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ABSTRACT

This thesis deals with the development of a process modeling methodology of the
end milling using artificial neural networks (ANNs) and the experimental selection is
based on the orthogonal arrays (OAs) and design of experiments (DOE). Process variables
include depth of cut (a), spindle speed (n), feed rate (f), and tool diameter (d). The interest
is to measure the resulting dynamic variations of cutting forces with cutting time. Two
supervised neural networks, a radial basis network (RBN) and a feed forward network
(FFN) are utilized as predictive tools for the process modeling. A systematic approach for
designing and training both types of neural networks using MATLAB functions is given,
aiming at reducing both predictive error and number of training patterns. A comparison
between these two neural networks based on predictive capability and number of training
patterns is presented. Moreover, designing and developing a neural network using
insufficient information is studied and presented. Modeling with insufficient information
can sometimes be a practical necessity. In this case, a process modeler can compromise the
accuracy of the information for the experimental cost.

In this thesis, several experimental models are presented based on (OAs) and DOE
including 2-levels, 3-levels, 4-levels, and 5-levels OAs. Results show that each model has
a potential for prediction if used by itself. Furthermore, if models are combined in a
sequence, the resulting composed models have better capabilities for prediction. Results of
different composed models indicate that using a certain sequence leads to a better model
with faster convergence and with less predictive error. Using such developed model,
experimental milling is not needed to find the cutting force; rather, the model can be used

for future prediction.
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Without the inclusion of DOE, several hundred milling experiments are needed
over several ranges of feasible input parameters to feed the neural model. Neural Network
modeling is an expensive modeling technique by itself. Combination of DOE and neural
network yields a very cost effective modeling means with low number of experiments.
Overall, roughly 160 experiments were conducted for the need of training and testing the
used neural models. The resulting neural models are valid for cutting force prediction
inside and outside the variables domains. Besides, using the DOE along a certain neural
network design can compensate the limitations of experiment pseudo randomness and can

approximate the process using insufficient information with reasonable error.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The final processing of most mechanical parts after the primary operations such as
casting, rolling, and forging is one of the metal cutting operations. The aim of metal
cutting processes is to efficiently and safely produce the final parts with desired shapes,
dimensions, and surface quality. Metal cutting can shape products with different sizes.
Large industries like automotive and aerospace have large machine shops with numerous
metal cutting activities. Metal cutting can be applied to metal parts that have different
material properties such as steels and aluminum alloys. The same cutting processes can
also be used in other applications dealing with nonmetal materials such as polymers and
ceramics. One classification divides the metal cutting operations into two main groups.
The first group is the operation that contains single-point tool such as turning. In this
group, the cutting tool shapes the parts using a single cutting edge. The second group is
milling which includes all operations conducted with multi-point tool.

As an example of the significance of the size of industrial applications using metal
cutting processes, in United States alone, the annual value of the machining operations is
about $168 billion [22]. This emphasizes the weight and importance of metal cutting in
industry and points to the significance of working on achieving development and
improvement to such operations. Consequently, the science of metal cutting has received a
tremendous attention from both academic researchers and industry practitioners.

Developing an accurate model that can predict the performance of metal cutting system



and consequently, lessen the requirement of carrying out experiments is one of the most
important topics that received that attention. Satisfactorily achicving that task is very
difficult because the features of metal cutting system are complex and contain many
interacting factors. In particular, modeling the process of milling is more complicated
because the dynamics are more difficult and the resulting cutting forces are periodic [23].
Therefore, recently, there has been a strong need for utilizing powerful modeling tools.
One of these modeling tools is artificial neural network (ANN). It can accurately model
complex systems after using some experiments for training phase and other experiments
for validation phase.
1.2 The Process of Milling

In the milling operation, tools with multiple cutting edges are rotated and fed
toward the machining parts to form the desired shape by removing the unwanted material.
Milling is a very versatile process capable of producing simple two-dimensional flat
shapes to complex three-dimensional interlaced surface configurations. Milling has several
operations and ways of milling. Milling operations can be categorized into two main
groups, face milling (or end milling) and peripheral milling (or slab milling). The end
milling has several utilizations for facing, profiling, and slotting operations. The obtained
machining surfaces in the peripheral milling operations are parallel to the axis of rotation
and they are generated by the teeth located on the periphery of the cutter body. Besides,
ways of milling can be grouped based on feed direction which has two basic types.
Specifically, they are conventional (up) milling that feed works against the rotation of the

cutter and climb (down) milling that requires about 20% less HP than conventional milling



since the feed motion is in the same direction of the milling. Figures 1.1~1.4 illustrate

examples of different operations and ways of milling.

Figure 1.1 A Face Milling operation [25]

Direction
af cutter
rotation 4

Figure 1.2 A Peripheral Milling Operation [25]

%

feed

Figure 1.3 Up Milling [25]

1 Direction
_I_ af cutter
’ rotation
T ——
I S — __Table
feed

Figure 1.4 Down Milling [25]

The system of milling can be viewed as an intricate system with several

input and output parameters. Figure 1.5 gives an illustration for a milling system.

The system can be divided into four elements, they are: input parameters, a

machine, internal parameters, and output parameters. The system has several



input machining parameters have to be considered and planned before machining
to get desirable output parameters. Tool material, cutting tool features, depth of
cut, spindle speed, feed rate, and cooling fluids are some significant examples of
these decision variables. The optimum value of one input variable for one cutting
situation can be unwanted in other situations. For instance, cooling fluids, in
many milling applications, have vital benefits such as reducing the cutting
temperature and lubricating the tool and the work-piece. In other applications,
however, using cooling fluids will not be necessary, and in some cases will not be
recommended to avoid the thermal shock that can result from suddenly cooling.
Besides, searching for the most suitable values of some input parameters has to
consider the values of other parameters. For example choosing a cutting tool for a
particular milling operation will depend on many other factors such as the
geometry feature to be machined and the work-piece material to be cut.
Moreover, the selection of the input parameters can rely on the type and condition
of the machine that will be used. The type of machine will place a limit on the
input parameters and their assigned values. However, knowing the actual
performance of the machine condition usually requires deep experience along
some estimation from the machining planners for determining the most suitable
input values that will optimize the output parameters, and realize the maximum
benefit from the used machine.

These machining parameters, in the range of acceptable conditions of the
machine, produce some internal parameters like cutting forces, and machine

vibrations. These internal parameters have strong relation with the milling



system’s output parameters such as quality of products and productivity. As the
stability of internal parameters is obtained, the output parameters can be
improved. Moreover, instability of these internal parameters can badly affect the
machine condition, and lead to additional loss. Therefore, measuring these

parameters helps in monitoring the processes and can give an image of the quality

of machined parts.
Machining Internal
parameters parameters

like: depth of
cut, spindle

like: cutting
forces, tool

speed, feed chatter, cutting
rate, and cem .
cutting tool emperature,
features. and tool wear.

Output parameters like: product quality
and accuracy, machining time, and
machining cost. e

Figure 1.5 An Illustration for a Milling System

One of the most important internal parameters is the resultant cutting forces. The
contact between the cutting tool and the machining parts generates significant and trregular
forces during the cutting pass. These cutting forces can determine machine power
requirements because they create the torques on spindle and drive motors which generate
power drawn from motors. Industry practitioners and researchers tend to control these

forces to have constant average force as possible and to reduce the maximum force, since



excessive forces can lead to some unwanted machining performance such as tool failure,
tool deflections, geometric work-piece errors, poor surface finish, and machine structure
deflections. Consequently, controlling the cutting forces has great economical benefits and
monitoring resultant cutting forces can be used as a performance measurement for
machining operations. Cutting forces have strong influence on tool breakage, tool wear,
and work-piece deflection. Therefore, there has been much effort and research work in the
area of cutting force modeling over the past decades. A number of models for predicting
cutting force as a function of machining parameters such as depth of cut, cutting speed,
feed rate, and tool geometry have been presented. The development of these models varies
from empirical models to the use of artificial intelligence such as neural network as a
modeling tool. Section 2.3 will give a literature review for these models.

Another important internal parameter is the tool chatter. Chatter is an undesirable
and often unavoidable self-excited vibration between the cutting tool and work-piece.
Without careful planning of the input parameters, controlling the internal parameters and
considering the machine condition, the milling system can produce parts with inferior
quality and decreased efficiency.

1.3 Design of Experiments

An essential objective of a designer of a product or a process is to get a reasonable
conclusion about the effect of design parameters on response variables under different
conditions. DOE allows for a systematic approach to quantify the effects of these

parameters using a technique called the analysis of variance (ANOVA).



1.4 Artificial Neural Network (ANN)

ANN is an information handling means that is inspired by the way biological
nervous systems deal with information. ANN is basically composed of processing
elements connected in parallel called neurons [8, 24]. Every connection contains an
adjustable parameter called weight. The output of the ANN comes from combination of
cach single neuron’s output by these connections. The ANN has several types and
applications such as the self-organizing (unsupervised) ANN used for classification
problems, and the supervised ANN used for nonlinear multivariate function mapping.
Since this work uses the supervised ANN for modeling process, a description for that type
will be presented. The supervised ANN can be trained to acquire knowledge by presenting
some different input values of usually, sophisticated nonlinear function with their true
output values. For training pattern, the ANN adjusts its weight parameters based on the
magnitude of the error between the true output and the ANN output. The role of the ANN
algorithms is to minimize the error function with every new training pattern until the error
is gradually reduced to become an acceptable small value. At this time, the ANN can be
used to predict new output values for any input values. A block diagram shows this
training process in Figure 1.6.

Figure 1.7 illustrates the basic features of simple neuron model, the basic
processing unit of ANN. It shows a simple model of neuron that has n inputs symbolized
as, [Xo...Xs]. Every input connection encompasses synaptic weight. The weights are
represented by symbols [Wo...Wy]. As a simple example, each of these input values is
multiplied by its connection weight then the products fed through an activation function to

generate an output result.
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Figure 1.7 A Representation of a Neuron Model [8]
1.5 Objectives

Generally, milling process is complex as it utilizes multiple cutting edges, involves
many interacting parameters, and it has dynamic effects like structural vibrations.

Developing an accurate predictive model for the milling process is desired for better



planning and process control in such a way that would enhance the milling output
parameters. Designing a model that predicts cutting forces as a function of machining
parameters can be used to effectively plan the milling process before implementing the
actual machining. The ANN is an effective modeling and approximation tool. It can map a
relationship between input and output parameters by receiving some experiments which
represents the actual system performance. The number of experiments can be minimized
by using DOE and OAs as a selection tool that chooses the effective experiments.
Therefore, combining the ANN as a modeling tool and DOE to select training experiments
can be promising methodology that efficiently models the milling process.

This thesis basically deals with the modeling process of the end milling using
artificial neural networks and DOE. The thesis consists of five chapters. This chapter
presents the subject of this thesis. In chapter 2, a literature review in the area of metal
cutting and milling operation modeling is presented. Chapter 3 provides the various
equipments and tools used in the experimental work. This is followed by presenting the
ANOVA for the several models. In chapter 4, the predictive models for predicting the
cutting forces of face end milling operation using several OAs and two ANNs are
presented. A summary of all conducted experiments used in the training and validation
phases and several predictive results are given. The details of these experiments as well as
results are given in appendices. This also includes the results and the process models of
using insufficient information. Finally, chapter 5 presents conclusions of obtained results

and recommendations for future work.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Before the foundation of metal cutting science and until now, most machining
techniques used in industry are extensively based on the past experience of the operators
and even founded on trial-and-error, especially when planning for new machining
situations. Such an approach is time consuming, expensive, and lacks a thorough scientific
basis. At the start of metal cutting science, the researchers gave great attentions to
understanding the physics of metal cutting. After that, and up till now, the development of
accurate and reliable machining process model is much needed by both academic
researchers and industry practitioners. The output parameters viewed as significant and
needed for prediction can be: cutting forces, surface finish, tool life or tool failure,
machining and work-piece accuracy. The discussion of several modeling processes of
metal cutting is presented in two categories: analytical and numerical modeling and
modeling using artificial intelligence. These will be discussed in sections 2.3 and 2.4
respectively.

2.2 The Requirements of Metal Cutting Modeling

The machining researchers and practitioners usually aim at a model that has the
following features. The model should accurately estimate the result of using a combination
of input parameters and suitably determine if the tool cuts the work-pieces in a safe,
efficient, and inexpensive manner. The model should be computationally efficient,

uncomplicated and suitable for use by a skilled machinist without knowledge of model
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intricacies. The model should find out if the resulting stress and peak force magnitude
exceed the allowable values. Besides, it should determine if the expected power does not

exceed the available spindle motor and conclude if the tool meets chatter conditions.
2.3 Analytical and Numerical Modeling

By definition, analytical modeling is a set of equations based on physical
significance describing the performance of the metal cutting system. These equations are
usually easy to implement and they can give excellent understanding of the physics of the
metal cutting. However, such models have the following assumptions:

First, cutting process is orthogonal. Usually, it uses the simple two-dimensional
orthogonal cutting to explain the general features of metal cutting. In orthogonal cutting,
the material is removed by a cutting edge that is perpendicular to the direction of relative
tool-part motion. In orthogonal cutting analysis, several assumptions are made. The cutting
force is uniform along the cutting edge, and the resulting chip is uniform flat. This
simplifies the system of metal cutting. For example, when using two-dimensional
orthogonal cutting concept, the cutting forces will only apply in the direction of velocity
(tangential force Ft) and uncut chip thickness (feed force Ff). Second, these models are
simplified by assuming that the resulting stress and shear distributions along the stress and
shear planes are uniform. Furthermore, dynamic features such as the spindle run-out and
the thermal effect are neglected.

Since the developed equations contain a number of coefficients, it is not applicable
to use the analytical model alone. It is more sensible to carry out few experiments used to
identify these coefficients. Then, these coefficients can be used to model the processes

within the range of the conducted experiments. In this case, the model will be called
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mechanistic model. There has been a great effort directed to produce a numbers of
coefficient tables within various ranges and some common alloys. For example, a
handbook containing several cutting coefficients for many alloys was presented by
Cincinnati [6].

This approach was used to predict the cutting force, torque and power very quickly
for a set of process variable such as depth of cut, spindle speed, tool geometry, feed rate
and work-piece material. However, the mechanistic model has some problems and
limitations. First, the model can't predict out the conducted experiments' range which lead
to the need for performing many experiments. Second, it is time consuming to search for
suitable tables to choose suitable coefficients. Third, the ignorance of many dynamic
features of the cutting process and the simplification applied to the cutting configuration
and the developed models are still far from being considerably complete to model the
actual cutting process. Therefore, there has been a great effort to lessen the disadvantages
of this approach and to advance the cutting analysis and to consider cutting dynamic
characteristics.

Among these efforts, a simulation model based on the analytical models for
predicting cutting forces of end-milling was presented by Milfelner and Balic in [17]. For
constructing this model, a number of experiments have been conducted and the results
have been saved in a database, then the analytical equations of cutting forces of end-
milling were entered in the model. These equations contain a number of parameter
coefficients related to input parameters such as the features of cutting tool, work-piece
material, and cutting conditions. When such input parameters, within the conducted

experiments range, used in the model, the program can calculate the parameter coefficients
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quickly from data in the database. Still, the operators are restricted with the stored
experimental ranges.

Abrari and Elbastawi [1] presented a set of force functions that implement an
analytical integration of the cutting forces along the cutter edge rather than the numerical
integration. The developed functions are based on the projection ship of the load area in
any tool passion onto the reference coordinate planes. These equations were applied
separately to some milling operations of flat and ball end mills and the obtained results
were compared to the actual experimental data. The results showed that these equations
can calculate the cutting force with values close to the cutting force obtained from the

actual experiments.

A dynamic model of the process of turning machining based on mathematical
models was presented by Acosta, Switek, and Garcia [3]. It started with giving a review for
some relationships and mathematical models of independent and dependent variables used
to obtain some machining parameters such as cutting force, power requirements and
surface finish. The model was implemented by developing software using these
mathematical models to output the machining parameters. Some experiments were
performed and showed that the model is capable of illustrating many machining parameters
within certain ranges and with some deviations due to ignorance of some dynamic features
such as vibration. The developed work showed that the model needs many relationships
since computing a machining parameter depends on the presence of these relationships.

Li et al [13] presented a theoretical model for cutting forces in face milling based
on a predictive machining theory and the mechanics of milling. A windows based

simulation system was presented with friendly user-interface. The model outputs milling
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force variation against cutter rotation in either numerical or graphical form. The main
feature of the model is considering the milling operations as a simultaneous process of
cutting with a number of single point cutting tools and carefully considering the mechanics
and the dynamics of milling. Oxley's predictive machining theory [20] is used as a
foundation in which the cutting forces can be calculated from input data of work-piece
properties, tool geometry, cutting conditions, and the type of milling. A number of
experiments were performed to validate and test the model. The results confirmed good
prediction accuracy and the error range was from 1% ~ 12%.

The orthogonal cutting modeling used for the mechanics of ball end milling, with
considering the dynamics of cutting forces was studied by Abrari, Elbestawi, and Spence
[2]. This method considers the tool as very thin slices and the cutting force as the
summation of cutting forces applied to each slice. The model considers the effects of the
surface undulations, instantaneous deflection and the interface of the flank face of the tool
with the finished surface. The paper also gives a study for the stability of the ball end
milling in the semi-finishing operation of die cavities. The developed model of X-Y
cutting forces showed good results with 10% deviation.

Another way for reducing the limitation of analytical models is by simulating the
process using numerical and finite element methods (FEM). As an example for this
approach, a research work presented a finite element simulation based model to predict
chip formation, cutting temperatures, tool stresses and cutting forces resulted in 2-D flat
end milling for selected cutting conditions [18]. The experiments conducted on a

horizontal high speed milling center were used to compare the resulting values with the
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predicted ones. This comparison demonstrated the effectiveness of FEM simulations in
predicting process variables in a simple flat end milling operation.
2.4 Modeling Using Artificial Intelligence

Another methodology that uses the great capabilities of artificial intelligence, such
as neural networks and fuzzy systems, has been investigated to efficiently predict many
dynamic features. The application of this approach has been successfully applied in
industry with two styles: offline, and online.

A back-propagation neural network model is used to predict surface roughness and
tool flank wear in hard turning using Cubic Boron Nitride (CBN) tools for different cutting
conditions by Ozel, and Karpat [19]. The conducted experiments are planned by using the
fractional factorial design (FFD). The validation phase demonstrated that the model was
capable of accurate surface roughness and tool wear prediction for the range it has been
trained. A regression model was developed and was compared to the neural network
model. Comparison showed that the neural model gave better prediction accuracy.

