American University in Cairo

AUC Knowledge Fountain

Archived Theses and Dissertations

Using parallel primary caches to improve capacity and bandwidth

John Rubena Wani

Follow this and additional works at: https://fount.aucegypt.edu/retro_etds

b Part of the Databases and Information Systems Commons

Chapter Two
Simultaneous Multithreading

Simultaneous multithreading (SMT) is an architectural technique that allows a
processor to issue instructions from multiple hardware contexts or threads to the
functional units of a superscalar processor in the same cycle. It increases instruction-
level parallelism available to the architecture by allowing the processor to exploit the
natural parallelism between threads each cycle. In SMT processors, thread-level
parallelism can come from either multithreaded, parallel programs or individual,
independent programs in a multiprogramming workload. SMT processors use
resources more efficiently, and both instruction throughput and speedups are greater.
Simultaneous multithreading combines hardware features of wide-issue superscalars
and multithreaded processors. From superscalars, it inherits the ability to issue
multiple instructions each cycle; and like multithreaded processors it contains

hardware state for several programs (or threads).
2.1 SMT compared to Superscalar and Multiple processor

Superscalar processors looked at multiple instructions from same process, and
thus achieved a certain level of parallism. However cycles can be wasted due to both
data dependencies and long latency operations [38]. In the case of multithreaded
systems; waste cycles due to ILP were minimized, as choices were made from

multiple threads. This is in order to decide which thread to fetch instructions from in

processors combined both ILP and TLP by looking at multiple threads to fetch
instructions from, in every cycle. Figure 2.1, shows the difference between

Superscalar, Multithreading and Simultaneously Multithreaded systems.

Superscalar Multithreaded SMT

)iy
M Dl@l
| JEiE

EOO0

000 =
10 7] Threaa2
@@@D Bl Toeas

B Thread4

_ujmin
_ Wi

«— Time (Processor cycle)

Issue slots

Figure 2.1: Superscalar looks at multiple instructions from same process, both horizontal and
vertical waste are experienced. While Multithreaded minimizes vertical waste, tolerate long
latency operations. The SMT selects instructions from any ready thread.

2.2 Simultaneous Multithreading Cache

SMT processors exploited several instruction flows simultaneously to make use of
the hardware resources therefore improving instruction bandwidth, however, their
cache memory organization is designed to share all the requests needed by the
processor. Thus the question of memory performance bottleneck still holds in the
SMT processors. SMT processors like Pentium 4, alpha 21464 and IBM Power5 have
shared cache memory configurations; ranging from 8KB to 64KB for the primary

caches and from 256KB to 4MB for the second level caches [29, 65, 58]. This shows

that the primary caches have high rate of misses due to the capacity even though there
is more threads executed in parallel. In this context, it is well understood that the
performance gained from improving the memory system alone is limited [62]. Despite
the fact that SMT still suffers from efficient used of cache memory, they were able to
inherit from superscalar; issue multiple instructions per cycle and from multithreaded;

maintain hardware state for multiple threads [71].

2.3 Simultaneous Multithreading Basic Architecture

The key ability of the superior performance of SMT architecture is the fact
that SMT is able to hide latency of operations across threads, and at the same time
achieve higher utilization of the functional units through parallelism by fetching from
multiple threads. Figure 2.2 shows a basic SMT architecture. It mainly consists of six
stages pipeline. Multiple instructions are fetched from the instruction cache and
forwarded to the decode unit. The decode unit will then pass decoded instructions to
be renamed, in order to remove the WAW and WAR hazards. Once renamed they are
mapped to the register files, where they will be issued for execution if their operands
all available. Retirement results are forwarded to the register through the data cache

later in the pipeline.

