American University in Cairo

AUC Knowledge Fountain

Archived Theses and Dissertations

6-1-2005

Capturing design patterns for performance issues in database-
driven web applications

Osama Mabroul Khaled
The American University in Cairo AUC

Follow this and additional works at: https://fount.aucegypt.edu/retro_etds

6‘ Part of the Databases and Information Systems Commons

Recommended Citation

APA Citation

Khaled, 0. M. (2005).Capturing design patterns for performance issues in database-driven web
applications [Thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/retro_etds/2371

MLA Citation

Khaled, Osama Mabroul. Capturing design patterns for performance issues in database-driven web
applications. 2005. American University in Cairo, Thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/retro_etds/2371

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Archived Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For
more information, please contact fountadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/retro_etds
https://fount.aucegypt.edu/retro_etds?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2371?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2371?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2371&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fountadmin@aucegypt.edu

The American University in Cairo

School of Science and Engineering

Capturing Design Patterns for Performance Issues in

Database-Driven Web Applications

A Thesis submitted to

The Department of Computer Science
In Partial Fulfillment of the requirements for the

Degree of Masters of Computer Science

By
Osama Mabrouk Khaled

B.Sc Computer Science, AUC, February 1998

Under the Supervision of

Dr. Hoda Hosny
Dr. Amir Zeid

January 2004

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

The American University in Cairo

Abstract

Capturing Design Patterns for Performance Issues in
Database-Driven Web Applications

By Osama Mabrouk

The Design patterns technology is a new research topic which aims at helping with
communicating technical knowledge in a standard non-technical format. People coming
from different technical backgrounds can share this knowledge and apply it in their own
way. For example, pieces of designs could be the same for different applications but they
get implemented using different programming languages. On the other hand, web
applications are becoming more widely spread, especially e-commerce ones, which make
light returns on investment and achieve good relations between the companies and the
customers. To stabilize this relationship, a web application must have a good design.
The overal design of the web application is the key issue for keeping an ongoing
business. An Organization definitely loses the trust of customers if its web application
goes down every now and then. This research captures design patterns that help with
optimizing performance in database-driven web applications.

The research captures five design patterns which are concerned with performance
optimization, application complexity and resource utilization monitoring. The Database
Connection Pool, Cache, and Static Enabler design patterns introduce direct optimization
solutions. The SQL Statement Template design pattern breaks down the complexity of
constructing SQL statements in the application code by externalizing all the SQL
statements. The Logger design patterns monitors the resource utilization and delegates
performance problems to a performance handler. A pattern language is also suggested in
the research to give guidelines on the efficient use of these patterns. The captured
patterns handle typical recurring problems that are common to many applications. Our
test results show that performance is evidently optimized when these patterns are used.

The research aso introduces adjunct activities that should be performed in the
design phase in order to achieve better utilization of the Cache, Logger, and SQL
Statement Template patterns. These activities normally result in artifacts which are
provided to the development team in order to standardize the use of the patterns. For
example, the research suggests a cache and logging roadmaps to highlight the caching
and logging points in the application in order to efficiently use the Cache and the Logger
patterns, respectively. The SQL Statement template pattern, on the other hand, suggests
preparing the needed SQL statements at the design phase and collects them in an external
storage to the application.

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

TABLE OF CONTENTS

Chapter 1: Introduction 12
1.1 Overview

1.2 Motivation for the Research

1.3 The Addressed Problem

1.4 Outcomes and Contributions

1.5 The Solution Approach
1.5.1 Design Patterns Quality Validation
1.5.2 Pattern Template
1.5.3 Testing

1.6 The Suggested Patterns
1.6.1 Database Connection Pool
1.6.2 Cache
1.6.3 Logger
1.6.4 SQL Statement Template
1.6.5 Static Enabler

1.7 Thesis Organization
Chapter 2: Reusability 28
2.1 Reuse Obstacles

2.2 Extracting Reusable Components

Chapter 3: Design Patterns and Related Technologies 33
3.1 History of Design Patterns

3.2 Capturing Design Patterns

3.3 Describing Design Patterns

3.4 Selecting a design pattern for use

3.5 An Example of A Design Pattern

3.6 Pattern Language

3.7 Anti-Patterns

3.8 Frameworks
3.8.1 How Frameworks solve the reusability problem
3.8.2 Examples of Frameworks
3.8.3 How Design Patterns integrate with Frameworks

Chapter 4: Web Applications 48
41 A Brief History of the Internet

12
14
15
16

17
18
19
21

22
22
22
23
24
25

26

29
31

33
34
34
35
37
39
41

44
44
45
46

48

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

4.2 Web Application Development Lifecycle

43 Analyzing A Web Application Performance
4.3.1 Quantitative Analysis Cycle
4.3.2 A Response Time Reference Model
4.3.3 Hardware & Networking