Another back-propagation neural network model was used to predict the tool flank
wear in machining (17-4PH) stainless steel using turning lathe by Chien and Tsai [5]. The
predictive values were used as a constraint to optimize some cutting conditions based on
maximum metal rate. The feeding experiments are planned using the Taguchi method and
orthogonal arrays [21]. The Genetic Algorithms and Taguchi method were employed as
tool for designing the parameters of the predictive model and optimization was used to
minimize errors of predication. Tool flank wear prediction accuracy for the model ranged

from 6.64% ~ 8.6%.
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A new approach using neural network for modeling flat end milling operation was
presented by El-Mounayri, Gadallah, and Briceno [7]. Feed rate, spindle speed, and radial
depth of cut were used as input parameters to give a representation of the expected
corresponding cutting forces. The FFD techniques were used for planning the experiments
needed for training the neural network. This includes using four OAs specifically, 1.9 OA,
127 OA, 1.27 OA (extended range), and L36 OA. A comparison between these arrays for
training the neural model is specified. The comparison proved that L36 OA model results
in better predictive model.

As an example for online application, an online predictive model for surface
roughness in turning operations is presented by Ho Shinn-Ying et al [9] using an adaptive
NEURO-FUZZY inference system (ANFIS) and computer vision. The model aims at
precisely predicting the features of surface roughness for certain cutting parameters.
Experimental results demonstrated better modeling and prediction accuracy than previous
models, which are polynomial network-based.

2.5 Conclusion

There has been some research effort directed to advance the mathematical models
based on the physics and the geometry of metal cutting. This includes considering the
effect of some dynamic features and giving more comprehensive analysis for the process
of metal cutting. Besides, the implementation ways of these models have received much
attention. This includes developing faster techniques for solving the equations and
relationships of the process variables, and developing computer software that enhances the

manipulation of these models. This approach has relatively added more accuracy and has
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made the mathematical model easier to use. However, it is completely complex to obtain
accurate models that totally consider the dynamic elements of metal cutting process.

Compared with this approach, the literature shows that neural modeling is accurate
with generalization nature that makes it possible to train with some experiments and use
the model to predict other situations with good result. Most research work using ANN in
metal cutting focuses on the significance of applying ANN as modeling tool. This includes
comparisons between the neural models and the traditional models. It also includes some
important cutting applications in which the ANNs have been successfully applied to
predict the processes. Moreover, some research work depends on OAs as a method for
minimizing and planning the training experiments. Very few researches compared the
effect of using different OAs as training patterns. Little research analyzes the capabilities
of applying different ANN structures and different design parameters to model the metal
cutting process. Very few researchers tackle the problems associated with ANN training
when dealing with metal cutting such as over-fitting. Moreover, no research work has been
performed to present the ANN capabilities when employed to model an application using
insufficient information. The input parameters included are limited to few parameters
especially depth of cut, feed rate, spindle speed. Other input parameters should be included
such as the geometry of cutting tool, tool diameter and work-piece material.

Therefore, the motivation of this thesis is to provide an efficient and effective
methodology for modeling the end milling process using a combination of ANNs and
DOE. This will include studying and comparing the capabilities of using the neural models
that can be used for modeling such process. Specifically, they are radial basis network

(RBN) and feed forward neural network (FFN). Each neural model contains a number of
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design parameters that need to be investigated. This will also include studying and
comparing the modeling capabilities when using several levels OAs as training patterns
along the used ANNs. The combination of different levels OAs is expected to provide
better modeling capabilities since they host more variations of process variables but this
leads to wonder which combination sequence should be followed. In this thesis, various
OAs, from 2-levels to S-levels will be used. Furthermore, two combination sequences will
be followed and compared. The first one will combine OAs with arbitrary way. The second
one will start with comparing the use of each OA separately then, the best OA that
provides the minimum predictive error will be selected. After that, the same step will be
followed, using all possible combinations of the selected OA in previous step. The best
composed model will then be selected. This will be repeated until all OAs are included.
Finally, modeling using insufficient data can be a practical necessity due to some
limitations of time and/or resources, the process of modeling the end milling process using

insufficient data will be studied.
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CHAPTER 3

EXPERIMENTAL SETUP AND RESULTS

3.1 Experimental Equipment and Setup

The employed experimental equipment and setup consist basically of six main
elements: two milling machines, work-pieces, tools, a dynamometer, a data acquisition
system, and a pc. This section will identify and describe these elements.

All conducted experiments are machined by using two milling machines. They are
CNC milling machine and conventional universal milling machine (CU). The CNC
machine can run at spindle speeds from 100 rpm to 2500 rpm. Its axis travels 290 mm in
X-direction, 170 mm in Y-direction, and 235 mm in Z-direction. While the conventional
machine has some limitations regarding the alternative values of both spindle speed and
feed rate.

Casting aluminum work-pieces used in the experiments are purchased from the
local market. Their dimensions are chosen to be 80 x 65 x 60 mm to suit the fixing area at
the top late area of the dynamometer. The surfaces of all work-pieces are prepared before
milling experiments to avoid any surface defaults. Every work-piece is designed to have
two holes for clamping the work-piece to the dynamometer. Every work-piece can be used
for four experiments by machining its top and bottom sides as shown in Figure 3.1.

Six IZAR® HSS 2-flute end-mill tools with different diameter sizes were used in all
experiments. They are 6 mm, 7 mm, 8 mm, 10 mm, 11 mm, and 12 mm. All tools have the
same cutting angles and the same material. Additional information can be found in

appendix A.
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The three Cartesian force components illustrated in Figure 3.2 are measured by a
KISTLER 9257B dynamometer. A work-piece can be fixed in its top late area of 170 x 100
mm. The dynamometer starts the process of measuring the cutting forces by sending
analogous signals in the form of voltages which are proportional to the actual cutting
forces occurring to three amplifiers by an integrated cable.

For the need of getting and interpreting these signals, a HUMSOFT MF 614 data
acquisition card is used with a pc. The used card has some important features. It contains a
converter unit that receives analogous signals and converts them to digital signals.
Therefore, it used to receive the analogous signals from the amplifiers and output digital
signals. Besides, this card can work with a Real Time Toolbox for MATLAB that contains
a library of real-time blocks. This enables to create a simulation diagram using
SIMULINK and consequently, benefits most of the SIMULINK advantages. Therefore,
SIMULINK simulation diagram is designed using some real-time blocks provided in the
Real Time Toolbox [11] and MATLAB to understand the coming digital signals and give
online diagrams, immediately processing the data and store the data in mat file format. It
also gives the ability to specify different sampling periods for each output. The three

components of cutting forces were sampled at 500 HZ for 1 second.
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Figure 3.2 The Three Orthogonal Components of
The Measured Forces.

An illustration for that model is shown in Figure 3.3. In this figure, the data

acquisition board which outputs real-time digital signals as discussed before is represented

by an [ADAPTER] block. This block loads the hardware driver and allows modifying its

setting. [RT BUF IN] input block was used for representing the real time input channel in

the simulation diagram. This block allows specifying the sampling frequency and it is

designed to acquire the data at the real time and it can also store them into buffer and

processed later. This gives the ability to display the three components of cutting forces

using the [SCOPE] blocks that uses MATLAB graph window in real time. The [SCOPE]

blocks in the simulation diagram are named as X, Y, Z respectively. At the same time,

using [TO FILE] block, the data are stored to a file. Figure 3.4 illustrates the entire

clements of the experimental setup and the way they are interacting.
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Figure 3.4 The Experimental Setup

3.2 Pre-Experimental Work

The initial and crucial step for constructing a model using ANN is to conduct some

experiments that include some important input variables and measuring the desired output
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variables for a particular cutting process. These experiments are used later to provide the
required knowledge to the ANN model to learn the relationship between the input and
output variables. The end milling is selected as cutting process specifically, slot end
milling process with one path. Depth of cut (a), spindle speed (n), feed rate (f), and tool
diameter (d) are chosen as the process variables. These four variables are assumed to be
independent variables. Other pfocess variables are chosen at fixed levels for all

experiments. Table 3.1 shows the selected values of the process variables in all

experiments.

Table 3.1 Control Variables Used For All Experimental Models.

amm n rpm f mm/min d mm

(V) CNN CuU CNN CuU CNN CU CNN
0.5 0.5 400 500 355 50 6 6
0.75 1 560 750 50 100 7 8
0.8 1.5 800 1000 71 150 8 10

1 2.5 1120 1500 100 200 10 12
1.25 1600 140 11

1.5 200 12

1.8 280

2
2.25

2.5

2.8

3

3.5

4

The resulting dynamic 3-D cutting forces will be measured as they are sclected to
be the output’s response. These three resulting force components Fx, Fy, and F7 are

combined to one resultant force using Equation 3-1.

F=~/[(F)’ + )" + (F)’] 31
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Figure 3.5 illustrates the resultant force of three cutting revolutions using CU
machine as a sample. In this illustration, it is clear that the resultant cutting force is
periodic. However, the cutting force behavior of each revolution is not identical. For
example, the maximum force and minimum force are different for each revolution. The
reasons for this behavior are due to the noise in the measurement, machine vibrations, and
the impurity of work-piece material. It is also shown that within a revolution the two
maximum peaks and two minimum peaks are not similar because of the spindle run-out of

the machine.
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Figure 3.5 Force vs. Time for Three Revolutions Using CU Machine.

Therefore, using the resultant force, the outputs are presented in the form of six
values. The first four values are: the maximum, the minimum, the mean, and the standard
deviation of the resultant force values. These values are symbolized as Fuax, Fmin, Fmean, and

Fsiev. The last two values are obtained by firstly, calculating the maximum and minimum
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peaks by each revolution. Then, the mean of these maximum and minimum values are
computed. Fyimax and Fyamin are the symbols of these two values. Figure 3.6 represents the

form of the inputs and the outputs.
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Figure 3.6 Input Variables and the Corresponding Measured Forces

Besides using the equipment and setup elements with their precautions given in
their instruction manuals, validation tests should be conducted on them before initiating the
work of these experiments. These preliminary validation tests are useful for getting the
actual performance and the associate noise of the experimental equipment and setup. If for
example, the associate noise is too high, the corresponding experimental results will be
untrustworthy and ineffective for building the ANN model. Therefore, a number of initial
experiments was performed and repeated on the two milling machines described in section
3.1. Then, the repeatability errors were calculated for the six output values: Fyax, Fumins

Fueans Fstaevs FM-Max> and Fymin, using Equation 3-2.

Absolute (V1 —V>)
vV, 3-2

Repeatability Error =
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Where, V; is the measured force value of the first experimental run and V is the
measured force value of the repeated experimental run. The repeatability error measures
the possibility of each machine to respond the identical performance when using the same
input machining parameters. The results are listed in Table 3.2 and Table 3.3. The results
show that the mean repeatability error is 5.95% for CNC machine and is 8.26% for CU.
The results also show that the resultant errors from Fuyin and Fyomin are too high and once
excluded the mean repeatability error for CNC and CU become 2.29% and 3.51%
respectively. Accordingly, the two machines can be acceptably trustworthy for the Fuax,
Fyeans Fsidovs and Fymax values, while they are not trustworthy for Fyin and Fy.min values.
One possible reason for the increase of repeatability error for Fyin and Fyumin 18 that their
values are very small and consequently will be strongly affected by the noise variations
resulting from many sources such as machine noise, vibrations and force measuring

equipment.

Table 3.2 Repeatability Testing Experiments for the CNC machine.

amm | nrpm | fmm/min | dmm | Fuyyy Fiin Fuyean || Fsaev | Fvvax | Fyvvin
1.5 1000 50 10 | 126328 | 0211 | 35.888 | 31.478 95.496 1.607
125.893 | 0.248 | 36.539 || 31.579 | 95.562 1.694

The Repeatability Error 0.34% | 17.42% | 1.81% | 0.32% || 0.07% | 5.39%
1 750 100 8 124.808 || 0.247 | 43.494 || 34.223 || 104.865 || 2.592
129.444 | 0.297 | 45.604 | 33.207 || 106.357 | 3.355

The Repeatability Error 3.71% | 20.31% || 4.85% || 2.97% || 1.42% | 29.43%
0.5 500 200 12 170909 || 0.433 | 53.085 || 38.369 | 122.287 | 5.046
173.491 | 0.415 | 54.724 | 39.796 || 126.653 | 5.193

The Repeatability Error 1.51% | 4.31% | 3.09% | 3.72% || 3.57% | 2.93%

The Mean Errors = 5.95% 1.86% | 14.01% | 3.25% | 2.34% | 1.69% | 12.58%
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Table 3.3 Repeatability Testing Experiments for the CU machine.

amm | nrpm | f mm/min | d mm Fraax Fuyiin Fhrtean Fsgev | Fvnax | Frvomin
1 1600 230 12 193.296 | 0.189 51.349 | 51.647 | 156.462 || 3.591
199.995 | 0.174 52.057 | 51.948 || 158.120 | 3.449
The Repeatability Error 3.47% | 8.04% | 1.38% | 0.58% | 1.06% | 3.93%
2.5 800 230 8 415.081 | 0.399 | 222.959 | 92.558 | 346.261 || 23.316
442991 || 0.469 | 228.989 | 96.286 | 353.982 || 21.453
The Repeatability Error 6.72% |[ 17.60% | 2.70% | 4.03% || 2.23% | 7.99%
0.5 560 100 10 130.995 || 0.170 31.734 | 30.935 | 89.473 2.256
124.052 | 0.264 32.986 | 32.166 | 92.486 2.201
The Repeatability Error 530% | 55.48% || 3.95% | 3.98% [ 3.37% | 2.44%
1.5 560 100 10 264.828 || 0.205 70.154 | 76.550 || 198.989 | 1.590
255.130 || 0.210 69.240 || 74.596 | 194.386 | 1.922
The Repeatability Error 3.66% || 2.14% | 1.30% | 2.55% | 2.31% | 20.86%
The Mean Errors = 8.26% 523% |l 25.07% | 2.65% | 3.52% || 2.64% | 10.43%

3.3 Experimental models

In order to vigorously model the milling force, an enormous number of experiments
are needed over several ranges of feasible input parameters, so that the non-linearity and
the interactions of the input and output parameters can be modeled. However,
approximately similar modeling results can be achieved with lower number of experiments
and consequently lower experimental cost, when the experiments are effectively planned
along using powerful modeling tool.

As discussed before, four variables namely, Depth of cut a, spindle speed n, feed
rate f, and tool diameter d are selected, while other variables such as tool material, number
of tool flutes, and work piece material are chosen at certain level. Therefore, every
experiment represents one point in 4-D space. The X-Y-Z measured forces components are
acquired then the resultant force is determined and presented as discussed before. The

resultant cutting force variations are determined only at the cutting time while the force

variations before and after cutting time are not considered in the calculation. The uncut
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force variations represent the machine vibration and other noise variations. Trying to
reduce the effect of noise variations, the mean of uncut force variations was calculated and
then it was subtracted from the cut force variations. This is illustrated as an example in
Figure 3.7.

Using fractional factorial designs, a number of orthogonal Arrays (OAs) are
presented considering several levels covering the chosen space of the given input variables.
At the beginning, 5 experimental models called UL8-1, UL9, UL27-1, UL32, and UL25
considering two, three, four, and five levels for each variable parameter are selected. Then
additional two models are presented called UL8-2, and UL27-2 using two and three
variable levels. Besides these experimental models, a set of 21 experiments covering
different input values is presented. This model has some input values within the selected
range and other points outside that range. The role of that model is to provide unseen
experiments for the ANN for the need of validation and generalization test with the range
and outside the range.

All these experimental models are conducted using the CU machine while another
two models called NL8-1 and NL8-2 are utilizing only two variable values, are performed
on the CNC machine. Another set of 17 experiments chosen to have different input
positions in the space is conducted on the CNC machine called N-ad and used for the
validation process. Table 3.4 and Table 3.5 summarize the chosen input parameters and the
corresponding outputs. Figures 3.8~3.18 illustrate the input points in the space
corresponding to the tools used for all experimental models. The inclusive details can be

found in the appendix B.
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Figure 3.7 Force Variations vs. Time.
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The Space of the input parameters for Tool = 10 mm
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Figure 3.10 A Space Representation of CU Input
Parameters for d = 10 mm.
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Figure 3.12 A Space Representation of CU Input
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The Space of Input Parameters for Tool D = 12 and CNC
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Figure 3.14 A Space Representation of CNC Input
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Figure 3.16 A space Representation of CNC input
parameters for d =8 mm,
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Table 3.4 Input Variables for each Experimental Model.

Model Name Model Levels
a mm n rpm f mm/min d mm

1.5 800 71 8

UL8_1 3 1600 140 12
0.8 560 50 7

UL9 1.8 1120 100 8
2.8 1600 140 11

0.5 560 50 8
UL27_1 2 1120 140 10
3.5 1600 280 12

0.75 400 35.5 6

1.5 800 gh 8

UL32 2.25 1120 100 10
3 1600 140 12

0.75 400 35.5 7

1.25 560 50 8
UL25 1.75 800 71 10
2.25 1120 100 11

2.75 1600 140 12

ULS 2 1 560 50 7
- 2.5 1120 100 11

1 560 50 8

UL27_2 2 1120 100 10
3 1600 140 12

NLS 1 0.5 500 50 6
B 1.5 1000 150 10
NLS 2 1 750 100 8
- 2.5 1500 200 12
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Table 3.5 A Summary of Force Components for Experimental Models.