Execution
pipeline

|
Instruction; Instruction Issue
Decode
i

Instruction Fetch

nun Y19

nun 9poda

3Yor)) UONdNISU]

Floating
point
\ units

uononnsu| iugod Suneor
311 1918189 1uI0g Sumeold |

ayoe) ere

Sunureuay 19s1I39Y

Integer
Load/Store
N units

UOYONIISU] U104 Suneofy
$9[1J 1915159y 1989ju]

S SRS g __ S

Figure 2.2: SMT basic processor architecture

2.4 SMT Challenges

The SMT inherits numerous design challenges from previous architectures, like
achieving high register file bandwidths and supporting high memory demands. There
is greater register pressure and greater per thread latency due to the longer pipeline
[18]. Other than high memory demands, SMTs meet large forwarding requirements
and scheduling instructions on functional units due to more parallel workloads stress
on the functional units [10]. These stresses are greater on shared structures such as
branch prediction buffers, cache, Translation lookaside buffer etc. In addition, due to

wire delays, a functional partitioning as required by the on-chip wire delay of future

microprocessors is not easily achieved with an SMT processor due to the centralized

instruction issue [25, 33].

2.5 SMT Induced Changes

In order to support multiple threads, an SMT processor requires more registers
than the traditional superscalar processor. The general aim is to provide as many
registers for each supported thread as there would be for one processor. For a
traditional RISC chip, this implies 32 x n registers (n is the number of threads an SMT
processor could handle in one cycle), plus whatever renaming registers are required.
For a 4-way SMT processor RISC processor, this would mean 128 registers, plus
however many renaming registers are needed [18, 26]. Most SMT models are
straightforward extensions of a conventional out-of-order processor. With an increase
in the throughput, comes more strain upon instruction issue width, which is increased
accordingly [53]. Because of the aforementioned increase in the register file size, an
SMT pipeline should be increased by 2 stages so as not to slow down the length of the
clock cycle. The register read and register write stages are both broken up into two
pipelined stages. Astute readers will note that additional stages would normally have a

negative impact upon performance. This is where the studies have shown a modest

performance decrease [18, 33]

2.6 Concerns about SMT

SMT is about sharing whatever processor resources. However, in some instances,

this disrupts the traditional organization of data, as well as instruction flow. The

1Lt it laannnaac lace affactive when chared. hecallﬂe it has to keen

track of more threads, with more instructions, and will therefore be less efficient at
giving an accurate prediction. This means that the pipeline will need to be flushed
more often due to mispredicts, but the ability to run multiple threads more than makes
up for this deficit. Another issue is the number of threads in relation to the size of
caches, the line-sizes of caches, and the bandwidth afforded by them. Few studies
have gone into detail with this issue, yet it remains a fundamentally important topic.
As is the case for single-threaded programs, increasing the cache-line size decreases
the miss rate but also increases the miss penalty. Having support for more threads,
which use more differing data, exacerbates this problem, and thus less of the cache is
effectively useful for each thread. This contention for the cache is even more
pronounced when dealing with a multiprogrammed workload over a multithreaded
workload [48]. Thus, naturally, the more threads are in use, the larger caches should
be made.

Besides, the more threads are executed in parallel the better the overall
performance of the SMT processors, and the differences in associativity become more
readily apparent. [4] Showed that keeping the level 1 cache size at a constant 64KB
achieved a highest level of performance when using a more associative cache, despite
longer access times. The same researcher also emphasized on the miss rate; a small
16KB L1 cache was used to determine the varying performances of differing block
sizes, with different associatively, amongst differing number of threads. As before,
increasing the associativity increased the performance at all times, however,
increasing the block size decreased performance if more than two threads were in use,
so much so that the increase in associativity could not make up for the deficit caused

by the greater miss penalty of the larger block size.

