent/US9858383B2/en
[37] Y. I. Ismail and C. S. Amin, “Computation of signal threshold

crossing times directly from higher order moments,” in IEEE/ACM

International Conference on Computer Aided Design, 2004.
ICCAD-2004., Nov. 2004, pp. 246–253. doi:

10.1109/ICCAD.2004.1382581.

[38] “Eldo Platform,” Siemens Digital Industries Software.
https://eda.sw.siemens.com/en-US/ic/eldo/ (accessed Jul. 20, 2022).

MOHAMED SALEH ABOUELYAZID (Member,

IEEE) received the B.Sc. and M.Sc. degrees in
electronics engineering from the Faculty of

Engineering, Cairo University, Egypt, in 2009 and

2013, respectively, and the Ph.D. degree from the
School of Sciences and Engineering, The

American University in Cairo, Egypt, in 2022. He

has been working with Siemens EDA, Egypt,
since 2009, where he is currently a Research and

Development Software Staff Engineer in layout

parasitic extraction team, Calibre design to silicon. Mohamed has a strong
background in circuit verification, data modeling, machine learning, and

electronic design automation.

SHERIF HAMMOUDA received the B.Sc. and M.Sc.

degrees in electrical engineering from Ain Shams

University, Cairo, Egypt, in 1996 and 2001,
respectively, and the Ph.D. degree in electrical and

computer engineering from the University of

Calgary, AB, Canada, in 2006. He has been with
Siemens EDA, Cairo, since 1997, where he is also

the Engineering Director managing research and

development activities for Calibre design to silicon
activities in Cairo. He holds a U.S. patent and

coauthored a number of publications in various

conferences focusing on EDA for IC Design.

YEHEA ISMAIL (Fellow, IEEE) is currently the

Director of the Nanoelectronics and Devices
Center, The American University in Cairo and

Zewail City. He was a Tenured Professor with

Northwestern University, USA, from 2000 to
2011. He has published more than 450 papers in

top refereed journals and conferences and many

patents. He has coauthored seven books,
including On-Chip Inductance in High Speed

Integrated Circuits, Handbook on Algorithms for

VLSI Physical Design, Temperature-Aware
Computer Architecture, Arbitrary Modeling of TSVs for 3D Integrated

Circuits, and Circuit Design Techniques for Microscale Energy Harvesting

Systems. He has many patents in the area of high-performance circuits and
interconnect design and modeling. His work is some of the most highly cited

in the VLSI area and is extensively used by industry. He has several awards,

such as the USA National Science Foundation Career Award, the IEEE CAS
Outstanding Author Award, the Best Teacher Award at Northwestern

University, and many other best teaching awards and best paper awards. He

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

21

is a Distinguished Lecturer of IEEE CASS. He was the Editor-in-Chief of

the IEEE TRANSACTION ON VERY LARGE SCALE INTEGRATION (TVLSI)

(2011_2015) and the Chair Elect of the IEEE VLSI Technical Committee.
He is on the editorial board of the Journal of Circuits, Systems, and

Computers, was on the editorial board of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS_I: FUNDAMENTAL THEORY AND APPLICATIONS, and a Guest Editor
for a special issue of the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS on ``On-Chip Inductance in High Speed

Integrated Circuits.'' He has also chaired many conferences, such as
GLSVLSI, IWSOC, and ISCAS. He was the Chief Scientist of the

Innovation and Entrepreneurship Center, Ministry of Communications and

Information Technology, Egypt.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3203077

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	RC Parasitic-Aware Layout Analysis and Routing Optimization Methodology
	Recommended Citation
	APA Citation
	MLA Citation

	RC Parasitic-Aware Layout Analysis and Routing Optimization Methodology