Model Name | Value Definition | Fuyay | Fumin | Fuvean | Fstdev | Fvomax | Fymomin

max 367.49 | 0.56 | 138.58 | 108.10 | 292.81 | 4.30

UL8-1 mean 253.18 | 0.34 | 75.44 | 62.97 | 190.97 | 2.90
min 106.04 | 0.11 | 32.37 | 20.77 | 69.18 1.79

std 105.11 | 0.15 | 33.22 | 29.58 | 84.39 0.87
max 494.76 | 0.79 | 251.94 | 107.66 | 378.66 | 31.57

UL mean 239.83 | 0.55 | 88.79 | 54.42 | 182.52 | 8.54
min 112.11 | 0.36 | 30.63 | 21.61 | 80.93 1.95

std 120.29 | 0.12 | 66.67 | 32.04 | 98.15 9.54
max 1283.47 | 9.15 | 643.58 | 302.60 | 1057.47 | 88.18

UL27-1 mean 388.24 | 2.02 | 15941 | 88.71 | 305.89 | 15.92
min 81.22 | 0.27 | 27.52 | 13.62 | 61.12 2.46

std 307.58 | 2.23 | 165.84 | 75.94 | 263.32 | 22.51
max 410.42 | 2.28 | 204.13 | 122.35 | 344.82 | 33.92

UL32 mean 251.36 | 0.58 | 89.24 | 60.58 | 187.08 | 7.95
min 109.10 | 0.11 | 24.98 | 19.80 | 69.55 1.43

std 97.74 | 0.54 | 53.55 | 25.26 | 80.48 8.92

max 666.67 | 2.15 | 284.02 | 169.84 | 518.62 | 27.51

UL25 mean 24443 | 0.67 | 87.98 | 58.27 | 185.17 | 7.54
min 90.74 | 0.20 | 2494 | 14.52 | 58.33 2.10

std 129.66 | 0.53 | 62.33 | 35.08 | 103.57 | 6.43
max 591.64 | 3.52 | 215.99 | 174.13 | 460.20 | 23.06

UL27-2 mean 285.55 | 0.89 | 89.24 | 69.57 | 218.09 | 6.79
min 111.80 | 0.25 | 33.02 | 22.50 | 86.00 1.95

std 125.12 | 0.77 | 47.02 | 38.86 | 99.67 4.95

max 355.80 | 093 | 164.76 | 77.08 | 280.99 | 24.43

ULS-2 mean 231.69 | 0.45 | 86.74 | 43.77 | 166.78 | 8.85
min 126.18 | 0.15 | 34.40 | 25.11 89.45 1.45

std 89.02 | 0.29 | 45.31 | 18.28 | 67.03 7.48

max 366.19 | 0.79 | 126.57 | 95.12 | 284.87 | 10.09

NLS-1 mean 159.80 | 0.37 | 50.20 | 38.76 | 122.43 | 3.85
min 62.57 | 0.11 | 19.82 | 12.50 | 47.26 1.65

std 98.24 | 0.23 | 35.69 | 26.67 | 77.72 2.98

max 416.04 | 0.82 | 198.09 | 110.26 | 341.06 | 30.43

NL8-2 mean 281.17 | 0.35 | 93.38 | 68.02 | 221.55 | 7.80
min 127.13 | 0.06 | 39.65 | 29.99 | 105.61 2.23

std 100.81 | 0.26 | 53.25 | 27.32 | 84.41 9.65
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3.4 Analysis of Variance (ANOVA)

In order to determine which variables affect the process, modeling and optimization
researcher and practitioner need methods to identify and discriminate among the involved
variables. One of the most important methods is analysis of variance (ANOVA). In the
following discussion, ANOVA study will be presented using UL27-1 model. The results
are summarized in a table including six columns. The first shows the source of the
variability. The second shows the sum of Squares (Sum Sq) due to each source. The third
shows the degrees of freedom (DF) associated with each source. The fourth shows the
Mean Squares (Mean Sq), which is the ratio (Sum Sq)/ (D F). The fifth shows the
statistical significance test (Fp). The sixth shows the p-values for the Fy statistics. This
analysis is implemented for the six yields Fyax, Fvin, Fmeans Fstdev> FM-Max, and Fyimin. This

is summarized in Tables 3.6~3.11.

Table 3.6 The ANOVA Summary for FMax of UL27-1 Model.

Source Sum Sq. DF Mean Sq. Fo Prob>F,
a 1177835.5 2 588917.8 44.93 1.0039E-07
n 295304.9 2 1476524 11.265 0.00067221
f 610165.8 2 305082.9 | 23.276 | 0.000010193
d 140487.3 2 70243.64 | 5.3591 0.01493
Error 235934.2 18 13107.45

Total 2459727.6 20
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Table 3.7 The ANOVA Summary for FMin of UL27-1 Model.

Source Sum Sq. DF Mean Sq. Fy Prob> F
a 57.7 2 28.8586 12.6863 | 0.000365
n 12.8 2 6.3991 2.8131 0.08648
f 3.7 2 1.8412 0.80938 0.46069
d 13.9 2 6.9604 3.0598 0.071799
Error 40.9 18 2.2748

Total 129.1 26

Table 3.8 The ANOVA Summary for FMean of UL27-1 Model.

Source Sum Sq. DF Mean Sq. F, Prob> F,
a 323666.0 2 161833 38.1213 | 3.38E-07
n 123178.1 61589.04 | 14.5079 | 0.000177
f 181757.0 90878.49 | 21.4073 1.74E-05
d 10061.0 5030.488 1.185 0.3285
Error 76413.9 18 4245.217

Total 715075.9 26

Table 3.9 The ANOVA Summary for Fgye, of UL27-1 Model.

Source Sum Sq. DF Mean Sq. Fo Prob> F,
a 73932.3 36966.15 | 50.0226 | 4.46E-08
n 22397.5 11198.73 | 15.1541 0.000138
f 29518.7 14759.34 | 19.9723 | 2.69E-05
d 107774 2 5388.714 7.292 0.004791
Error 13301.8 18 738.9893

Total 149927.7 26

Table 3.10 The ANOVA Summary for FM-Max of UL27-1 Model.

Source Sum Sq. DF Mean Sq. F, Prob>F,
a 856042.7 2 428021.3 49.32 4.96E-08
n 272096.3 2 136048.1 15.6765 | 0.000114
f 453211.3 226605.7 | 26.1113 4.78E-06
d 65188.2 2 32594.08 3.7557 0.043334
Error 156212.3 18 8678.46

Total 1802750.7 26

Table 3.11 The ANOVA Summary for FM-Min of UL27-1 Model.
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Source Sum Sq. DF Mean Sq. Fq Prob>F,
a 4494.3 2 2247.174 12.5593 0.000385
n 2906.6 2 1453.323 8.1225 0.003062
f 2228.5 2 1114.238 6.2274 0.008801
d 329.6 2 164.8201 0.92117 0.41602
Error 3220.6 18 178.9246

Total 13179.8 26




Using confidence level = 90%, upper-tail percentage point of the F; 15 distribution
= 2.62. This concludes that all variables are significant for Fax and Fymax, Fsidev, but (a)
and (f) respectively, are the most significant. For Fyin and pvmin, () is also the most
significant variable. For other variables, (d) and (n) have little significance, while () is
insignificant. Regarding Fuezn, () and (f) are the most significant variables respectively,
(n) has some significance, and (d) is not significant. Generally, all process variables are
significant and (a) and (f) are the most significant variables. This concludes that the
selection of a, n, f, and d as the process variables to model the end milling process is
proper selection since, all of them are significant. Furthermore, the modeling capability of
UL27-1 can be enhanced with adding experiments that have more (a) and (f) levels. In
particular, additional experiments can be conducted containing new (a) and (f) values with
the same (d) and (n) values. This can enhance the modeling capabilities, since the larger

model host more variations of the process variables that are significant.
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CHAPTER 4

MODELING PROCESS USING NEURAL NETWORKS

4.1 Predictive Systems Using Neural Network

The artificial neural network (ANN) is used here as a tool for mapping input vector
received (P) by input neurons to output vector (Y) resulting from output neurons. The
mapping process tries to approximate the input function F (P) to another unknown function
F (P, W), where W is a parameter vector called weight function. This mapping process is
achieved by designing an ANN and training it with a number of input vectors and their
corresponding output vectors. The task of training is to adjust W at every training pattern
to find the best achievable mapping between input and output, by finding the best possible
approximation of F (P). Finally, the obtained weight values can be used to predict possible
output values when the neural network is responded to the input values. Therefore, the
weight values represent knowledge learned through the training patterns. In the training
phase, the fractional factorial design (FFD) is used as a systematic way to reduce the
number of training experiments, for every experimental model by which ANN is trained.
This study started by comparing every model alone then, comparing every possible
combination of models. The comparison here is based on the overall mean error of Fuax,
Futeans Fstdevs and Frmax While, the Fygin and Frmin are excluded from the comparison and
the error E is computed by using Equation 4-1. The input vector and output vectors for the

ANN are rCSPCCtiVely, P= [as n, f9 d] andY = [FMaX9 Fiin, FMeans Fstdevs Frm-max Fm-min]»
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In this work, two supervised neural networks are employed to model the end
milling. Specifically, they are radial basis network (RBN) and feed forward neural network
(FFN). A flexible MATLAB program was developed to model the process of these two
neural models. The modeling process used in this program is summarized in Figure 4.1. It
starts with determining which training and validation patterns will be used. These patterns
are scaled according to some normalization factors. The input patterns are chosen to be
normalized between 1 and -1 while the output patterns are normalized at 1 and 0. The

normalization process is performed using a linear mapping given in Equation 4-2.

(Smax' Smin)

F,= (R-Rpu) + (Swin)
(Rmax" Rmin)

4-2

Where, F, is the normalized variable, R is the real value before normalization, Rpax
and R, are the maximum and the minimum values before normalization, and Sp.x and
S,y are the maximum and the minimum values after normalization.

After that, the neural model can be initiated after choosing its type and specifying
its design parameters. Then, the obtained network will be trained with the chosen training
patterns. After that process, the neural model will be tested with the patterns it was actually
trained. The purpose of that test is to show the learning capability of the neural model. The

obtained result will be rescaled and compared to the actual training patterns and the
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corresponding error called training error is stored. The trained neural model will be tested
by unseen patterns called validation patterns. The aim of that phase is to test the
generalization capability of the neural model. The validation patterns are selected to
include some unseen patterns within the range of training patterns and others outside that

range. That way, testing the neural model as a general model will be more comprehensive.
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Figure 4.1 The General Procedure Used for Neural Modeling Process.
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4.2 Radial Basis Network (RBN)

Radial basis networks consist of two layers. The first layer is a hidden radial basis
layer of S! neurons, uses the Gaussian function for mapping, and the second layer is an
output linear layer called PURLIN of 2 neurons as shown in Figure 4.2. The profile of the

Radial basis transfer function and PURLIN function can be found in Figure 4.3 and Figure

4.4,
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Figure 4.2 The Basic Elements of Radial Basis Neural Network [15].
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Figure 4.3 Radial Basis Transfer Function [15]. Figure 4.4 Linear Transfer Function [15].

The algorithm of RBN depends on adding neurons to the hidden layer until it meets

the specified mean squared error goal or until the size of neurons reach the maximum
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allowable number. The design of radial basis NN depends on two main parameters. The
first parameter is called spread of radial basis functions. It is recommended to choose a
spread value such that it should be greater than the lowest of the mput values and smaller
than the highest values. The second parameter of radial basis network deals with the
stopping criteria of training. This parameter is very important for avoiding over-training,
since adding too much training experiments can cause the network to learn the noise in the
data. The stopping criteria can be controlled by two methods. The first method is by
specifying a certain number of neurons by which the training process will be stopped once
it completes that number. The second way is by presenting a training error goal, which will
force the model to stop when the training performance reaches that goal. In other words,
the training can stop when either the number of neurons reaches the allowable number or
when the training error reaches the training goal.
4.2.1 RBN Modeling Process

In this part, the modeling process for end milling operation using sufficient number
of experiments was presented. The initial aim was to reach minimum predictive error and
to study the possibility of using certain experimental models as training experiments
instead of using just sufficient training experiments. This can accelerate the convergence of
the model.

4.2.1.1 The Selected Parameters of RBN

The first studied parameter was the spread value. As an initial search interval,
different values, from 0 - 1 are used and studied using sufficient number of training
experiments, since both input and output values were scaled between -1 and 1 for input

vectors and between 0 and 1 for output vectors. Results are available in appendix C1. The
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result shows that the best spread values are within the range 0.8 to 0.95. This is illustrated

in Figure 4.5 and Figure 4.6.

The Influence of Spread Value Using Radial Basis Networks on Predictive Error

0.05 1 4

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 o.8 0.9 1
Spread Value
Stop Training

Figure 4.5 The Influence of Spread Value Using Radial Basis Networks on Predictive Error.

The Range of Spread Values that Best Predictive Errors

Spread Value

Stop Training l
Figure 4.6 The Range of Spread Value That Outputs The Best Predictive Errors.

Therefore, the spread value was initially, chosen at 0.83, then at the end of training,
an investigation was carried out to attempt another spread value that can reduce the errors.
The second RBN parameter is to decide the value of training goal. As shown in Figure 4.7

the training of RBN should be stopped when training performance reaches a value in the
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interval 0.9~1.5 based on the sum square errors. Therefore, the training error goal is chosen
to be 1. The third RBN parameter is the number of allowable neurons that can be used.
After trying different values for the neuron number, the allowable neurons are selected as
30. Figure 4.8 shows the best neuron number that leads to best predictive error in the
interval 23 - 37 neurons.

The Influence of Training Goal Error on Validation and Training Processes
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Figure 4.7 The Influence of Training Goal Error on Validation and Training Processes.

The Influence of Increasing Neurons on Validation and Training Processes
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Figure 4.8 Influence of Increasing Neurons on Validation and Training Processes.
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4.2.1.2 Training and Validation phases for RBN

After selecting the features of RBN, every experimental model is used alone as
training patterns. This outputs different predictive force errors as a result of different
training experiments. This means that every individual model has a different potential for
approximation. In specific, the results show that the three levels models have better
capabilities to train the RBN especially, UL27-1 which has higher input ranges. The results
are listed in Table 4.1 and a comparison for Epean and Eggey for basic models is illustrated
in Figure 4.9. The results show also that the predictive force error is too high and more
training experiments are needed. Therefore, the strategy is to use model UL27-1 as a basic
model when using a composed model consisting of two models or more. This will start
with studying the possible composed model resulting from two basic models. The resultant
model will be called the 2-composed model. The results of training 2-composed model can

be found in Table 4.2 and a simple illustration shows their mean and standard deviation

errors in Figure 4.10.

Table 4.1 The Predictive Force Errors Result From Training the Basic Models.

Model Name Predictive Force Errors Excluding FMin., FM-Min.
FMax FMin FMean FStdev FM-Max FM-Min EMean ES[dev
ULS8-1 043 [ 248 | 046 | 046 0.46 0.47 0.45 0.09
ULS-2 0.44 | 2.60 | 0.55 | 0.46 0.45 0.92 0.47 0.08
UL9 046 | 348 | 0.53 | 049 0.49 0.81 0.49 0.08
UL27-1 028 | 872 | 0.28 | 0.34 0.31 0.74 0.30 0.08
UL27-2 038 [ 4.11 | 045 | 040 0.40 0.71 0.41 0.07
UL32 041 | 3.86 | 0.51 0.44 0.43 0.93 0.45 0.11
UL25 043 | 425 | 0.60 | 0.44 0.47 0.89 0.48 0.10
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Figure 4.9 RBN Predictive Force Errors for the Basic Models.
Table 4.2 Predictive Force Errors for 2-composed model.
Predictive Force Errors gmudmg Ftas
Basic models | Model M-Min
with UL27-1 Name F.
FMax FMin F Mean FStdev M FM-Min EMean EStdev
ax
ULS-1 UL35-1 0.21 6.26 0.18 0.28 0.23 0.43 0.23 0.09
ULS-2 UL35-2 0.27 7.53 0.30 0.32 0.29 0.85 0.29 0.08
UL9 UL36 0.24 421 0.24 0.28 0.26 0.53 0.25 0.08
UL27-2 UL54 0.17 4.52 0.13 0.22 0.17 0.58 0.17 0.07
UL32 UL59 0.18 3.64 0.13 0.17 0.16 0.64 0.16 0.07
UL25 UL52 0.19 4.18 0.23 0.17 0.17 0.65 0.19 0.06
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Figure 4.10 Predictive Force Errors for the 2-composed Models.
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The results of constructing 2-composed models show that the mean of predictive
force errors was reduced by half. This means that adding more training experiments
succeeded to provide useful knowledge and better mapping to the RBN model. The results
also show that the best predictive error equals 16% and is achieved when using the 2-
composed model UL59 as the training patterns. The mean predictive error curve resulting
from using UL59 model is illustrated in Figure 4.11 and Figure 4.12 illustrates the error
curve for Fuaxs Fuin, Fmean, and Fyimax for last 20 training experiments. The same curve is
illustrated for Fyin and Fymin in Figure 4.13 that shows that the corresponding error for Fy.
Min 18 better than Fyin. However both results are too high. This means that noise associated
with Fyin and Fuvomin mislead the neural model. The best predictive error that can be
achieved until now using UL59 is 16%. Since the error is still very high, there is a need for

adding more experiments. This leads to use 3-composed models starting with UL59 as a

basic model

Errors vs Experiments # for UL59
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Figure 4.11 Predictive Force Errors vs. Experiment Number for using ULS9.

47



F Max, F M-Max, F Mean, F Stdev Error performance at last 20 training patterns of model UL59
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Figure 4.12 F.\, Frivaxs FMeans Fswey Error performance at last 20 training patterns of model ULS9
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Figure 4.13 Fys, & Fyovin Error performance at last 20 training patterns of model UL59
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Table 4.3 gives the possible 3-composed models using ULS9. This is also
illustrated in Figure 4.14. The result shows that adding new training experiments enhances
the prediction capability. However, it also shows that the degree of enhancement doesn’t
depend on the number of experimental models added. For instance, model UL86 has the
largest experimental numbers but it has predictive errors = 14.9% while UL67-1 has only
67 experiments, and has better predictive errors. However, the best experimental model
that offers the best predictive error was UL84. One possible reason could be that the
training patterns need to be added with the experimental model that has more useful

information that cover new input space location.

Table 4.3 Predictive Force Errors for 3-composed model.

Basic Model Predictive Force Errors Excluding Fgins

models Name Fym-min

with UL59

FMax FMin F Mean FStdev FM-Max FM-Min EMean EStdev

ULS8-1 UL67-1 0.132 3.054 0.173 0.146 0.138 0.552 0.147 0.068
ULS-2 UL67-2 0.156 4.726 0.177 0.163 0.171 0.614 0.167 0.082
UL9 UL68 0.159 3.007 0.170 0.170 0.147 0.412 0.162 0.064
UL27-2 ULS86 0.133 3.568 0.171 0.156 0.135 0.561 0.149 0.060
UL25 UL84 0.127 4319 0.138 0.133 0.115 0.625 0.128 0.055

Predictive Force Errors for 3-composed Models
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Figure 4.14 Predictive Force Errors for 3-composed models.
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UL84 was used for training as it has predictive errors of 12%. Accordingly, it was
selected. The models or even points that present new space points should be taken into
consideration. Therefore, not only all possible 4-composed models will be studied but also
analysis of every added experiment to UL84 will be presented. This will help overcoming
the effect of over-training problem and giving the optimum number of training
experiments. Figure 4.15 and Table 4.4 present the mean and standard deviation errors for
all 4-composited models as well as the mean and standard deviation errors for the effective
points for each model that reduce the predictive errors. The results show that adding the

effective points results in better predictive error than adding all model experiments.

Table 4.4 Predictive Force Errors for 4-Composed models and Effective Points.