2.7 SMT processors

The SMT processor architecture proposed by [21] at the University of Washington,
Seattle, WA, surveyed the enhancements of the Alpha 21164 processor to SMT
processors. Simulations were conducted to evaluate processor configurations of up to
cight threaded and eight-issue superscalar. This maximum configuration showed a
throughput of 6.64 IPC. The same rescarcher, in 1996-97, used superscalar MIPS
R10000 and HP PA-8000 in his approach to evaluate more realistic processor
configurations, and presented implementation issues and solutions to register file
access and instruction scheduling for a minimal change to superscalar processor
organization [24]. Therefore simultancous multithreading has been proposed to
achieved by overlapping multiple threads on a single wide-issue processor [66]. The
proposed Alpha 21464, the recently-announced IBM Power$, and the Hyper Threaded
Pentium 4 currently in production are examples of SMT processors. These SMT

architectures are illustrated below:

2.8 Pentium 4 processor

The Intel Pentium 4 Hyper-Threading processor [29] is the first general-purpose
microprocessor to ship with features of simultaneous multithreading. Pentium 4 micro
architecture consisted of a deep pipelined out-of-order processor. The core can
retrieve 3 micro operations per cycle from the trace cache, and can execute up to six
per cycle. There is a 128-entry renamed register file and up to 126 instructions can be
in flight at a time. Of those instructions, 48 can be loads and 24 can be stores. It has

an 8KB 4-way set associative direct mapped L1 data cache which has been expanded

unified L2 cache. The L1 instruction cache is a 12K entry trace cache. The Pentium 4
supports a dual-threaded implementation of simultaneous multithreading called
Hyper-Threading Technology. Accesses to several non-duplicated, non-partitioned
parts of the Pentium 4 pipeline, such as the trace cache and main instruction decoder
are handled in a round-robin manner.

Similarly, [1] proposed an architecture that time-shares the front end of the
processor (i.c., the front end is fine-grain multithreaded), but mixes instructions
(simultaneous multithreading) beginning with the queue stage. That paper also
examines architectures with limited multithreading (e.g., two threads rather than
eight) in the front end. Hyper-Threading brings new capabilities that developers can
leverage to increase application performance. However, Hyper-Threading is sensitive
to workload mixes and poses new challenges to how applications are scheduled.
Complementary workloads that utilize unused resources enhance performance
whereas Contending workloads that contend for shared processor resources like

memory can hinder performance [23].

2.8.1 Pentium 4 basic pipeline

Pentium 4 mircoarchitecture basic pipeline is depicted in Figure 2.3

L:> Trace Cache | Trace Cache Drive Allocate Rename Queue
Fetch >§

Schedul Schedul Schedul Dispatch Dispatch Register

:I Register Execute Flags Branch Drive

Files Check >

Figure 2.3: Pentium 4 Pipeline Stages

The front end of the pipeline is responsible for delivering instructions to the later
pipe stages. As shown in Figure 2.3, instructions generally come from the Trace
Cache (TC), which is the primary or Level 1 (L1) instruction cache. Therefore when
there is a TC miss does the machine fetch and decode instructions from the integrated
Level 2 (L2) cache. Usually near the TC is the Microcode ROM, which stores
decoded instructions. The replicated resources include architectural states of the
logical registers, program counters, renaming logic, return address stack and
instruction translation look aside buffer (ITLB). While partitioned resources are
divided equally among the threads irrespective of need. These resources include re-
order buffer, load/store buffer, arithmetic issue queue, and memory issue queue. The
shared resources include out-of-order core, instruction and data caches, and fetch unit.
When running only one thread, all resources are freed and are available at the disposal
of a single logical processor, ensuring that single thread performance is not degraded.
The other logical processor is said to be in idle mode. Still translate from 80x86 to
micro-operations, P4 has better branch predictor, and the instruction cache holds

micro-operations. No decode stages, but have what is called the cache trace.

2.8.2 Trace Cache and Allocator

Most instructions in a program are fetched and executed from the TC. Two
sets of next-instruction-pointers independently track the progress of the two software
threads executing. The two logical processors arbitrate access to the TC every clock
cycle. For example, if one cycle is used to fetch a line for one logical processor, the
next cycle would be used to fetch a line for the other logical processor, provided that

both logical processors requested access to the trace cache. If one logical processor is

stalled or is unable to use the TC, the other logical processor can use the full
bandwidth of the trace cache, every cycle. The TC entries are tagged with thread
information and are dynamically allocated as needed. After micro-operations are
fetched from the trace cache or the Microcode ROM, or forwarded from the
instruction decode logic, they are placed in a drive queue. The allocator logic takes
micro-operations from the drive queue and allocates many of the key machine buffers
needed to execute each micro-operation, including the 126 re-order buffer entries, 128

integer and 128 floating-point physical registers, 48 load and 24 store buffer entries.

2.8.3 Register Rename and Scheduling

The register rename logic renames the architectural IA- 32 registers onto the
machine’s physical registers. Once micro-operations have completed from the
allocation and register rename processes, they are placed into two sets of queues. The
schedulers are at the heart of the out-of-order execution engine. Three schedulers are
used to schedule different types of micro-operations for the various execution units.
Collectively, they can dispatch up to six micro-operations each clock cycle. The
memory instruction queue and general instruction queues send micro-operations to the
three scheduler queues as fast as they can, alternating between micro-operations for
the two logical processors every clock cycle, as needed. Each scheduler has its own
scheduler queue of eight to twelve entries from which it selects micro-operations to
send to the execution units. The schedulers choose micro-operations regardless of
whether they belong to one logical processor or the other. To avoid deadlock and
ensure fairness, there is a limit on the number of active entries that a logical processor

can have in each scheduler’s queue. This limit is dependent on the size of the

2.8.4 Execution Units and Retirement

The execution core and memory hierarchy are also largely oblivious to logical
processors. Since the source and destination registers were renamed earlier to physical
registers in a shared physical register pool, micro-operations merely access the
physical register file to get their destinations, and they write results back to the
physical register file. Comparing physical register numbers enables the forwarding
logic to forward results to other executing micro-operations without having to
understand logical processors. Then micro-operation retirement logic commits the
architecture state in program order. The retirement logic tracks when micro-
operations from the two logical processors are ready to be retired, then retires the
micro-operations in program order for each logical processor by alternating between
the two logical processors. Retirement logic will retire micro-operations for one
logical processor, then the other, alternating back and forth. If one logical processor is
not ready to retire any micro-operations then all retirement bandwidth is dedicated to
the other logical processor. Once stores have retired, the store data needs to be written

into the level-one data cache.

2.8.5 Memory Subsystem

The memory subsystem includes the DTLB, the low latency Level 1 (L1) data
cache, the Level 2 (L2) unified cache, and the Level 3 unified cache. The schedulers
send load or store micro-operations without regard to logical processors and the
memory subsystem handles them as they come. The DTLB translates addresses to
physical addresses. It has 64 fully associative entries; each entry can map either a 4K

or a 4MB page. Although the DTLB is a shared structure between the two logical

set associative with 64-byte lines. It is a write-through cache, meaning that writes are

always copied to the L2 cache. The L1 data cache is virtually addressed and

-byte lines.

-way set associative with 128

physically tagged. The L2 and .3 caches are 8

The L2 and L3 caches are physically addressed. Figure 2.4 gives a detail pipeline

stages for the Pentium 4.

Schedule

=
A

Fetch

< TC

Retire

st

Figure 2.4: SMT for Pentium 4 Hyper Threading Pipeline

2.9 ALPHA 21464

Also known as Arana, EV8 or by far the most aggressive speculative out-of-order
execution superscalar RISC processor yet proposed [34]. The Alpha 21464 EV8 was
proposed in 1999, and is a four-threaded eight-issue SMT processor that closely
resembles the SMT processor proposed by Tullsen et al. in 1999. The processor
featured out-of-order execution, a large on-chip secondary cache, a direct RAMBUS
interface, and an on-chip router for system interconnect of a directory based, cache
coherent NUMA (no uniform memory access) multiprocessor. In the meantime, the

project has been abandoned.

2.9.1 ALPHA 21464 pipeline

| |
Executions | Dcache Write

Fetch Decode Read | Retire
/Map Register unit : /Store : Register :
_______________________ | buffexy . _ .. _ .. _.

1918139y

RN

amay

JI3JINQII0IS /oY0RI-(]

7
]
'/
.