Basie Predictive Force Errors Excluding Fy,
models with Exp. Model Fai-Min

UL84 Added Name Futax | Fyvin | Fmean | Fstdev | Fvvax | Fvivin | Entean | Estae

lto8 | UL92-1 | 0.17 | 313 [ 0.17 | 0.16 0.15 0.6 0.16 | 0.07

ULS-1 7 UL86-1 | 0.123 | 4.754 | 0.153 | 0.107 | 0.095 0.698 | 0.119 | 0.056

lto8 | UL922 | 0.127 | 464 | 0.147 | 0.145 | 0127 | 0543 | 0.136 | 0.054

UL8-2 6 UL8s | 0.12 | 4.897 | 0.148 [ 0.106 | 0.098 0.676 | 0.118 | 0.059

1to9 UL93 | 0.168 | 2.731 | 0.153 | 0.145 | 0.129 | 0377 | 0.149 | 0.053

ULY 2 uLse-2 | 0.119 | 4.522 | 0.138 | 0.106 | 0.099 059 | 0.116 | 0.056

lto27 | ULII1 | 0138|2275 | 0.117 | 0.134 | 0.101 0563 | 0.123 | 0.056

UL27-2 0to12 | ULS7 | 0145 [ 3254 [ 0.105 [ 013 | 0.105 0531 | 0.121 | 0.06

sgﬁit‘s‘g all Effective UL90 | 0.107 | 4.063 | 0.103 | 0.095 | 0.077 0.552 | 0.095 | 0.053
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Predictive Force Errors for 4-Composed Models
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Figure 4.15 Predictive Force Errors for 4-composed models and effective points.

The mean errors gained from training UL90 is 0.095. In order to confirm the result
obtained, the excluded experiments were added to the validation experiments and the RBN
was tested again. The predictive error for the bigger validation pattern was 0.104 which is
very close to the error obtained before. This result gives more confidence for the stability
of designed RBN and for the efficiency of using UL90.

All conducted experimental models were combined together in one big model
called UL136 then, it was used to train the RBN model. The resultant predictive errors,
shown in Table 4.5, explain that away from Fuin. and Fyumin., the mean of the predictive
error is 0.1. This demonstrates that using UL136 model is sufficient for modeling the
cutting forces of the milling operation. However, using UL90 model resulting from
utilizing the previous training procedures was more efficient since it yields almost similar
predictive errors from using UL136 with smaller training experiments. This means that

UL90 is fast converging better than UL136. This is illustrated in Figure 4.16.
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Table 4.5 Predictive Force Errors after using all experimental models.

Model Predictive Force Errors Excll;?dlng Futin,
N M-Min
ame T
FM ax FMin FM@ FStdev FM-Max FM-Min EMean EStdev
UL136 0.10 0.87 0.09 0.11 0.10 0.33 0.10 0.05

A comparison between UL90 and UL136 —— Emean UL90
—e— Emean UL136
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Figure 4.16 A comparison between UL90 and UL136.

At the end of the training phase, an investigation was preformed on both UL90 and
UL136 applying another spread values from 0.7 - 1 to search if there is another value that
can vyield less predictive error. The results of this investigation led to setting the spread
value to 0.97 for UL90 and 0.86 for UL136. This adjustment slightly enhanced the error
for both the UL90 and UL136. A comparison of the new predictive error is presented in
Table 4.6 and in Figure 4.17. The results demonstrate the same conclusion that using UL90
led to an approximately similar predictive error as using UL136 model. Moreover, UL136

requires larger number of experiments to converge to the proper error. This will be referred
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to the efficiency of modeling. Finally, Figure 4.18 compares the real values of Fyax to the
values predicted by the RBN model using UL90. In Figure 4.19 the same comparison is

presented using larger validation experiments.

Table 4.6 Predictive errors for UL90 and UL136 after adjusting the spread values.

. Excluding Fygp,
Model Spread Predictive Force Errors Fainin
Name Value
FMax F Min FMean FStdev FIM-Max FM-Min EMean EStdev

UL136 0.86 0.09117 1.55244 0.10493 0.09467 0.08032 0.32462 0.092 0.052
UL90 0.97 0.09286 | 4.14243 0.12367 0.06927 0.07357 0.58967 0.089 0.055

A Comparison between UL90 and UL136 using —e— UL90 Emean |
adjusted Spread Values —m— UL136 Emean
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Figure 4.17 A comparison between UL90 and UL136 using the new spread Values
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Figure 4.18 A Comparison between Real F max and Predicted F max Using RBN.
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Figure 4.19 Real Fyy,, vs. Predicted Fy,, for Different depth of cuts Using RBN and Larger Validation
Experiments
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4.3 Feed-Forward Neural Network (FFN)

In this part, an investigation to utilize FFN, an essential class of neural network as
modeling tool for the milling operation. FFN is generally composed of a set of layers that
represent the input layer, one or more hidden layers of processing neurons, and an output

layer of processing neurons. Figure 4.20 illustrates the basic structure of FFN.

nef= E W, X L
h [ = = ——
i=n o = Gfnret) p

l+e¢

Input
Layer

Layer

Figure 4.20 The Main Structure of the FFN

This type of neural network has been applied successfully to map complicated

nonlinear functions. Error back-propagation algorithm (EBP) is mainly composed of two
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passes conducted for each training pattern, namely these two passes are a forward pass and
a backward pass. In the forward pass, the signal of input is fed into the network layer by
layer from the input layer to the output layer. The resultant output of the network is then
used to compute the error between the actual response of the network and the real output.
This error is used to adjust the weights of different layers in the backward pass layer by
layer from the output layer to the input layer. An illustration of these two passes for one

hidden layer FFN can be found in figure 4.21.

Function Signal ‘——)

Error Signal o >

Hidden
Layer

Figure 4.21 Two basic passes of EBP for one hidden layer FFN

4.3.1 FFN Process Modeling
In this part, a study is carried out to design robust FFN using the capability of
MATLAB toolbox functions. Designing FFN is critical and complex since it has several

elements such as number of hidden layers, number of neurons in the hidden layers, type of
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the transfer function in each layer, and type of training algorithms and learning functions.
Besides, other general designing elements are needed to be specified such as number of
epoch and the value of training goal. A FFN designer usually goes through a period of trial
and error in selecting these elements before coming up with an acceptable design. The
selected elements for this study are presented in the following section.
4.3.1.1 The Selected Design Elements of FFN

Since the design elements of FEN consist of several elements with several possible
values, the investigation will concentrate on the most significant elements considering the
instructions provided by MATLAB and recommendation of previous search attempts.
There are 7 elements specifically, they are: number of hidden layers, the neuron size of
each hidden layer, the training algorithm, the type of transfer function, the number of
training epochs, training goal and the performance function. Finally, since the used training
algorithms have parameters that are randomly initialized and are adjusted adaptively
during the training process, the training process will be repeated 30 times and the mean of
the best 10 based on the mean error will be calculated. Again, the mean error will be
calculated using Equation 4-1 and the error of both Fygin and Fyumin Will be excluded.

The first FFN design element is the number of hidden layers and their neuron sizes.
The number of hidden layers and their neurons sizes need to be determined in addition to
input and output layers. The instruction help provided in MATLAB specifies that a
network of one or two layers is enough to be trained to have reasonable capabilities to
approximate any nonlinear function. An investigation for studying the effect of utilizing
different FFN design architectures on the training error and validation error considering the

processing time associated with each case is presented in Table 4.7. The value of the
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performance function is chosen to be as MSEREG [15] while other parameters such as
transfer function and training algorithms are fixed to their default values in this study. The
result shows that adding more hidden layers reduces the training error and exponentially
increases the processing time. The validation error is also enhanced with adding more
hidden layers but when the hidden layers reach three layers especially with bigger sizes,
the validation error gets bigger with adding more layers. This means that adding more than
2 hidden layers with big sizes badly affect the generalization capabilities of FFN. The best
architectures in this investigation are (4 — 20 - 6) and (4 — 15 — 15 - 6) with processing
times = 3.01 and 7.25 sec. respectively. Therefore, the architecture containing one hidden

layer with size of 20 neurons will be selected.

Table 4.7 The Effect of Hidden Layers and their neuron sizes.

No. of Hidden Layer
1 2 3 4 5
Error Training | 0.21574 | 0.166138 | 0.160975 | 0.150304 | 0.152711
5 neurons Validation | 0.274682 | 0.190254 | 0.174631 | 0.147919 | 0.156392
Time sec 0.01 0.012 0.21 0.5 0.94
Error Training | 0.160537 | 0.156403 | 0.135674 | 0.134285 | 0.129316
10 neurons Validation | 0.192602 | 0.188083 | 0.168097 | 0.168787 | 0.159681
Time sec 0.27 0.7 1 2.2 5.5
Error Training | 0.174875 | 0.129615 | 0.12616 | 0.125695 | 0.116648
15 neurons Validation | 0.142965 | 0.134252 | 0.188059 | 0.191474 | 0.188374
Time sec 29 7.25 20.54 75.78 225.25
Error Trainin; 0.156927 | 0.119063 | 0.117327 | 0.112547
20 neurons Validation | 0.135128 | 0.154403 | 0.198939 | 0.239125
Time sec 3.01 34.25 125.25 177

Second, the transfer function of each layer used for the design of FFN must have
derivative functions. They can be divided into two basic groups. The first category is
nonlinear transfer functions. The most well known nonlinear transfer functions are
hyperbolic tangent sigmoid transfer function named in MATLAB as TANSIG, and log

sigmoid transfer function named as LOGSIG in the MATLAB. The profiles of these two
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functions are illustrated in Figure 4.22, and Figure 4.23. The second category contains the
linear transfer functions such as the linear transfer function named PURELIN in MATLAB
illustrated in Figure 4.4. As much different combinations of previous functions as possible
should be tried and studied aiming at choosing the best suitable transfer functions for the
given modeling case. However, there was a consideration to involve at least one nonlinear
transfer functions at the hidden layer in these combinations. 8 different transfer function
combinations are studied using a signal hidden layer of 20 neurons and using MSEREG as

performance function. The result is listed in Table 4.8 and illustrated in Figure 4.24.

a
a
___________ RN
-~ 1
0 F ya
............ - J_-
a = tansiging a = logsiging
Tan-Sigmoid Transfer Function Log-Sigmoid Transfer Function
Figure 4.22 hyperbolic tangent sigmoid transfer function Figure 4.23 hyperbolic Log sigmoid transfer function
[15]. [15].

Table 4.8 The Influence of Transfer Function on the Training and Validation Errors.

Mean Error
Training Validation

Type of Transfer Function

TANSIG | TANSIG | TANSIG | 0.11455887 | 0.14050232

LOGSIG | LOGSIG | LOGSIG | 0.12130911 | 0.13938138

TANSIG | TANSIG | PURELIN | 0.10481236 | 0.15895717

LOGSIG | LOGSIG | PURELIN | 0.1554931 | 0.15379353

PURELIN | TANSIG | PURELIN | 0.11384984 | 0.14560919

PURELIN | LOGSIG | PURELIN | 0.12852037 | 0.13432894

PURELIN | TANSIG | TANSIG | 0.13203903 | 0.15817547

O I[N R IWIN -

PURELIN | LOGSIG | LOGSIG | 0.12683928 | 0.15144036
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The Influence of Transfer Function
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Figure 4.24 Transfer Function Type vs. the Training and Validation Error

The result shows that all combinations especially, the sixth ones result in good
training and validation errors with values close to each other. This means involving at least
single hidden layer with nonlinear transfer function is enough to model the process. Thus,
the sixth combination will be selected.

Third, the role of training algorithms is to iteratively correct the weights and bias of
the network for the duration of the training process to minimize the network performance.
MATLAB has several different training algorithms using methods such as gradient,
steepest descent, and numerical optimization technique. In this study two different training
algorithms are used. The first one is called TRAINGDX which utilizes gradient descent
with momentum and adaptive learning rate back-propagation. The second training
algorithm is TRAINLM which is using LEVENBERG-MARQUARDT algorithm to apply
the back-propagation. The result will be presented after discussing epoch number, training
goal, and performance function, since they are dependable parameters.

The fourth FNN design element is the epoch number and training goal. The number
of training epochs depends on the used training algorithm. At the case of utilizing

TRAINGDX as training algorithm, the number of epochs was 2000 epochs since
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TRAINGDX needs large number of epochs to provide suitable results. When using
TRAINLM, since 50 epochs are enough to get adequate result, the epoch number was 50.

As discussed before in section 4.2.1.1, training goal has important role in
improving the generalization capability of the network by stopping the training process
early, before getting over-fit to the training patterns. However, MATLAB provided a
performance function called MSEREG that can play the same role. Therefore, the effect of
training goal will be discussed when using other performance function. This will be
discussed in the following section.

Fifth, the performance functions that can be used for training FFN can be any of the
differentiable performance functions provided in MATLAB such as MSE or MSEREG.
The MATLAB instruction states that the default performance function is MSE; the mean
sum of squares of the network errors. However, it also states that the generalization of FFN
can be improved if the performance function depends on the mean of the sum of squares of
the network weights and biases beside the mean sum of squares of the network errors. This
feature is presented in MSEREG functions. By adding this term, the FFN will be forced to
less response to the training patterns and to have smaller weights and consequently less
over-fit. The equations describing the functions MSE and MSEREG are presented in

Equation 4-3 and Equation 4-4, as mentioned in MATLAB instruction [15]. Equation 4-4
contains a performance ratio Y that can control the behavior of MSEREG function. The

possible values of this ratio can be between 0 and 1. If T is too large this will

approximately cancel the additional item discussed before and consequently, the chance of

getting over-fit will be increased. While if 7 is too small this can make the FFN to not fit

the training patterns.
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4-3

meereg = ymse +(1-y)msw 4-4

Where Y is the performance ratio and

n
o 1 2
msw = Z w;
Jj=1

An investigation was performed to study the effect of using different values for the
performance ratio using MSEREG as performance function and two training algorithms:
TRAINLM, and TRAINGDX. A similar investigation with the use of MSE as performance
function, was conducted to study the use of different training goal values, from 0.0001 ~

0.005. The associated results of both investigations are presented in
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Table 4.9 and Table 4.10. The results show that like the training goal, MSEREG function
can be used for the need of generalization enhancement for the network, especially with
the training algorithm TRAINLM. The training algorithm TRAINGDX has also good
training capability and good generalization especially with MSE and training error goal =
0.0005 but it is much slower than TRAINLM. Away from the speed of training algorithms,

the results demonstrate that the use of TRAINLM outperforms the use of TRAINGDX.
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Table 4.9 The Effect of the Performance Function and Training Goal using TRAINLM Algorithm.

The Performance Function using TRAINLM Algorithm
MSE MSEREG
Error Error
Training Goal | Training | Validation | Performance Ratio | Training | Validation
0.0001 0.11456 0.14050 0.9 0.10246 0.14505
0.0005 0.12131 0.13938 0.8 0.14605 0.13490
0.001 0.10481 0.15896 0.7 0.13204 0.15836
0.005 0.15549 0.15379 0.6 0.12684 0.15130

Table 4.10 The Effect of the Performance Function and Training Goal using TRAINGDX Algorithm.

The Performance Function using TRAINGDX Algorithm
MSE MSEREG
Error Error
Training Goal | Training | Validation | Performance Ratio | Training | Validation
0.0001 0.16196 | 0.1469589 0.9 0.17871 | 0.1647444
0.0005 0.15721 | 0.1331796 0.8 0.33851 | 0.1685281
0.001 0.15364 | 0.1443579 0.7 0.24035 | 0.1763143
0.005 0.19165 | 0.1837558 0.6 0.20879 | 0.2143644

4.3.1.2 Training and Validation Phases of FFN

From the studies carried on the selection of FFN clements discussed in previous
section, a network that has (4, 20, 6) structure, has (PURELIN, LOGSIG, PURELIN)
transfer functions, utilizes TRAINLM algorithm with at most 50 epochs, and uses
MSEREG as performance function with performance ratio=0.8 can be selected to model
the end milling process. The same training sequence discussed in sections 4.2.1.2 and

4.2.2.2 will be used.

Therefore, at the first training step, every basic experimental model will be used
individually as training patterns. The corresponding validation errors are listed in Table
4.11 and illustrated in Figure 4.25. The result shows that every model has its own ability of

approximation. The result also shows that the best models are UL27-1, UL27-2, and UL32
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respectively. The predictive error is too high; of range 26%. Therefore, the model UL32

will be used as a basic model for the 2-composed models to reduce the predictive errors.

Table 4.11 FFN Predictive Force Errors Resulting from Training Basic Models.

Predictive Force Errors Excluding Fy,

Model Name Frimin
FMax FMin FMean FStdev FM-Max FM-Min EMean EStdev
ULS-1 0.341 1.855 0.521 1.440 0.680 3.989 0.746 0.931
UL9 0.276 4.061 0.416 0.437 0.265 2.207 0.348 0.191
UL27-1 0.283 0.903 0.267 0.342 0.265 2.069 0.289 0.094
UL27-2 0.274 0.768 0.261 0.366 0.189 0.677 0.272 0.155
UL32 0.172 4.284 0.301 0.262 0.236 1.755 0.243 0.115
UL25 0.275 0.958 0.287 0.473 1.246 1.207 0.570 0.594
ULS-2 0.364 2.823 0.381 0.688 0.832 0.835 0.566 0.380
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Figure 4.25 FFN Predictive Force Errors for Basic Models.

The 2-composed models using UL32 and the corresponding errors are listed in

Table 4.12 and a comparison for mean errors and standard deviations is illustrated in

Figure 4.26. The results show that the predictive errors are improved and consequently,

adding more training experiments was useful.
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Table 4.12 FFN Predictive Force Errors resulting from Training 2-Composed Models.

i”(‘)s(;zls with 1;[;:121 Predictive Force Errors Excll;‘(izlwngw“,
UL32 Fmax Fuin Fuvean | Fstey | Fvomax | Fv-min | Emean | Eseaev
ULS-1 UL40-1 0.340 3.708 0.240 0.222 0.237 0.691 0.260 0.114
UL9 UL41 0.249 1.665 0.113 0.252 0214 0.763 0.207 0.108
UL27-1 UL59-1 0.196 1.042 0.197 0.255 0.172 0.531 0.205 0.081
UL27-2 UL59-2 0.246 1.323 0.189 0.179 0.140 0.587 0.188 0.100
UL25 UL57 0.189 0.599 0.169 0.160 0.161 0.731 0.170 0.076
ULS8-2 UL40-2 0.299 0.821 0.278 0.127 0.170 3.755 0.219 0.101
Predictive Force Errors for the 2-Composed
Models :
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Figure 4.26 Predictive Force Errors for the 2-Composed Models.