Figure 2.5: SMT pipeline for ALPHA 21464

Figure 2.5 shows the SMT pipeline for the ALPHA 21464. Basically the fetch

1 4T at L i et e i A Ll tiardsmrndiasn Aranntha AF dvial nart that can handla - Qo

instruction bundles per fetch. The next address generation can be either through line
predictor, branch predictor, jump target prediction or a return address stack. The
execution resources are, a single issue queue of 8-wide and register file that contain
512 registers each with 16 read and 8 write ports. The Function unit is equipped with

8 integer ALUs, 4 floating ALUs, 4 memory operations (2 read/2 write).

2.9.2 Replicated resources
These resources include architectural states of program counters, register rile and

register maps. Replicated resources used for all per thread state (except register file).

2.9.3 Shared resources
The threads use the shared resources as per their need. The shared resources

include Register file (rename space), Instruction queue, Branch predictor, first and

second level caches and Translation buffers.

2.10 MIPS R10000

The MIPS R10000 basic superscalar processor was extended to SMT processor
with Minimal overheads [66]. This basic processor uses remapping table to remove
register aliasing and instructions are then place into an instruction queue and issue out
of order as their data dependencies are cleared. Out-of-order execution increases
instruction-level-parallelism and provides latency tolerance. The R10000 is extended

by increasing its functional unit resources to create an R10000-2x and then add SMT

threads.

2.10.1 R10000-2x Pipeline

The R10000-2x is shown in Figure 2.6. Prior research showed that SMT could be
added to a MIPS-like architecture with minimal overhead [26]. While the R10000-2x
is similar to architectures used in prior SMT research, it does present some minor
differences. First, separate arithmetic and memory queues make it easier to implement
the issue logic and increase the total number of instruction queue entries [38]. The
larger number of instruction queue entries reduces instruction queue clog. In addition,
prior studies have included substantially more functional units [67]. Sharing
expensive functional units between processor pipelines makes the device easier to
build but reduces the number of resources that can be exploited by SMT. However,

the performance is relatively unaffected by the reduction in the number of these arca-

intensive functional units.

Fetch

Decode

Remap

Issue

RF

Execute

Op fetch 1

Op fetch 2

Decode

Pipeline Stages for the Extended MIPS 10000 with addition of SM'T

1un yov g

yoseH-I

Figure 2.6: Architecture Processor Pipeline for MIPS 100000 extended

The entire pipeline is increased in proportion to the dispatch width size: fetch
width, decode width, rename width, number of renaming registers, issue rate, number
of issue queue entries, register fetch, number of execute units, number of LD/ST
accesses, and commit rate. The processor depth is modified by extending the decode,
remap, register fetch, issue, and retire stages from a half cycle to a full cycle. The
operand fetch stage is increased from one cycle to two. This allows twice as much
time within a cycle for these stages. The penalty is in higher branch mispredicts
penalties and in a larger delay to determine a cache hit [23].

The branch mispredict penalty is mitigated through an improved branch prediction
scheme and through SMT. SMT reduces the branch mispredict penalty by fetching
instructions from multiple threads and inserting them into the pipeline. Only
instructions from the mispredicted thread need to be squashed. The larger cache delay
is masked through out of- order execution. SMT may also have a negative effect on
the pipeline because it increases the number of register file entries. The increased

register file stage accounts for the added delay of more register file ports.

2.11 IBM Power5

The Powers is intended to build upon the Power4 design with enhancements made
to improve performance, allow more processors to be used in a system and to improve
power efficiency. At the same time all code developed for the Power4 will be fully
compatible with the Power5 [31]. Like the Power4, the Power5 contains two
processor cores on one chip. These cores share one 1.92 MB on-die L2 cache
compared with a 1.44MB L2 on-die cache on the Power4. The Power4 and Power5

both have an off-chip L3 cache, but IBM designed the L3 cache to connect directly to