Until now, the best predictive error that can be obtained is 17% when using UL57.
Thus, to obtain more enhancements, the 3-composed models were used using ULS7 as a
basic model. This is listed in Table 4.13 and a comparison for mean errors and standard
deviations is illustrated in Figure 4.27. The result shows that the predictive errors for all 3-
composed models was fairly, improved. It also shows that the best models are UL65-2, and

UL84-1 that have roughly the same predictive errors. This confirms that the degree of

enhancement doesn’t rely on the number of training experiments.
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Table 4.13 FFN Predictive Force Errors resulting from Training 3-Composed Models.

) Model Predictive Force Errors IE ’fc";,d‘“‘%

Basic models Name Mins X' M-Min
with UL57 Fuvax | Fyvin | Fmean | Fstdev | Fy-max | Fmmin | Emean | Estaey
ULS-1 UL65-1 | 0.169 | 0.726 | 0.262 | 0.180 0.157 03841 0.192 | 0.112
UL9 UL66 0.169 | 0.642 | 0.160 | 0.186 0.172 0.821 0.172 | 0.088
UL27-1 UL84-1 | 0.173 | 0.600 | 0.156 { 0.166 0.148 0.436 { 0.161 | 0.059
UL27-2 UL84-2 | 0.262 | 0.800 | 0.147 | 0.143 0.111 0.334 | 0.166 | 0.128
ULS-2 UL65-2 | 0.128 | 0.790 | 0.175 | 0.180 0.163 0.307 | 0.161 | 0.061
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Figure 4.27 Predictive Force Errors for the 3-Composed Models.

UL65-2 will be used as basic model for constructing the possible 4-composed
models, as it contains fewer experiments. Table 4.14 and Figure 4.28 show the predictive
errors for each model. UL92-2 gave the best predictive error that equals 13. 3% and it will

be used as a basic model for 5-composed model. Besides, adding effective model rather

than constructing the 5-composed models will be attempted.
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Table 4.14 FFN Predictive Force Errors resulting from Training 4-Composed Models.

UL73

UL74

uL92-1

Model Name

uUL92-2

i Predictive Force Errors Excluding F,
Basic models Fyimin
with UL65-2 Model Fu
N:mi FMax FMin FMean FStdev MM FM-Min EMean EStdev
ax
ULS-1 UL73 0.207 1.296 0.179 0232 { 0.213 0420 | 0.208 | 0.090
UL9 UL74 0.152 | 7.200 0.150 0.190 | 0.169 | 3.161 0.165 | 0.080
UL27-1 UL92-1 0.151 1.038 0.156 0.161 0.131 0.539 | 0.150 | 0.083
UL27-2 UL92-2 0.132 t 0.723 0.135 0.152 | 0.115] 0.341 | 0.133 | 0.058
Predictive Force Errors for the 4-Composed
Models
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Figure 4.28 Predictive Force Errors for the 4-Composed Models.

The mean and the standard deviation of the predictive errors for the 5-composed

models are summarized in both Table 4.15 and Figure 4.29. The result shows that training

FFN model with the 5-models enlarged the predictive errors and the model may be over

trained. The additional experiments are detrimental to the past knowledge of the neural

model. One possible reason is that the neural model learns the actual performance and the

associated noise and updated itself with every training pattern. When the training patterns

are too large, the knowledge part of noise may work against the part of true performance.
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Table 4.15 FFN Predictive Force Errors result from Training the S-Composed Models.

Basic models | Model A Excluding
with UL92-2 | Name Predictive Force Errors Fivtins FM.Min
FMax FMin FMean FStdev FM-Max FM-Min EMean EStdev
ULS-1 UL100 | 0.139 | 1.671 | 0.192 0.160 0.149 1.123 0.160 | 0.082
UL9 UL101 | 0.129 | 0.538 | 0.127 0.175 0.125 0.667 0.139 | 0.066
UL27-1 ULI19 | 0.137 | 0.983 | 0.232 0.137 0.097 1.436 0.151 | 0.085
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Figure 4.29 Predictive Force Errors for the S-Composed Models.

Therefore, instead of adding the rest models, the search for effective points that can
enhance the approximation will be given. The corresponding results are presented in Table
4.16 and Figure 4.30. The result shows some enhancement. Adding other experiments
didn’t enhance the predictive error. The error fluctuates between 13% and 17%. This is

illustrated in Figure 4.31.

Table 4.16 FFN Predictive Force Errors result from Training the 5-Composed Models Using Effective
points.

Basic o Excluding
models Predictive Force Errors Fins FMMin
with UL92- | Exp. Model | || Fy Fyea | Fswe | Fm- | Fvmo | Evea | Estae

2 Added Name n v Max Min n v
UL8-1 3,7 UL94-1 0.11 4.68 0.16 0.15 0.1 2.2 0.133 0.1
UL9 4,9 UL94-2 0.13 0.66 0.14 0.14 0.12 038 | 0133 | 007
2,14,15
UL27-1 s UL96 0.11 0.52 0.12 016 | 0.13 131 | 0130 | 0.06
Addi“gp’;‘)lilnfsffe“ive UL100 013 | 074 | 0119 | 014 | 012 | 048 | 0127 | 0.06
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Predictive Force Errors for the 5-
Composed Models Using Effective Points
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Figure 4.30 Predictive Force Errors for 5-Composed Models Using Effective model.
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Figure 4.31 Predictive Error vs. Exp # Using UL100.

All experimental models were combined together in one big composed model
called UL136. This model is used to train the FNN using random sequence. This is
illustrated in Figure 4.32 . The predictive error using UL136 was 14.8% while, the best
predictive error occurred using 124 experiments, called UL124 and it equals 13.1%. The

results of UL136 and UL124 are listed in Table 4.17. Compared with the results of training
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FNN with random sequence, training FFN using the previous sequence results in a better
predictive error with faster convergence. A comparison between UL100 and UL124
starting from experiment 50 is given in Figure 4.33. Figure 4.34 illustrates the real F max

values vs. the predicted F max values obtained by FFN.

Predictive Error vs. Exp # Using Random Sequence —+—E mean-UL124
15 .- - - ——— e e s AP A o 113 83 18 g i e s — — - . [ - _
UL136
1.25 1 — -
1 The Best Error
5 R =131%
.7 - — S—
uL: 0.75 s y atExpt24
05{ -— S
025{ - .
esetottosy
0 Hrrrrrr SRENE—— SRS RN AT
1 10 19 28 37 46 55 64 73 82 91 100 109 118 127
Exp #
Figure 4.32 Predictive Error vs. Exp # Using Random Training Sequence.
Table 4.17 Predictive Error Using Random Training Sequence.
Excluding Fyn, Fa.
Model Predictive Force Errors Min
Name Fyax Fuin FMean Ftdev Fy-Max Fy-Min Entean Estaev
UL136 0.152625 | 4.273568 | 0.133037 | 0.168685 | 0.138954 | 0.29865 | 0.148325 [ 0.072702
UL124 0.135214 | 5.099718 | 0.132139 | 0.152652 | 0.105645 | 0.70894 | 0.131413 | 0.058384
0.26 A comparison between UL100 and UL 124,

Error

—e— UL124
- UL100

Figure 4.33 A comparison between UL100 and UL124.
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A Comparison between Real F Max and Predicted F Max ¥Yalues Using FFN.
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Figure 4.34 A Comparison between Real F max and Predicted F max Values Using FFN.

4.4 Modeling Process Using Insufficient Data

In this part, a study is presented to investigate neural network modeling using
insufficient data. RBN was used in this study. The insufficient data includes only 33
experiments conducted on CNC machine. The 33 experiments consist of two parts. First,
20 experiments were chosen for training purpose. These experiments include N8-1 model,
NL8-2 model, and additional four experiments selected for the aim of providing new
experiments to cover space locations that are not covered by the previous models. The
second part includes 13 experiments for validating and testing the predictive capability of
the designed RBN. Figure 4.35 gives a space representation for these experiments and it

shows the position of the additional 4 experiments selected to cover new space locations.
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The Space of input Parameters for L16 using CNC

tool= 6mm
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Figure 4.35 An Illustration of Space Points for the Insufficient Data Models

4. 4.1 RBN parameters selections using insufficient data

The same procedure specified in selecting RBN parameters in the section 4.2.1.1
will be implemented in this part. Using sufficient training patterns and validation patterns,
the initial network parameters will be chosen. However, before searching for the best
parameters and since the available training patterns are very small, some considerations
should be taken into account. First, the spread value should be high enough to make the
approximation smoother. Second, training error should be as small as training time gets
longer to give the opportunity to use as many neurons as possible. Finally, the allowable
number of neurons should be large enough. Since the algorithm of RBN does not permit
using neurons that are more than the number of input patterns, the maximum number of
allowable neurons will not exceed 20 neurons. These considerations are ways to

compensate the limitations of training experiments.
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The searching results of RBN parameters are illustrated in Figure 4.36, Figure 4.37,
and Figure 4.38 respectively. Figure 4.36 shows that adding larger spread value
increasingly enhances the predictive error until the best error at spread value equals 1.1.
Increasing the spread value more than 1.1 raises the predictive error. Figure 4.37 shows
that the best predictive error with reasonable training error is reached when the training
error goal is in the range 0.095 - 0.175. Below this range, the training error is better while
the predictive error is worst and above this range, both training error and predictive error
are worst. Below this range, the error goal is so small that the RBN gets much time to fit
the training patterns in such a way that the generalization of RBN becomes worst. Above
this range, the error makes the RBN stop the process of training early. This leads to worst
training error since the RBN will not adequately fit the training data and consequently
worst validation error will be obtained.

Er;e influence of altering spread value on predictive error resulits from insufficient information
-36 T T T T T T L}

Error

i L il 1 1
T o0.5 0.6 6.7 0.8 (18] 1 1.1 1.2 1.3
Spread Yalue

Figure 4.36 Several Spread Values for RBN vs. Predictive Errors using insufficient information.
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Figure 4.38 Number of Neurons for RBN vs. Predictive Error Using Insufficient Information

Figure 4.38 shows that adding more neurons leads to better training error

and better predictive potential.

However,

adding neurons more than

13 will

reduce the predictive capability, and make the RBN over-fit the training patterns.
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These results confirm the previous considerations since the suitable spread value
is 1.1, training error goal is between 0.1 and 0.175, and the preferable number of
neurons should be 13.
4.4.2 RBN Training and Validation phases using insufficient data

Using these parameters, every model was used by itself as training patterns, then
the two models were combined together and used for training processes. The results are
shown in Table 4.18. Equation 4-1 is also used to compute the predictive error and again,
the Fuin and Fuyovin are excluded from calculating Emean and Esggev. A comparison of the
predictive error vs. training experiments for these models is illustrated in Figure 4.39 . The
result shows that the insufficient model returns 19.2 % as the best predictive error. This
means that the combination of using NL16 and using RBN with such design has good
capability to model the nonlinearity of this process using insufficient information. This is

confirmed in Figure 4.39.

Table 4.18 predictive errors for NL8-1, NL8-2, and NL16.

.. Excluding
Predictive Force Errors
Model Name Fuin Fyi-min
Fumax | Fumin | Fvean | Fstaev | Frmax | Fvovtin | Enean | Estaev
NLS8-1 0.509 | 0.711 | 0.506 | 0.575 0.504 0.686 0524 | 0.060
NL8-2 0.425 { 0.400 | 0.305 | 0.479 0.426 0.718 0.408 | 0.117
NL16 0.191 | 0.520 | 0.157 | 0.230 0.192 0.643 0.192 | 0.072

Trying to reduce the amount of predictive error, additional training patterns that
cover new space locations should be fed to the previous RBN to provide new useful
information for the model. Therefore, four additional experiments were selected in
different locations. The results of adding one, two, three and four experiments are listed in

Table 4.19. The results show that the predictive error is reduced to 15.7 %. This means
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that selecting additional experiments covering new input space locations can improve the

prediction capability further.

. ~—— Mean NL8-1
Predictive Error vs. Exp # for —&— Mean NL&-2

NL8-1, NL8-2, & NL16 ~&— Mean NL16

Error

1 2 3 4 5 6 7 8 2 10 11 12 13 14 15 16
Experiment #

Figure 4.39 Predictive errors vs. experiments # for NL8-1, NL8-2, and NL16

Table 4.19 Sequence of adding additional four experiments to NL16.

Additional Predictive Force Errors Fmif%l;?;li
Experiments

FIMax FMin FMean F Stdev F M-Max FM-Min EMean EStdev
1 0.147 | 0.511 | 0.146 | 0.205 | 0.149 | 0.632 | 0.162 | 0.054
2 0.146 | 0.444 | 0.140 | 0.198 | 0.152 | 0.752 | 0.159 | 0.051
3 0.132 ] 0.512 | 0.147 | 0.210 | 0.153 | 0.653 | 0.160 | 0.059
4 0.129 | 0.495 | 0.142 | 0.202 | 0.147 | 0.632 | 0.158 | 0.056
4&2 0.146 | 0.433 | 0.137 | 0.195 | 0.151 0.752 | 0.157 | 0.051
4&3 0.180 | 0.447 | 0.154 | 0.249 | 0.199 | 0.670 | 0.196 | 0.071
4&1 0.141 | 0.499 | 0.142 | 0.200 | 0.143 | 0.628 | 0.157 | 0.054
4,1&2 0.227 | 0.541 | 0.235 | 0.338 | 0.262 | 0.810 | 0.265 | 0.094
4,1&3 0.160 | 0.447 | 0.154 | 0.246 | 0.181 0.674 | 0.185 | 0.069
4,1,3&2 0.141 | 0.444 | 0.135 | 0.206 | 0.145 0.799 | 0.157 | 0.057
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The main contributions of this work can be determined in four points.
First, predictive force modeling of the face milling process has been successfully
developed using both RBN and FFN neural network models. The result of
validation phase using new experimental situations within the range of training
patterns and others outside that range is 8.89% for RBN and 12.7% for FFN.

Figure 5.1 gives a comparison for real F max values and the corresponding

predicted F max values using FFN and RBN. The results demonstrated that RBN
outperforms FFN. Specifically, the capability of prediction of RBN is better, the
modeling process of RBN is faster and needs less training patterns, and the design
steps are much easier. FFN has more design eclements and the space of its
parameters values is wider. The FFN uses parameters that are randomly initialized
and are adjusted adaptively during the training process. Therefore, the result of
any study for FFN should depend on the average of the number of runs possibly
10-30 runs, to avoid any noise that may arise from randomization. RBN has a
tendency to over-fit the training patterns which may deteriorate the neural model.

Therefore, RBN should be carefully designed to avoid the over-fitting problem.
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A Comparison between Real F max and Predicted F max Values Using FFN and RBN.
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Figure 5.1 A Comparison between Real Fy;,, and Predicted Fy,; Values Using FFN and RBN.

Second, inclusive study for the design steps and parameters for both RBN
and FFN are presented in this work. A systematic way for designing robust neural
model for both types is presented. Design problems such as over-fitting are
tackled in this study. Especially for RBN, investigation for better neural design
can be crucial factor in reducing the predictive error in lesser training patterns.
The study has confirmed that involving at least single hidden layer with nonlinear
transfer function is enough to model the nonlinear process. It also shows that
using TRAINLM training algorithm along MSEREG performance function

enhances the generalization strength of FFN [15].
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Third, The DOE and OAs are used for the need of selecting efficient
models in lesser number of experiments. Several OAs are used specifically, they
are 1.8-1, 182, L9, L27-1, L27-2, 1.32, and L25. Comprehensive study for these
experimental models is presented and compared. This includes studying the
capability of training each experimental model if used separately. In addition, the
study of using combinations of these models in a certain sequence is given. The
effect of adding effective experiments that cover new space locations is given.
The study shows that using OAs is efficient and most experimental models have
good  approximation capabilities especially L270A. Besides, L16 model
composed of 2 different L8 OAs performs well relative to other smaller size
models. Study using composed models indicates that a certain sequence leads to
better model with faster convergence and with better predictive error. This
includes that the sequence the neural model will follow is important and can lead
to lesser training patterns with better predictive error.

Fourth, the study of modeling milling process using insufficient
information is presented. Composed model L16 with 4 effective experiments has
been used in the training patterns. Results show that using certain neural design
besides using certain training sequence have successfully modeled the milling
process with reasonable predictive error. Therefore, insufficient information as
necessitated by limitations of time and/or resources should be used cautiously

with neural network modeling.
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5.2 Future work

Currently, four input control parameters are used and the resulting cutting
forces are measured for input to ANN. Other input parameters such as the number
of flutes, tool geometry modification, and work-piece material should be included
in any future study. Furthermore, surface roughness can be of interest besides
optimization of cutting forces and manufacturing cost. These are valid important
extensions for any future work. More inclusive study for the sequence of training

patterns should be considered in any future work.
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Appendix A

EQUIPMENT INFORMATION

A.1 Tool information [12]
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Figure A 1 An Illustration for the Tool Geometry (Two Flute-End Millis REF: 4420).

Where:
A2

Ab
A7

Al0

Al6

Al7

Al8

Al9

B9

D1

= Helix Angle
= Radial Relief Angle

= Radial Clearance

= Radial Rake Angle

= Axial Relief Angle

= Axial Clearance Angle
= Concavity Angle

= Axial Rake Angle

= Weldom Width

= Cutting Diameter

F1

F2
F3

Gl

H15

L1

L2

L3

L14

L16
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= Radial Relief Land Width

= Axial Relief Land Width
= Radial Clearance Land Width

= Core Diameter

= Weldon Dimension

= Overall Length

= Cutting Length

= Shank Length

= Grinding Fluted Length

= Weldom Dimension ( position )



D2 = Clearance Diameter P1t = Lead

D3 — Shank Diameter Plt = Lead
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Appendix B

EXPERIMENTAL RESULTS

B 1 Experimental Model ULS-1.

Input Parameters Output Parameters
Exp #

a 1 f | d| Fvax | Fmin | Fmean | Fstdev | Fv-max | Fm-min
1 1.5 80 | 71 8 [ 114.30 | 0.18 44.47 31.60 92.41 4.30
2 1.5 800 | 140 | 12| 36749 | 0.56 | 100.78 | 98.15 282.43 3.26
3 1.5 1600 | 71 8 [ 106.04 | 0.32 3237 20.77 69.18 3.17
4 1.5 | 1600 | 140 | 12 || 226.51 | 0.31 64.91 55.09 178.70 2.10
5 3 800 | 71 | 12| 221.80 | 0.11 70.56 59.45 160.52 1.79
6 3 800 | 140 | 8 | 351.92 | 0.48 | 138.58 | 108.10 | 292.81 3.18
7 3 11600 | 71 | 12| 359.34 | 0.37 67.30 65.09 264.94 1.95
8 3 1600 | 140 | 8 |[ 278.03 | 0.41 84.55 65.51 186.75 3.43

B 2 Experimental Model ULS-2.