Power4. The same research said that this "backdoor" cache allows the Power5 to be
more scalable with multiprocessor designs. And hence the cache improves
performance by reducing the L3 cache latency. The PowerS also incorporates an on-
die memory controller to improve performance and reliability. Each Power5 can
support up to 1024GB of memory, compared with 512GB for each Power4. Since the
memory controller is on the chip, designers need only to attach memory to the chip.
IBM will distribute the Power5 in a Multi-chip Module that is a 95mm by
95mm block of four Power5 chips with four 36 MB off-chip L3 caches [39]. Up to 16
of these Multi-chip Modules can be implemented together for a total of 128 logical
processors. The Power4 collects a group of up to five instructions per clock cycle and
can complete one group of instructions per clock cycle. The Power5 doubles that
throughput by collecting two groups of up to five instructions per clock cycle and
completing two groups per clock cycle [49]. That was not uncommon to see a 40
percent improvement for SMT instructions, a key performance characteristic for
server processors, over the Powerd. The Power5 adds a single thread performance
mode that allows the processor to sacrifice some of its scalability to focus resources
on completing a single thread. Power5 can ease off on some of the characteristics that
allow it to easily handle many different tasks at a time to focus on one application or

task. Unlike server applications, desktop applications are rarely threaded.

2.11.1 Architecture Features

Successor to power4, built in 0.13 um technology. The MCM (Multi Chip Module)
includes 4 chips with two MultiThreaded cores each presenting a total of 16 virtual

cores on the MCM [60]. Each chip also has a 36 MB L3 cache attached for a total of

through a 4GB/s bus for up to 128-way multiprocessing. A single core version, also
with Simultaneous MultiThreading, may also be launched. Each core includes 120

registers (80 on the Power4) and is said to have 40% to 100% better performance.

2.12 Comparison Between the most recent SMT processor

_ Ttem | IBM Power5 | Alpha21464EVS | Intel Pentium 4
Relemse | 2000 | 2004 | 2006
Die size 389 mm® 350 mm® 112 mm’

Bus speed 6GB/s 6.4GB/s

L2 cache 1.92 MB 512KB

L1 I-cache 64KB 12KB

L1 D-cache 32KB 16 KB
Process 130 nm CuSOI 130 nm 90 nm

Core speed 2 GHz 1.8-2.0 GHz 3.2GHz
Transistors 276 M 250 M 125M
Power 250 W N21W
Form 5400 pin Socket 478
factor

Core 12V

voltage

L3 cache 36 MB (off-chip) 2 MB
Memory DDR / DDR-2

Pipeline 10 Stages 20 + stage

Table 2.1: Comparison between the different SMT processors

2.13 Latencies and Bandwidth

The SMT architecture does offer a unique advantage; resource sharing between
the main thread and pre-execution threads can be promptly adjusted to favor the ones
that would increase overall performance [9]. For instance, if the main thread has been
stalled for cache misses in recent cycles, execution resources would be given up from
the main thread to pre-execution threads, thereby allowing them to tolerate more
misses. Simultaneous multithreading outperforms previous models of hardware
multithreading primarily because it hides short latencies which can often dominate
performance on a uniprocessor much more effectively. For example, neither fine-
grain multithreaded architectures which context switch every cycle, nor coarse-grain
multithreaded architectures which context switch only on long-latency operations, can
hide the latency of a single-cycle integer add if there is not sufficient parallelism in
the same thread [38]. What has not been shown previously is that an SMT processor
does not necessarily handle very long-latency operations as well as other models of
multithreading. SMT typically benefits from giving threads complete access to all
resources every cycle, but when a thread occupies resources without making progress,
it can impede the progress of other threads. In a coarse-grain multithreaded
architecture, for example, a stalled thread is completely evicted from the processor on
a context switch; however, with SMT a stalled thread continues to hold instruction
queue or reservation station space, and can even continue fetching instructions into

the machine while it is stalled [3].