Input Parameters Output Parameters
Exp #

a n f | d | Fmax | Fvin | Fvean | Fstdev | FM-max | FM-Min
1 1 560 | 50 | 7 | 145.07 | 0.65 48.77 36.93 107.23 4.61
2 1 560 | 100 | 11 || 206.88 | 0.57 66.28 48.05 146.05 5.09
3 1 1120 | 50 | 7 | 12421 | 0.14 34.40 22.14 89.45 2.83
4 1 | 1120 | 100 | 11 |[ 161.02 | 0.43 38.08 28.08 106.42 3.04
5 2.5 560 | 50 | 11| 32840 | 041 120.12 | 71.94 223.64 10.50
6 25| 560 | 100 | 7 | 365.70 | 0.56 | 164.76 | 87.20 280.99 24.43
7 25| 1120 | 50 | 11| 278.64 | 0.59 88.83 49.68 177.85 5.76
8 25| 1120 | 100 | 7 | 272.66 | 0.18 12117 | 73.12 208.29 8.62

B 3 Experimental Model UL9.

Input Parameters Output Parameters
Exp #

a| n | f |d| Fuax | Fvin | Fvean | Fstdev | FM-max | Fviomin
1 08| 560 | 50 | 7 | 11755 | 0.64 | 30.63 | 27.37 | 80.93 3.24
2 0.8 | 1120 | 100 | 8 | 14458 | 0.79 | 52.83 | 21.61 | 96.44 11.40
3 0.8 | 1600 | 140 | 11 | 112.11 | 0.51 | 35.11 | 23.49 | 92.39 3.05
4 1.8 | 560 | 100 | 11 | 280.04 | 0.45 | 109.97 | 66.42 | 224.52 5.42
5 1.8 1120 | 140 | 7 | 278.59 | 036 | 92.11 | 81.24 | 236.16 2.05
6 1.8 11600 | 50 | 8 | 177.13 | 055 | 63.67 | 2499 | 11657 | 13.28
7 128 560 | 140 | 8 | 494.76 | 0.57 | 251.94 | 107.66 | 378.66 | 31.57
8 2.8 | 1120 | 50 | 11 | 258.84 | 0.46 | 71.68 | 52.93 | 173.82 4.92
9 2.8 | 1600 | 100 | 7 | 294.84 | 0.57 91.12 84.06 243.17 1.95
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B 4 Experimental Model UL25.

Exp
#

Input Parameters

Output Parameters

a n f

d FMax FMin FMean FStdev FM-Max FM-Min

0.75 400 | 35.5

103.40 | 047 30.30 26.54 74.07 3.02

0.75 560 50

122.15 | 0.71 44.66 25.27 90.42 8.39

0.75 800 71

10 | 90.74 | 0.57 24.94 14.52 58.33 2.98

0.75 1120 | 100

11 | 11640 | 0.43 26.35 23.46 77.40 2.54

0.75 1600 | 140

12 | 14091 | 0.35 37.22 32.74 113.16 3.11

1.25 400 50

10 | 158.76 | 0.26 70.74 33.27 119.43 8.04

1.25 560 71

11 | 205.11 | 0.25 55.28 55.50 158.27 2.68

1.25 800 100

12 | 240.66 | 0.20 61.51 62.70 182.69 2.85

1.25 1120 | 140

7 | 21079 | 0.25 55.99 47.94 139.19 2.10

1.25 1600 | 35.5

8 | 12885 | 0.74 | 42.35 23.79 93.26 7.83

jorl B~ KN [0 IO 0= N 7 PN OV P

1.75 400 71

12 | 372.06 | 0.26 | 104.71 | 103.68 [ 270.40 4.23

[
N~

1.75 560 100

7 | 37552 | 0.75 | 134.95 | 103.69 | 303.72 10.60

—
w

1.75 800 140

8 | 300.87 [ 1.80 | 135.55 | 70.92 250.56 15.78

—
F

1.75 1120 | 35.5

10 | 14129 | 0.45 53.66 24.65 102.01 5.96

p—
wn

1.75 1600 | 50

11 | 167.84 | 0.33 37.98 35.95 112.83 2.41

p—
(=)

2.25 400 100

8 | 437.20 [ 1.46 | 205.51 | 101.39 | 339.09 27.51

p—
~3

2.25 560 140

10 | 368.03 | 1.07 | 182.64 | 78.74 283.22 17.90

—
-]

225 800 | 35.5

11 | 19420 | 0.26 57.21 53.02 152.92 3.09

[y
o

2.25 1120 50

12 | 263.04 | 0.57 67.68 62.62 185.16 3.27

[\*3
[}

2.25 1600 71

7 | 225.08 | 0.39 72.85 49.13 163.96 4.10

[
p—

2.75 400 140

11 | 666.67 | 2.15 | 284.02 | 169.84 | 518.62 17.40

(5
(8

2.75 560 | 355

12 | 322,50 | 0.30 88.88 86.85 233.87 4.00

N~
w

2.75 800 50

7 23485 | 0.57 | 102.19 | 54.39 188.35 7.26

[N
-

2.75 1120 | 71

8 11279.17 | 0.57 | 114.93 | 65.86 222.80 14.31

o
wn

2.75 1600 | 100

10 | 244.67 | 1.47 | 107.35 | 50.37 195.46 7.07

B 5 Experimental Model UL27-1.

Input Parameters Output Parameters
Exp #

a| n | f|d| Fva | Fuvin | Fvean | Fstdev | FM-max | Fv-min
1 0.5 | 560 50 8 85.16 2.61 27.52 16.58 62.41 8.44
2 2 560 | 140 | 8 512.09 1.78 168.41 | 169.84 | 450.91 5.71
3 35| 560 | 280 | 8 || 1283.47 | 6.92 | 643.58 | 302.60 | 1057.47 88.18
4 2 | 1120 | 50 8 340.07 0.27 79.93 72.82 206.25 3.05
5 3.5 1120 | 140 | 8 656.29 3.02 | 303.71 | 166.13 543.29 29.67
6 0.5 ] 1120 | 280 | 8 262.72 0.73 58.26 49.68 190.09 3.10
7 3.5 ] 1600 | 50 8 | 400.03 9.15 121.82 | 101.06 290.78 17.95
8 0511600 | 140 | 8 156.95 0.32 30.88 24.52 95.82 2.46
9 2 | 1600 | 280 | 8 | 698.58 1.88 | 244.85 | 143.97 | 468.79 12.97
10 05| 560 | 50 | 10] 89.59 | 0.51 | 28.00 | 20.55 | 69.71 3.61
11 2 560 | 140 | 10 | 421.81 1.79 | 172.47 | 88.41 326.70 12.34

&7




Input Parameters

Output Parameters

Exp # a|l n | f|{d| Fyva | Fvin | Fvean | Fstaev | FM-max | FM-Min
12 35| 560 | 280 | 10 | 969.20 5.47 | 536.65 | 226.05 831.99 85.96
13 2 1120 | 50 | 10 | 230.74 0.28 57.53 52.93 160.09 345
14 3.5 1120 | 140 | 10 § 426.49 3.85 | 208.69 | 90.56 343.99 17.73
15 0.5 1120 | 280 | 10 | 111.18 0.35 4741 20.27 90.08 5.93
16 35| 1600 | 50 | 10 | 265.56 3.28 104.80 | 48.70 196.12 15.13
17 0.5 | 1600 | 140 | 10 | 81.22 0.74 29.40 13.62 62.69 5.54
18 2 | 1600 | 280 | 10 | 295.77 0.69 | 150.14 | 67.33 257.09 9.11
19 0.5} 560 | 50 | 12 | 104.41 2.27 29.36 14.56 61.12 9.45
20 2 560 | 140 } 12 | 347.43 0.38 | 156.98 | 78.46 262.96 17.92
21 3.5 | 560 | 280 | 12 | 1011.85 | 3.94 | 529.23 | 245.77 904.77 43.68
22 2 1120 | 50 | 12 | 209.65 0.35 62.95 48.84 154.37 2.48
23 3.5 | 1120 | 140 | 12 | 469.86 0.69 | 192,99 | 114.31 374.12 5.77
24 0.5 | 1120 | 280 | 12 | 146.06 0.95 46.91 35.26 124.84 4.42
25 3.5 11600 | 50 | 12 | 281.41 0.49 88.52 74.57 231.53 3.06
26 0.5 | 1600 | 140 | 12 | 123.70 1.17 44.22 21.27 97.61 9.40
27 2 | 1600 | 280 | 12 § 501.31 0.77 | 138.76 | 86.60 343.41 3.19

B 6 Experimental Model UL27-2.

Input Parameters QOutput Parameters
Exp #
a n f d FMax FMin FMean FStdev FM-Max FM-Min
1 1| 560 50 8 || 163.40 | 1.00 53.62 36.60 117.75 6.87
2 1 560 100 | 10 § 211.02 | 0.66 65.04 54.47 160.15 2.98
3 1 560 | 140 { 12 | 296.67 | 0.96 79.60 66.24 227.65 6.07
4 1] 1120 | 50 10 | 114.11 | 0.16 27.88 18.31 70.80 3.84
5 1] 1120 | 100 | 12 | 177.64 | 0.45 42.90 40.36 128.25 2.97
6 1] 1120 | 140 | 8 | 20295 | 1.10 49.49 48.68 150.75 3.71
7 1 | 1600 | 50 12 | 155.00 | 0.52 39.78 31.17 110.05 3.86
8 111600 | 100 | 8 | 140.17 | 0.36 37.90 26.84 98.66 4.97
9 1| 1600 | 140 | 10 || 138.65 | 1.06 38.01 26.42 93.03 4.44
10 2 | 560 50 8 | 274.80 | 0.20 91.02 63.90 203.08 6.94
11 2| 560 | 100 | 10 § 399.43 | 0.66 | 126.80 | 93.64 292.06 6.90
12 2| 560 | 140 | 12 | 37636 | 0.64 | 169.02 | 101.91 325.55 13.13
13 2| 1120 | 50 | 10 | 197.57 | 0.24 57.53 39.16 136.70 4.33
14 2 | 1120 | 100 | 12 || 257.02 | 0.03 89.52 57.31 190.49 5.20
15 2 1 1120 | 140 | 8 || 264.01 | 0.90 84.36 66.12 194.13 5.11
16 2| 1600 | 50 12 || 22255 | 0.57 65.09 44.41 152.32 5.68
17 2| 1600 | 100 | 8 163.29 | 0.72 44.88 34.59 119.01 5.75
18 2 | 1600 | 140 | 10 | 206.97 | 1.15 65.15 44.02 145.71 4.97
19 3 560 50 8 | 256.75 | 0.06 131.80 | 58.71 215.20 10.42
20 3 560 100 | 10 | 449.02 | 0.83 171.07 | 106.87 326.45 13.52
21 3| 560 | 140 | 12 | 572.19 | 1.81 | 23599 | 125.11 | 419.80 19.27
22 311120 | 50 | 10 | 291.49 | 1.49 | 109.13 | 70.08 236.28 8.28
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Exp # Input Parameters Output Parameters
a n f d FMax FMin FMean FStdev FIM-Max FM-Min
23 3 | 1120 | 100 | 12 | 333.93 | 0.33 14598 | 81.81 265.17 7.25
24 3| 1120 | 140 | 8 || 482.05 | 1.91 178.51 | 136.10 | 413.49 13.49
25 311600 | 50 | 12 | 265.50 | 0.60 88.01 61.82 205.80 6.51
26 3| 1600 | 100 | 8 | 331.97 | 2.13 105.88 | 86.62 253.54 7.22
27 311600 | 140 | 10 | 315.51 | 1.87 | 112.03 | 74.35 248.92 6.61
B 7 Experimental Model UL32.
Input Parameters Output Parameters
Exp #
a | n f | d | Fvax | Fmin | Fvean | Fstdev | Fv-Max | Fv-Min
1 0.75 | 400 | 355 6 || 11647 | 0.25 35.74 29.85 82.53 3.44
2 0.75 | 400 71 6 | 17839 | 0.11 56.71 53.39 136.02 1.67
3 0.75 | 800 | 100 | 6 | 141.75 | 0.91 43.59 36.52 106.33 2.84
4 075 | 800 | 140 | 6 | 181.48 | 0.26 60.93 54.36 151.41 1.43
5 0.75 | 1120 | 355 | 8 || 12938 | 0.34 24.98 19.80 69.55 2.33
6 075 | 1120 | 71 8 | 11094 | 0.29 30.82 25.88 80.13 1.66
7 0.75 | 1600 | 100 | 8 | 109.10 | 0.32 31.84 24.60 83.39 2.54
8 0.75 | 1600 | 140 | 8 | 121.57 | 0.35 33.64 29.32 93.97 1.51
9 1.5 | 400 | 355 | 10| 197.84 | 0.19 62.03 50.06 140.40 5.13
10 1.5 | 400 71 10 || 297.90 | 0.23 97.34 73.78 208.21 5.54
11 1.5 800 | 100 | 10 | 279.27 | 0.15 79.41 64.18 198.44 2.05
12 1.5 | 800 | 140 | 10 | 320.36 | 0.44 98.77 67.59 213.77 3.52
13 1.5 | 1120 | 355 | 12| 175.84 | 0.22 42.84 37.67 117.77 2.91
14 1.5 | 1120 | 71 | 12| 19593 | 0.33 52.70 50.08 149.11 2.30
15 1.5 | 1600 | 100 | 12 | 200.73 | 0.34 52.69 49.80 155.92 2.06
16 1.5 | 1600 | 140 | 12 | 226.39 | 0.32 65.59 56.46 179.64 2.18
17 225 | 400 | 355 | 6 | 288.23 | 0.67 11747 | 66.98 209.53 15.29
18 2.25 | 400 71 6 | 386.66 | 0.85 170.69 | 84.43 285.83 33.92
19 225 | 800 | 100 | 6 || 32455 | 0.15 145.19 | 71.19 254.60 20.50
20 225 800 | 140 | 6 | 37592 | 1.81 178.05 | 84.38 297.50 29.96
21 225 | 1120 | 355 | 8 | 143.07 | 047 39.50 31.44 102.50 3.43
22 225 | 1120 | 71 8 | 21647 | 0.36 48.36 46.65 116.78 3.48
23 225 1600 | 100 | 8 | 222.04 | 0.37 65.42 54.81 160.85 3.71
24 225 | 1600 | 140 | 8 | 220.93 | 2.28 64.01 50.06 155.59 7.81
25 3 400 | 35.5 | 10 || 295.63 | 0.25 141.03 | 65.74 216.48 17.51
26 3 400 71 10 | 383.70 | 0.46 | 204.13 | 92.98 307.28 24.63
27 3 800 | 100 | 10 | 327.85 | 1.76 170.10 | 76.96 260.04 15.03
28 3 800 | 140 | 10 | 400.36 1.33 | 202.53 92.71 316.66 18.22
29 3 (1120 | 355 | 12 | 325.09 0.32 85.52 76.17 217.82 5.00
30 3] 1120 71 1 12 | 367.58 0.40 | 111.35 96.84 279.74 4.41
31 311600 | 100 | 12 | 371.64 1.07 | 112.14 | 101.65 293.94 4.20
32 311600 | 140 | 12 | 410.42 1.02 | 130.65 | 122.35 344.82 4.15
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B 8 Experimental Model NL8-1.

Input Parameters QOutput Parameters
Exp #
a n f d | Fvax | Fumin Fuean | Fstdev Fyivax | Fm-min
1 051 500 | 50 | 6 || 69.32 0.11 20.88 14.80 50.78 2.25
2 0.5 | 500 | 150 | 10 | 148.67 | 0.59 42.37 35.84 112.85 3.83
3 0.5 | 1000 { 50 | 6 [ 62.57 0.23 19.82 12.50 47.26 2.02
4 0.5 | 1000 | 150 | 10 || 106.44 | 0.20 28.49 22.36 78.80 2.00
S 1.5 500 | S50 | 10| 194.00 | 0.32 53.35 49.31 142.28 2.44
6 1.5 500 | 150 | 6 | 366.19 | 0.46 | 126.57 | 95.12 284.87 10.09
7 1.5 | 1000 | 50 | 10 || 126.11 | 0.24 36.21 31.53 95.53 1.65
8 1.5 | 1000 | 150 | 6 [ 205.09 | 0.79 73.88 48.59 167.07 6.54
B 9 Experimental Model NLS§-2.
Input Parameters Output Parameters
Exp #
a n f | d | Fmax | Fvin | FMean | Fstdev | Fm-Max Fn-Min
1 1 750 | 100 | 8 | 127.13 | 0.26 44.55 33.71 105.61 2.97
2 1 750 | 200 | 12 || 281.38 | 0.06 72.44 74.67 210.09 3.78
3 1 1500 | 100 | 8 [ 173.66 | 0.19 39.65 29.99 124.90 2.23
4 1 1500 | 200 | 12 [ 22543 | 0.12 58.72 56.01 168.56 3.32
5 2.5 750 | 100 | 12 || 389.65 | 0.55 111.91 | 110.26 | 304.55 3.67
6 251 750 | 200 | 8 | 416.04 | 0.30 198.09 | 88.11 341.06 30.43
7 2.5 | 1500 | 100 | 12 || 312.18 | 0.53 88.25 83.04 248.56 4.02
8 2.5 11500 | 200 | 8 |[ 323.90 | 0.82 | 133.40 | 68.34 269.07 11.96
B 10 Experimental Model UL-add.
Input Parameters Output Parameters
Exp #
a| n f | d | Fvax | Fmin | Fvean | Fstdev | FM-Max | Fm-min
1 0.5} 560 | 100 | 10 | 13541 | 0.70 38.48 34.30 107.52 2.49
2 1 1600 | 230 | 12 | 203.93 | 0.71 57.12 47.55 157.82 4.18
3 1511120 | 355 | 8 | 131.85 | 0.20 36.82 28.22 90.84 3.75
4 1.5 ] 1120} 71 8 | 170.68 | 0.13 46.29 34.67 112.09 3.17
5 1.5 ] 1600 | 140 | 8 | 158.02 | 0.91 53.28 35.62 113.54 4.61
6 1.5 11600 | 100 | 8 || 14020 | 0.24 43.81 28.84 98.86 4.61
7 2 | 1120 | 50 7 | 168.23 | 0.04 61.91 39.07 134.29 3.29
8 2 800 | 100 | 10 | 243.53 | 0.38 95.53 61.98 203.69 3.56
9 2 | 1120 50 | 11| 217.80 | 0.11 | 57.03 | 47.27 | 147.20 3.50
10 2 800 | 100 | 12 | 35837 | 0.02 96.97 87.61 251.67 3.00
11 4 | 1120} 50 | 10| 369.64 | 3.84 145.10 | 69.35 256.29 17.46
12 4 800 | 100 | 10 | 371.18 | 2.08 | 204.83 | 77.37 307.88 23.83
13 4 | 1120 | 50 | 11 ] 344.65| 1.79 114.01 82.50 264.43 8.75
14 3.5 11600 | 140 | 6 | 278.08 | 0.10 | 103.47 | 71.39 247.42 1.91
15 | 35| 800 | 280 | 11 | 805.34 | 3.02 | 406.14 | 183.75 | 665.62 47.58
16 3.5 | 1600 | 200 | 11 | 490.36 | 1.28 | 177.77 | 120.33 | 381.57 5.94
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Input Parameters

Output Parameters

Exp # a| n | f |d]|Fyax|Fwmin | Fvean | Fstdev | FM-Max | FM-min
17 3 800 | 200 | 11 | 693.18 | 1.82 | 306.58 | 169.21 605.19 24.65
18 3 1120 | 280 | 11 | 700.59 | 1.88 | 292.99 | 151.50 | 566.45 22.43
19 1.5 | 1120 { 280 37587 | 1.35 147.89 | 78.78 284.96 12.02
20 3 1120 | 140 333.87 | 0.56 | 150.92 | 74.73 273.25 10.22
21 1.5 | 1120 | 100 195.18 | 0.42 72.34 45.87 155.88 4.43

B 11 Experimental Model NL-add.

Input Parameters Output Parameters
Exp #
a| n | f | d!| Fwvax | Fumin | Fmean | Fstdev | FM-Max | Fyv-min
1 0.5 | 500 | 100 | 10 || 112.19 | 0.36 34.08 30.02 91.92 2.58
2 0.5 | 1500 | 100 | 6 | 6836 | 0.21 19.78 15.70 53.49 1.08
3 0.5 | 500 | 200 | 12 | 17220 | 0.42 53.90 39.08 124.47 S.12
4 1.5 1000 | 200 | 6 | 30444 | 0.28 | 102.01 | 85.14 254.78 3.46
5 1 1000 | 100 126.35 | 0.18 37.81 31.23 97.05 1.77
6 1 750 | 100 | 12 | 169.59 | 0.32 47.42 44.33 131.34 2.95
7 0.5 750 | 100 | 12 | 99.04 0.50 26.05 20.97 70.06 2.63
8 1 1500 | 100 | 12 || 177.04 | 0.30 45.03 39.28 124.56 3.31
9 0.5 1000 | S0 | 10 | 60.90 0.31 17.78 12.05 45.63 1.84
10 0.5 | 1000 | 100 | 12 | 100.81 | 0.35 24.37 18.28 64.81 2.29
11 0.5 | 1000 | 200 120.61 | 0.20 34.04 31.39 95.70 1.51
12 1.5 | 500 | 50 22435 | 0.12 60.86 56.21 157.02 1.36
13 1.5 | 500 | 100 | 10 | 331.43 | 0.21 87.96 91.23 242.43 2.06
14 1.5 | 1500 | 200 | 10 | 310.96 | 0.24 76.95 73.76 219.24 1.87
15 25| 500 | 100 | 10 | 420.52 | 046 | 162.69 | 11554 | 352.76 8.14
16 0.5 | 1500 | 200 | 10 § 13249 | 0.15 28.67 25.85 86.23 1.19
17 0.5| 500 | 150 | 10 § 163.72 | 0.37 49.26 43.75 131.03 2.54
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C 1 No. of Training patterns vs. Predictive Errors using RBN and UL59 model.

ANN RESULTS

Appendix C

Excluding Fyin,
tlj:i;l g‘fg Predictive Force Errors FMLMin
Patterns | Fumay | Fmin | Fmean | Fstdev | Fyvmax | Fmomin | Emean | Estdev

2 1.438 9.967 1.536 2.614 1.871 0.643 1.865 0.575
3 0.764 18.512 0.686 0.994 0.827 1.518 0.817 0.145
4 0.373 9.233 0.407 0.507 0.447 0.834 0.433 0.105
5 0.368 9.184 0.347 0.523 0.379 0.597 0.404 0.175
6 0.391 7.823 0.346 0.486 0.400 0.574 0.406 0.148
7 0.493 9.760 0.515 0.621 0.523 0.639 0.538 0.121
8 0.448 9.132 0.460 0.510 0.462 0.617 0.470 0.101
9 0.585 10.180 0.630 0.654 0.577 0.766 0.612 0.100
10 0.513 9.995 0.563 0.565 0.510 0.752 0.538 0.094
11 0.523 10.368 0.593 0.567 0.524 0.774 0.552 0.095
12 0.443 9.679 0.490 0.483 0.458 0.719 0.468 0.079
13 0.436 8.517 0.474 0.471 0.448 0.664 0.457 0.078
14 0.450 9.294 0.520 0.476 0.463 0.723 0.477 0.077
15 0415 9.061 0.490 0.439 0.435 0.724 0.444 0.075
16 0.401 8.362 0.480 0.413 0.422 0.735 0.429 0.071
17 0.425 7.947 0.444 0.475 0.456 0.870 0.450 0.087
18 0.424 7.911 0.444 0.474 0.455 0.868 0.449 0.090
19 0.424 9213 0.444 0.474 0.455 0.927 0.449 0.087
20 0.430 8.985 0.464 0.479 0.460 1.076 0.458 0.096
21 0.370 8.981 0.379 0.416 0.397 0.935 0.391 0.090
22 0.372 8.760 0.380 0.417 0.398 0.873 0.392 0.087
23 0.305 8.725 0.333 0.325 0.301 0.787 0316 0.058
24 0.304 8.859 0.331 0.325 0.300 0.790 0.315 0.057
25 0.380 8.368 0.406 0.424 0.401 0.761 0.403 0.077
26 0.380 8.650 0.406 0.424 0.401 0.801 0.403 0.078
27 0.284 8.715 0.278 0.339 0.307 0.740 0.302 0.080
28 0.281 8.625 0.278 0.338 0.304 0.740 0.300 0.079
29 0.282 8.487 0.284 0.345 0.305 0.729 0.304 0.079
30 0.278 8.566 0.282 0.340 0.301 0.728 0.300 0.079
31 0.276 8.460 0.284 0.341 0.300 0.715 0.300 0.079
32 0.275 8.361 0.280 0.337 0.297 0.702 0.297 0.079
33 0.272 8.254 0.276 0.334 0.292 0.686 0.294 0.078
34 0.271 8.134 0.274 0.333 0.290 0.669 0.292 0.078
35 0.270 8.058 0.270 0.332 0.288 0.649 0.290 0.078
36 0.272 8.001 0.274 0.335 0.290 0.664 0.293 0.078
37 0.279 7.935 0.285 0.341 0.295 0.681 0.300 0.079
38 0.279 7.820 0.281 0.337 0.292 0.669 0.297 0.078
39 0.278 7.751 0.276 0.330 0.287 0.655 0.293 0.077
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Excluding Fyin,

No. Of Predictive Force Errors

training Frivin

Patterns Fvax | Fmin | Fwmean | Fstdev | Fmmax Fvmin | Emean | Estdev
40 0.278 7.711 0.276 0.331 0.288 0.648 0.293 0.077
41 0.278 7.692 0.276 0.332 0.290 0.638 0.294 0.077
42 0.278 7.660 0.277 0.336 0.292 0.630 0.296 0.077
43 0.268 7.541 0.279 0.304 0.285 0.642 0.284 0.078
44 0.275 7.571 0.294 0.310 0.292 0.698 0.293 0.078
45 0.270 7.538 0.276 0.301 0.286 0.650 0.283 0.077
46 0.269 7.467 0.278 0.297 0.286 0.661 0.283 0.076
47 0.268 7.936 0.286 0.293 0.283 0.701 0.282 0.076
48 0.236 4.629 0.200 0.227 0.213 0.534 0.219 0.072
49 0.220 4,490 0.190 0.208 0.190 0.538 0.202 0.068
50 0.171 3.748 0.178 0.179 0.163 0.669 0.173 0.074
51 0.165 3.758 0.177 0.174 0.166 0.661 0.171 0.079
52 0.165 3.724 0.183 0.174 0.166 0.685 0.172 0.078
53 0.168 3.576 0.193 0.177 0.170 0.718 0.177 0.081
54 0.169 3,704 0.191 0.178 0.173 0.714 0.178 0.080
55 0.226 3.902 0.200 0.200 0.189 0.677 0.204 0.080
56 0.220 3.803 0.200 0.195 0.186 0.676 0.200 0.080
57 0.216 3711 0.199 0.187 0.183 0.676 0.196 0.079
58 0.181 3.747 0.151 0.179 0.166 0.649 0.169 0.069
59 0.179 3.643 0.135 0.171 0.160 0.640 0.161 0.070
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C 2 No. of Training patterns [60, 90] vs. Predictive Errors using RBN and UL90 model.

) Excluding Fyn,
ti‘a‘;‘ gfg Predictive Force Errors MM
Patterns | Fyax | Fuvin | Fvean | Fstdev | Fvmax | Fvmin | Emean | Estev

60 0.179 3.624 0.138 0.171 0.161 0.648 0.1622 0.0694

61 0.175 3.615 0.141 0.166 0.159 0.636 0.1602 0.0688

62 0.167 3.624 0.132 0.161 0.154 0.607 0.1534 0.0744

63 0.167 3.640 0.132 0.161 0.154 0.606 0.1536 0.0746

64 0.176 4352 0.185 0.170 0.187 0.611 0.1796 0.0759
65 0.174 3.838 0.187 0.170 0.187 0.630 0.1795 0.0774
66 0.174 3.807 0.187 0.169 0.186 0.628 0.1790 0.0773
67 0.178 3971 0.185 0.172 0.186 0.606 0.1803 0.0746
68 0.178 3.964 0.186 0.172 0.187 0.604 0.1808 0.0748

69 0.177 3.990 0.181 0.171 0.185 0.600 0.1787 0.0730

70 0.171 2.931 0.195 0.166 0.185 0.572 0.1793 0.0692

71 0.171 2.948 0.195 0.167 0.185 0.582 0.1796 0.0694

72 0.129 2.600 0.151 0.117 0.132 0.636 0.1321 0.0636

73 0.136 3318 0.141 0.130 0.145 0.670 0.1379 0.0689

74 0.136 3313 0.142 0.131 0.145 0.669 0.1386 0.0688

75 0.118 2.238 0.159 0.105 0.118 0.733 0.1248 0.0672

76 0.118 2292 0.157 0.103 0.116 0.738 0.1236 0.0663

77 0.119 2.273 0.159 0.103 0.116 0.737 0.1241 0.0663

78 0.127 3.131 0.159 0.103 0.110 0.684 0.1248 0.0654

79 0.158 2.439 0.172 0.165 0.147 0.655 0.1604 0.0569

80 0.156 3.835 0.137 0.175 0.135 0.645 0.1508 0.0642

81 0.131 3.736 0.179 0.118 0.118 0.674 0.1366 0.0770

82 0.131 4,508 0.173 0.140 0.127 0.643 0.1425 0.0671

83 0.143 3.433 0.147 0.134 0.127 0.602 0.1377 0.0497

84 0.127 4319 0.138 0.133 0.115 0.625 0.1282 0.0553

85 0.116 4910 0.178 0.109 0.106 0.665 0.1272 0.0688

86 0.119 4.901 0.156 0.108 0.097 0.679 0.1199 0.0596

87 0.119 4,852 0.147 0.105 0.094 0.624 0.1162 0.0575

88 0.107 4.146 0.101 0.097 0.078 0.538 0.0956 0.0516

89 0.108 4.149 0.101 0.097 0.079 0.538 0.0962 0.0518

90 0.107 4.063 0.103 0.095 0.077 0.552 0.0954 0.0526

C 3 Spread value [0.02, 1] vs. Predictive Errors using RBN.
Spread Value | Py, Fin Fuvean | Fsiaev Fymax Faimin Enean Esidev

0.020 0.364 4.490 0.485 0.397 0.396 0.580 0.410 0.093

0.030 0.364 4.490 0.485 0.397 0.396 0.580 0.410 0.093

0.040 0.364 4.490 0.485 0.397 0.396 0.580 0.410 0.093

0.050 0.364 4.489 0.485 0.397 0.396 0.580 0.410 0.093

0.060 0.364 4.484 0.484 0.397 0.396 0.579 0.410 0.093

0.070 0.364 4.475 0.484 0397 0.396 0.577 0.410 0.093

0.080 0.364 4.462 0.483 0397 0.396 0.575 0.410 0.093

0.090 0.363 4.448 0.483 0.397 0.396 0.572 0.410 0.093

0.100 0.363 4435 0.482 0.397 0.396 0.568 0.409 0.093

0.110 0363 4424 0.481 0.397 0.395 0.565 0.409 0.093

0.120 0.363 4415 0.480 0.397 0.395 0.561 0.409 0.092
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Spread Value FMax FMin Frean FS_(M FM-Max FM-Min EMean E&tdu__
0.130 0.362 4.400 0.479 0.396 0.395 0.556 0.408 0.092
0.140 0.362 4.396 0.477 0.396 0.394 0.550 0.407 0.092
0.150 0.361 4.385 0.475 0.395 0.393 0.543 0.406 0.091
0.160 0.360 4415 0.475 0.392 0.391 0.551 0.405 0.091
0.170 0.359 4.423 0.475 0.389 0.388 0.546 0.403 0.092
0.180 0.355 4.302 0.469 0.389 0.387 0.538 0.400 0.091
0.190 0.351 4.274 0.462 0.385 0.383 0.527 0.395 0.090
0.200 0.348 4.244 0.456 0.380 0.379 0.516 0.391 0.089
0.210 0.344 4.214 0.448 0375 0374 0.505 0.385 0.088
0.220 0.340 4.183 0.440 0.370 0.368 0.495 0.380 0.086
0.230 0.336 4.007 0.433 0.364 0.362 0.511 0374 0.085
0.240 0.331 3.967 0.423 0.357 0.356 0.500 0.367 0.084
0.250 0.326 3.928 0.412 0.350 0.350 0.489 0.360 0.082
0.260 0.317 3.983 0.394 0.328 0.332 0.507 0.343 0.078
0.270 0.313 3.939 0.380 0319 0.324 0.496 0.334 0.077
0.280 0.308 3.865 0.363 0.308 0.313 0.494 0.323 0.078
0.290 0.303 4.006 0.354 0.301 0.306 0.500 0.316 0.076
0.300 0.304 3.740 0.347 0.305 0.305 0.489 0.315 0.072
0.310 0.280 3.740 0.349 0.291 0.294 0.502 0.303 0.069
0.320 0.271 3.654 0.332 0.282 0.284 0.489 0.292 0.067
0.330 0.269 3.573 0.323 0.276 0.275 0.493 0.286 0.067
0.340 0.263 3.491 0.308 0.267 0.266 0.482 0.276 0.065
0.350 0.249 3.428 0.311 0.251 0.260 0.441 0.268 0.071
0.360 0.238 3.366 0.303 0.237 0.246 0.459 0.256 0.071
0.370 0.226 3.272 0.284 0.223 0.231 0.442 0.241 0.067
0.380 0.213 3.181 0.271 0.204 0.212 0.454 0.225 0.062
0.390 0.203 3.094 0.259 0.191 0.200 0.438 0.213 0.060
0.400 0.194 3.008 0.247 0.181 0.190 0.428 0.203 0.059
0.410 0.202 2.851 0.236 0.188 0.196 0.421 0.206 0.053
0.420 0.195 2772 0.222 0.181 0.185 0.420 0.196 0.052
0.430 0.183 2.764 0.219 0.167 0.166 0.399 0.184 0.052
0.440 0.185 2.652 0.207 0.170 0.175 0.397 0.184 0.048
0.450 0.186 2.325 0.199 0.168 0.172 0.370 0.181 0.049
0.460 0.173 2.408 0.214 0.163 0.163 0.375 0.178 0.061
0.470 0.163 2.195 0.210 0.155 0.154 0.368 0.171 0.057
0.480 0.176 2.089 0.199 0.179 0.164 0.377 0.180 0.052
0.490 0.180 1.998 0.209 0.179 0.169 0.392 0.184 0.056
0.500 0.164 2.274 0.191 0.171 0.158 0.403 0.171 0.050
0.510 0.160 2.242 0.186 0.169 0.156 0.400 0.168 0.049
0.520 0.157 2.212 0.182 0.168 0.154 0.398 0.165 0.050
0.530 0.152 1.955 0.180 0.155 0.141 0.444 0.157 0.055
0.540 0.147 1.848 0.157 0.133 0.129 0.398 0.141 0.045
0.550 0.164 1.804 0.161 0.174 0.154 0.452 0.163 0.046
0.560 0.152 1.381 0.152 0.146 0.128 0.494 0.145 0.054
0.570 0.149 1.855 0.154 0.120 0.128 0.354 0.138 0.052
0.580 0.144 1.611 0.149 0.152 0.141 0.389 0.146 0.052
0.590 0.141 1.593 0.145 0.103 0.114 0.461 0.126 0.048
0.600 0.141 1.284 0.142 0.128 0.117 0.334 0.132 0.054
0.610 0.132 1.355 0.151 0.109 0.115 0.378 0.127 0.050
0.620 0.135 1419 0.146 0.123 0.118 0.386 0.131 0.062
0.630 0.111 1.680 0.159 0.098 0.100 0.450 0.117 0.066
0.640 0.124 1.672 0.156 0.091 0.107 0.423 0.119 0.066
0.650 0.145 1.118 0.124 0.098 0.102 0.357 0.117 0.060
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Spread Value FMax hﬁn FMean F&t_d_gy___ FM-Max FM;Mjn EMean E&tdev
0.660 0.132 1.766 0.180 0.069 0.086 0.440 0.117 0.063
0.670 0.131 1.718 0.179 0.070 0.086 0.432 0.116 0.063
0.680 0.117 1.473 0.148 0.100 0.103 0.313 0.117 0.070
0.690 0.138 2.125 0.174 0.130 0.128 0.305 0.142 0.069
0.700 0.136 2.397 0.166 0.162 0.130 0.433 0.149 0.072
0.710 0.113 1.487 0.155 0.093 0.107 0.348 0.117 0.066
0.720 0.140 1.782 0.172 0.105 0.114 0.314 0.133 0.069
0.730 0.134 2.122 0.141 0.137 0.109 0.338 0.130 0.060
0.740 0.159 1.562 0.178 0.114 0.115 0.402 0.141 0.081
0.750 0.171 1416 0.180 0.148 0.153 0.279 0.163 0.064
0.760 0.154 1.815 0.204 0.100 0.125 0.461 0.146 0.090
0.770 0.146 1.400 0.157 0.120 0.125 0.303 0.137 0.064
0.780 0.149 1.335 0.182 0.112 0.131 0.329 0.143 0.068
0.790 0.124 0.547 0.135 0.090 0.103 0.444 0.113 0.072
0.800 0.100 1472 0.119 0.109 0.093 0.225 0.106 0.060
0.810 0.104 1.679 0.125 0.087 0.081 0.287 0.099 0.057
0.820 0.130 2.188 0.136 0.116 0.106 0.280 0.122 0.055
0.830 0.096 1.766 0.079 0.093 0.073 0.326 0.085 0.053
0.840 0.110 2.095 0.127 0.108 0.098 0.377 0.111 0.066
0.850 0.113 1.140 0.131 0.122 0.103 0.305 0.117 0.057
0.860 0.086 1.964 0.117 0.091 0.083 0.346 0.094 0.061
0.870 0.109 1.462 0.119 0.118 0.101 0.267 0.112 0.077
0.880 0.111 1.613 0.130 0.092 0.084 0.355 0.104 0.066
0.890 0.133 0.347 0.100 0.114 0.091 0.301 0.110 0.054
0.900 0.133 0.347 0.096 0.113 0.089 0.299 0.108 0.054
0.910 0.164 1275 0.149 0.157 0.151 0.399 0.155 0.065
0.920 0.164 1.283 0.148 0.157 0.151 0.404 0.155 0.065
0.930 0.15§ 0.835 0.152 0.170 0.156 0.391 0.158 0.066
0.940 0.082 1.034 0.108 0.102 0.071 0.228 0.091 0.061
0.950 0.116 0.874 0.176 0.135 0.110 0.369 0.134 0.074
0.960 0.144 1.936 0.112 0.140 0.112 0.400 0.127 0.061
0.970 0.117 1.599 0.082 0.099 0.072 0.286 0.092 0.057
0.980 0.146 1.553 0.154 0.108 0.108 0.294 0.129 0.065
0.990 0.101 1.132 0.117 0.105 0.079 0.397 0.101 0.056
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Appendix D