2.13.1 Threads on an SMT

An SMT processor can be throttled by a single thread with poor cache behavior;
however, by identifying threads that become stalled, and limiting their use of machine
resources, this problem can be eliminated. This provides not only significantly higher
overall throughput, but also more predictable throughput, as threads with good cache
behavior are much more insulated from co scheduled threads with poor cache
behavior. There are two factors that allow an application with poor cache locality to
cripple co scheduled applications. First, an application that regularly sweeps through
the shared cache will evict data from the other applications, degrading their cache hit
rates. Second, the memory-bound application can hold or use critical execution
resources while it is not making progress due to long-latency memory operations,
degrading every thread’s performance [6].

Few applications contain sufficient parallelism to hide long memory operations
(e.g., more than a dozen cycles). While multithreading allows other threads to hide
that latency, if the stalled thread fills the instruction queue with waiting instructions, it
shrinks the window available for the other threads to find instructions to issue. Thus,
when parallelism is most needed fewer resources are available to expose that
parallelism Other resources that are potentially held or used by a thread stalled
waiting for a long memory operation are renaming registers and fetch/decode

bandwidth [28, 70].

2.14 Problem with exiting SMT caches

The problem of high bandwidth memory demand in SMT processors has not been

so much address in previous SMT research. All current SMT processor are using

hierarchical cache structures or organizations to optimize for latency, but not for
bandwidth. As more threads are introduced, more pots are needed for the cache.
Threads on SMT processors share all processor resources, in particular, the caches.
Therefore with limited number of ports, conflicts due to multiple accesses for the
same port can grow with the number of threads. As a result, one thread can dominate
a port, hence affecting negatively the overall performance.

From the cache hierarchy perspective, the number of ports can be increase on the
1° level cache, but this cannot be done on the 2" level or 3™ level caches on chip.
Therefore a miss due to several threads from the 1% level cache will have to be queued
to the 2™ level cache. Because of the limited size of the queue, the latencies due to
individual threads accessing 2" level cache can increase tremendously and hence may
result to the CPU been stalled, if the queue is full. For that reason, with this problem,
future SMT processors performance will degrade due high conflicts at the ports of the
caches. The working sets of different threads that share a cache may interfere with
each other causing an excessive amount of conflict misses. Unless the cache space of
the processor is somehow partitioned, the problem of coping with thread conflicts on

shared caches can become a serious performance limitation.

Chapter Three
Memory Hierarchy

Since the 1960°s CPU processing speed, as measured by the capacity to execute
instructions per second has doubled every 18 months for the same dollar cost
compared to memory size which quadrupled every 36 months. This shows that
memory speed increases at the rate of 10% per year and the implication is that speed
difference actually increases on a process level [27, 2]. For this reason, the solution

was to use different combinations of memory architecture — the memory hierarchy.

3.1 The Hierarchy

The objective of a memory hierarchy was to mimic a single large fast memory
through the interplay between different levels of memory. This will contribute to
having more data near the processor that will be accessed at reasonable speed.
Therefore, the initiative of introducing cache memory hierarchies between the
processor and the main memory has addressed the issue of principle of locality
positively, and at the same time has a positive impact on the latency [4]. A cache isa
relatively small memory, typically made of Static RAM (SRAM). Compared to
dynamic memory (DRAM), which is used for main memory, SRAM is faster, but is
more expensive and consumes more energy for a given capacity.

Since latency and bandwidth are the two metrics associated with caches and
memory, neither of them is uniform in the memory hierarchy, but is specific to a

marticnlar comnonent of the memory hierarchy. In the ideal case, the design of a

memory hierarchy depends on the detailed measurement and analysis of the design
under different application programs. A typical memory hierarchy is shown in Figure

3.1 below.

Figure 3.1: A typical generic processor, the Memory Hierarchy

3.2 Latency and bandwidth of cache

The latency is often expressed in processor cycles or in nanoseconds, whereas
bandwidth is usually given in megabytes per second or gigabytes per second. As the
speed of a component depends on its relative location in the hierarchy, the latency is
not uniform [62]. Therefore the latency increases when moving from CPU down to
the disk. Some of the memory components, like the level 1 cache for example, may be
physically located on the microprocessor. The advantage is that their speed will scale
with the processor clock. Cache components external to the processor do not usually,
or only partially, benefit from a processor clock upgrade. At the same time their
bandwidth is a measure of the asymptotic speed of a memory component. This

number reflects how fast large bulks of data can be moved in and out. Just as with

latency, the bandwidth is not uniform. Typically, bandwidth decreases the further one

moves away from the CPU.