SOURCE CODE IN MATLAB

D 1 Neural Modeling Program[16]

function [net,Y_Real T,Y Real V,Y_Predicted T,Y_ Predicted_V,Err_TErr_V]=getNN_model(NType,machine,t,fa)
noise=0.000001;

FileName="Fmodels';

ext="-mat';

[F,I,V]=getForceData(FileName,ext,machine,t);

I=getNoise(I,noise);

size(L,1)

switch lower(NType)

case 'fb’
hi=fa(1,1);
si=fa(1,2);
peak=fa(1,3);
tg=fa(1,4);
t£=[4,2,4]
btf=1;
blf=1;
PF=MSEREG";

[net,Yt,Yv]=getNfr(L,V,hi,si,peak,tg,tf,btf,blf,pf);

[Y _Real T,Y Real V.Y Predicted T,Y_Predicted_V,Err_T,Err_V]=getAna(F,LV,Yt,YV);
plot(Y_Real_T(.,5));

hold on

plot(Y_Predicted_T(:,5),'red’);

case 'rb’
goal=fa(1,1);
spread=fa(1,2);
mn=20;
df=1;
PF="MSE';
%MSEREG, MAE,mse,'sse’;

[net,Yt,Yv]=getNrb(l,V,goal spread,mn,df,PF);
[Y_Real_T,Y_Real_V,Y_Predicted_T,Y_Predicted_V,Err_T,Err;V]:getAna(F,I,V,Yt,Yv);

otherwise
disp('No Such Neural Name(choose either FB or RB")
end

0 <SS ST > LSOO <>
function [Fall,],V]=getForceData(FileName,ext,op1,t)
load(FileName,ext);
switch lower(op1)

case ‘conv'

disp("Looding Experiments conducted on Conventional Machine...")
Fall=[FL8_1;FL9;FL27 1;FL27_2;FL32;FL25;FL8_2;Fv;Fx;addo];
F=Fall,
Fn=Scale(F,F);

FL8 1=Fn(1:8,:);
FL9=Fn(9:17,);
FL27 1=Fn(18:44,);
FL27 2=Fn(45:71,:);
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FL32=Fn(72:103,:);

FL25=Fn(104:128,:);

FL8 2=Fn(129:136,:);

Fv=Fn(137:155,:);

Fx=Fn(156:157,3);
%tname=[ {'FL8_1',/FL9"'FL27 1'/FL27_2'/FL32''FL25"'FL8_2"'Fx'}];
%F=[FL8 1;FL9;FL27_1;FL27 2;FL32;FL25;FL8 2;Fx];
F=[FL32;FL25;FL8_2;FL27 2;FL8_1;FL9;FL27 1;Fx];
%F=[FL27_1;FL32;FL25;FL8_1(7,:);FL8_2(6,);FL9(2,:);FL.27_2(10:12,)];
%V=[Fv;FL27 2(1:9,:);FL27_2(13:27,:);FL9(3:9,:);FL9(1,:;FL8_2(1:5,:);FL8_2(7:8,:)];
V=[Fv];
={1;

for i=1:size(t,2)

try
[=[Leval(char(t(1,)))];
catch
disp(‘error in force model name')
end
else
I=F(1:t,);
% if (size(t,2)<=size(tname,2)&size(t,2)>0)
% for i=1:size(t,2)
% I=[1;eval(char(tname(1,1(1,0)))];
Y% end
% else
% disp('Only 8 models are available');
% end
%
end
case 'cnc’

disp('Looding Experiments conducted on CNC Machine...")
F=[CFL8_1;CFL8 _2;CFv;CFx];

Fall=F;

Fn=Scale(F.F);

CFL8 1=Fn(1:8,);
CFL8 2=Fn{9:16,:);
CFv=Fn(17:29,:);
CFx=Fn(30:33,:);
V=CFv;
=
tname=[ {'CFL8_1',/CFL8_2',/CFx'}];
if (size(t,2)<=size(tname,2)&size(t,2)>0)
for i=1:size(t,2)
I=[I;eval(char(tname(1,t(1,i))))];
end
else
disp('Only 3 models are available');
end

otherwise
disp('No Such Experiment Name')
end

0y <SS LSS SIS >SS SIS S S<>
function [dn]=Scale(F,d)

if (nargin ~= 2 | size(d,2) >10)

dn={J;

disp('number of matrix columns must be less than or equal 10');
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return

end

%% Scale factors

[R_ MIN,R MAX,S_MIN,S_MAX ]=Scale_Factors(F);

for i=1:size(d,1)

for j=1:size(d,2)
a=(S_MAX(1,))-S_MIN(1,j))(R_MAX(1,j)}-R_MIN(1,));
dn(i,j)=((d(1.j)-R _MIN(1j))*a)y+S_MIN(L,));

end

end

0 IS LSS ST LSS > LSS S LSO
function [d]=unscale(F,dn)
[R_MIN,R_MAX,S_MIN,S_MAX ]=Scale_Factors(F);

for i=1:size(dn,1)
for j=1:size(dn,2)

an=((R_MAX(1)-R_MIN(L))(S_MAX(L,j)-S_MIN(1,)));
d(i.j)=((dn(i)-S_MIN(1j))*an)+R_MIN(L,));

end
end
function [dn]=unscale2(F,d)

for i=1:size(d,1)

for j=1:size(d,2)
dn(i,j)=F.j)*(1+d(L,)));

end

end

% IS S COCS SOOI

0y TSI IS SIS S LSS LSS SO
function [ Y]=getNoise(F,noise)

noise=noise/3;

for i=1:size(F,1)
for j=1:size(F,2)
Y (1,))7F(@,§)*(1+(noise*getRand(3)));
end
end

% CHCH DI OO

function [ Y]=randSort(F)
randomN=randperm(size(F,1));

for i=1:size(F,1)
Y(i,:)=F(randomN(1,1),:);
end
0 <SS IS >SS TS ST S LSS LSS S>>
function {X])=getErr(Y,T);
if (nargin ~= 2 | size(Y,1) ~= size(T,1)[size(Y,2)~=size(T,2))
X=(l
disp('to compute the Errors the two matrix must have the same size');
return
end
%T=abs(T);
%Y=abs(Y);
for i=1:size(Y,1)
for j=1:size(Y,2)
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if Y(i,j)==0
Y (1,))=0.000001;

end

X(1,j)=abs((Y(1)-T@)N Y (1))
end
end
Ymean=mean([X(:,1),X(:,3:5)],2);
Ystd=std([X(:,1),X(:,3:5)1,0,2);
X=[X,Ymean,Ystd];
X=[X;mean(X,1)];

0 <L TS LTS S S TS LSS S B<>
function [mx]=getMax(data);

for i=1:size(data,2);

mx(1,i)=max(data(:,i));

end

0 TS TS LS LSS SIS L LSS LSS LSS OO
function [mn]=getMin(data);

for i=1:size(data,2);

mn(1,i)=min(data(:,1));

end

0 < LSS LS > >SS S >SS LSS S
function [S] = vall(op,k)
for i=1:size(op,2)
if (op(1,1)>k | op(1,1)<1)
S=0;
return
else
S=1;
end
end

0 < ES EHEE C>CHES S ECS CCLHCSCSCLS O ><>
% This function stores the most known BLF functions in matlab

9% BLF = Backprop weight/bias learning function, default = 'learngdm’.
function [S]=getBlf(op);

MyBIf=[ {'learngdm’, learngd'} ];

if (nargin ~= 1 | vall(op,size(MyBIf,2))~=1)

S = char(MyBIf(1,1));

disp('Using the Default Backprop weight/bias learning function );
return

end

S=char(MyBIf(1,0p));

% This function stores the most known BTF functions in matlab

9% BTF = Backprop network training function, default = ‘trainim’.
function [S]=getBtf(op);

MyBtf=] {trainlm’, trainbfg’, traintp", traingd', 'traingdm’, 'traingdx', 'traincgf’,’ trainbr','trainscg'} |;
if (nargin ~= 1 | vall(op,size(MyBtf,2))~=1)

S = char(MyBtf(1,1));

disp('Using the Default Backprop network training function ';

return

end

S=char(MyBif(1,0p));

% This function stores the most known TF functions in matlab

% TFi = Transfer function of ith layer, default = 'tansig' and i=1.

function [S]=getTf(hdNo,op);
MyTf=[ {‘tansig','logsig','radbas’,'purelin','tribas','poslin',‘satlin','satlins','hardlims‘} IR
if (nargin < 1)
hdNo=1;
op=ones(1,3);
end
if (nargin < 2)
op=ones(1,hdNo+2);
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end

if (size(op,2) ~=(hdNo+2) |vall(op,size(MyTf,2))~=1)
S = {'tansig'};

hdNo=1;

S = [S(ones(1,hdNo+2))];

disp('Using the Defult Transfer Functions');

return

end

for i=1:(hdNo+2)

S(1,)=MyTf(1,0p(1,1));

end

Uy CHICICHCTI IS TS > T >SS LS S>>

function [net,St,Sv]=getNfr(I,V,hdNo,hsize,EpochsN,Goal,tfbt{,bIf,PF);
input=4;
output=0;
P=I(:,1:input);
Pv=V(;,1:input);
T=I(:,input+1:input+output);
Tv=V(:,input+1:inputtoutput);
if nargin < 3
hdNo=1;
end
if nargin < 4
hsize=round(size(1,1)*0.25);
end
if nargin< 5
EpochsN=100;
end
if nargin < 6
Goal=0.00001;
end
if nargin < 7
TF=getTf(hdNo)
else
TF=getTf(hdNo,tf);
end
if nargin < 8
BTF =getBtf
else
BTF=getBtf(btf);
end
if nargin< 9
BLF =getBIf;
else
BLF=getBIf(blf);
end
if nargin < 10 PF="mse’ ; end

for i=1:hdNo

hl(i)=hsize;

end
Isz=[size(P,2),hl,size(T,2)]
pr=zeros(size(P,2),2);
for i=1:size(P,2)
pr(i,2)=max(P(:,i));
pr(i,1)=min(P(:,1));
end

%net = newff(PR,[S1 S2...SN1],{TF1 TF2..TFN1} BTF,BLF,PF)newfftd
net=newff(pr,lsz,TF,BTF,BLF,PF);
% net.trainParam.show = 25;
net.trainparam.epochs=EpochsN;
net.trainParam.mem_reduc =1;
% Y%training rate
net.trainParam.lr = 0.1;
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% % momentum factor
net.trainParam.mc = 0.95;%
net.trainparam.goal=Goal;

% net.adaptParam.passes = 10;

% [net,y,e]=adapt(net,P',T");

net.performFen = PF;

if stremp(PF,MSEREG")==1;
net.performParam.ratio=0.85;

end

[net Irncurv]=train(net,P', T");

St=[sim(net,P')]';
Sv=[sim(net,Pv"]";

0y IS LS LIS ST S>3
function [net,St,Sv]=getNrb(1,V,goal,spread,mn,df,PF);
input=4;
output=6;
P=I(:,1:input);
Pv=V(:,1:input);
T=I(:,input+1:input+toutput);
Tv=V(:,input+1:input+toutput);
if nargin < 3
goal=1;
end
if nargin < 4
spread=0.97;
end
if nargin< 5
mn=round(size(1,1)*0.5);
end
if nargin< 6
df=2;
end
if nargin <7
PF='mse';
end

%newrb(p,t,goal,spread,mn,df)
net=newrb(P', T",goal,spread,mn,df);
net.performFen = PF;
St=[sim(net,P")]";
Sv=[sim{net,Pv")]";

0 CHCH IS CCCCC>  C> S LS S S SSIS
function [a]=getPlace(b);
x=min(b);
for i=1:size(b,1)
for k=1:size(b,2)
if x(1,k)==b(i,k)
a(l,k)=i;
end
end
end

0 <ICICI IS DS >SS LS C>CS S SSLSOOSSS<>
function [m]=bestE(data,n,pos);
if nargin < 3
pos=size(data,2)-1;
end
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fori=1:n
[a]=getPlace(data(:,pos));
m(i,:)=data(a,:);
data(a,:)=[];

end

0 <D THCCH CH S LSS S LSS LSO OSSO S
function [Y_Real_T,Y_RealgV,Y_Predicted_T,Y_Predicted_V,Err_T,Err_V]:getAna(F,I,V,St,SV)
Y=[I(:,1:4),5t];

Yv=[V(;,1:4),Sv];

Y Predicted T=unscale(F,Yt);

Y Predicted_V=unscale(F,Yv);

Y_Real_T=unscale(F,I);

Y_Real_V=unscale(F,V);

Err_T=getErr(Y_Predicted_T(:,5:10),Y_Real T(:,5:10));
Err_V=getErr(Y_Predicted_V(:,5:10),Y_Real V(:,5:10));

% LI LI I I LS LIS LS LS LS LSS S S SOOI

D 2 Force Treatment Program [16]

F=[1;

load info.txt;

ExperimentN=input('Please Enter Number of Experiments of the model=");
for i =1:ExperimentN

9%dataName=input('Please Enter The experiment name ','s");
load(dataName,'-mat');

R(i,:)=getF(data,info(i,:));

end

R=[info(:,2:5),R];

F=[R};

save F;

%% %% %% % %% % %% %% %% %% %% %

function [R}=getF(data,parm);

Sx =parm(1,6);
Sy =parm(1,6);
Sz =parm(1,7);
RPM=parm(1,3);
Sx=8x*5;
Sy=Sy*35;
Sz=S8z*5;
rev=round((60*RPM)/500);
X=data(2,:);
Y=data(3,:);
Z=data(4,:);
X=X.*Sx;
Y=Y .*Sy;
7=7.%Sz,
F=sqrt(X(1,:).72+Y(1,)).~2+Z(1,:)."2);
plot(F);
xlabel('Time 1/500 sec);
ylabel('Force N');

title('Plot of Force vs time');

6% % %% % %% Yo% Y %% %% %% % %% % Y% % % Y6 % % % % %% % %6 % % % % % %% %6 %% %% % % %% % % %6 % % Y
Y%option=input('Please Enter option # ");
option=2;
if option ==2

[X,Y,Z]=delUnwanted(X,Y,Z);

[X,Y,Z]=delNoise(X,Y,Z);
end
if option ==

[X,Y,Z]=delNoise(X,Y,Z);
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end
if option ==
[X,Y,Z]=delUnwanted(X,Y,Z);
end
0% %% Y% % Yo % %% % % Yo %% % % % % % % %% % %% % %% % %6 % %6 % %% % % % %% %% %% % % % % % % %6 %

F=sqrt(X(1,:)."2+Y(1,:)."2+Z(1,:)."2);
plot(F);
xlabel("Time 1/500 sec");
ylabel('Force N');
title('Plot of Force vs time');
Fmax=max(F);
Fmin=min(F);
Fmean=mean(F);
Fstd=std(F);
lI=1:rev;
b=(length(F)/rev);
=0;
k=1000;
fori=1:b
mx(i)=max(F((i-1)*rev+ll));
if mx(1)>]
j=mx;
=i
end
mn(i)=min(F((i-1)*rev-+11));
if mn(i)<k
k=mx;
ki=i;
end
end
Fmean max=mean{mx);
Fmean_min=mean{mn);
R=[Fmax,Fmin,Fmean,Fstd,F 'mean_max,Fmean_min,j1/b];

%% %% %% % %% % %% %% % % % % % %% % %% %% %% % % % % %% %% %6 % % %
function [X,Y,Z]=delNoise(X1,Y1,Z1);
F=sqrt(X1(1,:).22+Y1(1,:).72+Z1(1,:).°2);

plot(F)

[aaa,aaaa]=ginput(2);

a3=round((aaa(1,1)));

a4=round((aaa(2,1)));
Z=71(a3:a4)-(0.5*(mean(Z1(1:a3-1))y+mean(Z1(ad~+1:length(Z1)-1))));
X=X1(a3:a4)-(0.5*(mean(X 1(1:a3-1))+mean(X1(ad~+1:length(X1)-1))));
Y=Y 1(a3:a4)-(0.5%(mean(Y 1(1:a3-1))+mean(Y I (a4-+1:length(Y 1)-1))));
%6%% %% %% %% %% % %% % % % % % %% %% %% % % % % % % %
function [X,Y,Z]=delUnwanted(X1,Y1,Z1);
F=sqrt(X1(1,:).22+Y1(1,:).A2+Z1(1,:).12);

plot(F)

[a,aa]=ginput(2);

al=round((a(1,1)));

a2=round((a(2,1)));

7=71(al:a2);

X=X1(al:a2);

Y=Y1(al:a2);
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