3.3 Caches on a generic system

Caches not only vary in size and functionality, but also the internal organization is
typically different. This section discusses the most important caches, as well as some

popular cache organizations.

3.3.1 Instruction Cache

The instruction cache stores instructions. This cache regularly holds other things,
like the branch prediction information. While it helps to reduce the cost of going to
memory to fetch instructions. In certain cases, this cache can e¢ven perform some
limited operation(s). The instruction cache on UltraSPARC, for example, also pre-

decodes the incoming instruction.

3.3.2 Data Cache

A data cache is a fast buffer that contains the application data. Before the
processor can operate on the data, it must be brought from memory into the data cache
on a cache miss. The element needed is then loaded from the cache line into a register
and the instruction using this value can operate on it. The resultant value of the
instruction is also stored in a register. The register contents are then stored back into
the data cache. Eventually the cache line that this element is part of is copied back

into the main memory.

3.3.3 TLB Cache

The TLB is a cache that stores translated addresses. Translating a virtual page
address to a valid physical address is rather costly. Each entry in the TLB maps to an
entire virtual memory page. The CPU can only operate on data and instructions that
are mapped into the TLB. If this mapping is not present, the system has to re-create it,
which is a relatively costly operation. The larger a page, the more effective capacity
the TLB has. If an application does not make good use of the TLB (for example,
random memory access); increasing the size of the page can be beneficial for
performance, allowing for a bigger part of the address space to be mapped into the

TLB.

3.4 Multi-Level on-chip Caches

Researchers have shown that multi-level on-chip caches yield reasonable
performance in modern computer systems [2, 4]. The hierarchy consist of first and
second level caches on chip, with first level cache smaller and faster than the second
level cache. The size of first level cache usually ranges from 4KB to 128KB. The size
of the second level cache now exits more than 3MB on-chip [22]. Furthermore, a
totaling 3-MB on-chip (three levels) cache exit in the Itanium 2 Processor, built on a
0.18- um, six-layer Al metal process, employs a sub array design style that efficiently
utilizes available area.

Today’s technology can accommodate large on-chip caches to minimize the
access to main memory. This is because the relative main memory access time to

processor cycle time has increased by a significant factor that it is becoming

view, there exist two properties of caches: temporal and spatial locality. Temporal
locality implies that a processor is more likely to access a memory location that was
accessed ten cycles ago than one that was accessed ten thousand cycles ago in cache.
Spatial locality implies that most computer code executes sequentially. Because of
these properties, the contents of often used memory locations are held in cache in
order to save time when the CPU accesses memory [15]. For example, in Figure 3.1
the L1 cache is faster than the L2 cache while the L2 cache is faster than main
memory. If the instruction or data requested by the CPU is found in L1 or L2 (cache
hit), there is no need to access main memory and time is saved, otherwise (cache
miss), cycles will be spent waiting for the main memory to respond. The average

access time when a single level cache is employed is:-

AMAT = HitTime, + MissRate;; x MissPenaltyy............ () firstlevel cache

MissPenalty,, = HitTime;, + MissRate;, x MissPenalty,, . . . (i) second level cache
Where AMAT is the average access time, HitTimey, is the access time for a first
level cache, MissRater | is the fraction of accesses that result in cache misses and
MissPenalty;; is the time for a memory access, when a cache miss occurs. When

considering a second level cache, the MissPenaltyy; is a result of the hit time plus the

product of the miss rate and miss penalty of the second level cache.

3.5 High Bandwidth and Latency

It is well known that the on-chip memory system of a microprocessor is a key
determinant of microprocessor performance. Previously, the main concerns of

memory designers were cache size, associativity, and line size. As the performance of

e mnrancac Anctriietion and data handwidth demands lead chin