4.3.4 The Server Side
434.1 HTTP Web Server
4.3.4.2 Application Server
4.3.4.3 Web Application
4.3.4.4 RDBMS

Chapter 5: Software Quality and Testing 59
5.1 Software Design Quality

5.2 Testing
52.1 Testing for Reliability
522 Testing Strategies

Chapter 6: Related Work 67
6.1 Active Query Caching for Database Web Servers
6.2 A Pattern Language for Content Conversion and Generation on the Web
6.3 Patterns for Web Applications

6.4 Meta-Patterns

6.5 Capacity Planning for e-Business
6.6 Conclusion

Chapter 7: The Performance patterns 73
7.1 Pattern 1: Database Connection Pool

7.1.1 Context

7.1.2 Problem

7.1.3 Forces

7.1.4 Solution
7.1.5 Consequences
7.1.6 References

7.2 Pattern 2: Cache
7.2.1 Context
7.2.2 Problem
7.2.3 Forces
7.2.4 Solution
7.2.5 Consequences
7.2.6 Anti-patterns
7.2.7 Related Patterns
7.2.8 References

7.3 Pattern 3: Static Enabler
7.3.1 Context

59

61
63
64

67
68
69
70
71
72

74
74
74
75
75
78
78

79
79
79
79
80
83
83
83
84

85
85

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

7.3.2 Problem 85
7.3.3 Forces 86
7.3.4 Solution 86
7.3.5 Consequences 91
7.3.6 References 92
7.4 Pattern 4: SQL Statement Template 93
74.1 Context 93
7.4.2 Problem 93
7.4.3 Forces 94
7.4.4 Solution 94
7.4.5 Consequences 101
7.4.6 Related Patterns 102
7.5 Pattern 5: Logger 103
7.5.1 Context 103
7.5.2 Problem 103
7.56.3 Forces 104
7.5.4 Solution 104
7.5.5 Consequences 108
7.5.6 References 108
7.6 Performance Pattern Language 110
Chapter 8: Analysis of the Suggested Patterns 115
8.1 Quality Validation 115
8.1.1 Encapsulation and Abstraction 115
8.1.2 Openness and Variability 116
8.1.3 Equilibrium 116
8.1.4 Minimality 116
8.2 Testing 117
8.2.1 Memory Utilization 117
8.2.2 Performance Optimization Evolution 119
8.2.3 Load Testing 121
Chapter 9: Summary and Conclusion 127
9.1 Research Conclusion 127
9.2 Directions for Future Work 128
Appendix A UML Notations 129
Appendix B Tuning the Apache Web Server 133
Appendix C Java Naming Convention 136
Appendix D The Test Environment 138
Appendix E Load Testing Utility Source Code 140
Sample Report 140
Tester.properties 140
Tester.java 141

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Appendix F Detailed Load Testing Results
bibliography

Index

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

LIST OF FIGURES

Figure 1: SOlUtioN APPIrOBCIccuiiiiiiieeee e 18
Figure 2 Selecting adeSign Patternccceveeieeie s 37
Figure 3 Hypothetical Sort Recursion Tree [NDWSOL]cccooiiiiineninieeeeenee e 38
Figure 4 The Template Method Pattern for Sorting [NDWSO01]cccccocvveeveeiecieesveenen. 39
Figure 5 A conceptual view of aPattern Language..........ccceeerererereneneeeeieeseesee e 40
Figure 6 Finding Concurrency Design SPace [24]ccveveveeveeieseeseece e 41
Figure 7 Anti-PatterNS [BWMROIB]cceeiuirirrieerieeieesieesieseesseeseessesseessessssssesssessssseessesnes 41
Figure 8 Time Delay for asmall appliCation............cccevveieieevecie e 42
Figure 9 The Life Cycle of aweb Application [FPI9]ccceiveiirirerienineeieee e 50
Figure 10 Model of the transaction flows within the Server Side [MREWOQO0]................... 56
Figure 11 The testing ProCesS [SI95]ccoeiririririrereee e e 63
Figure 12 Thread teSting [SI95]cccveeeiiee e 66
Figure 13 Active Query Caching ArchiteCture [S1]ceoeierereneneneeeeeeeeeesee e 68
Figure 14 An Overview of the Pattern Language for Content Conversion and Generation
0N the WED [VOZUODZ] ..ottt 69
Figure 15 Capacity Planning ROadmap [56]ccccereereeieiieieeieseesie e 72
Figure 16 Resource Management [57]cooererererinenieeeeesee st 75
Figure 17 Database ConNeCtion POOIING.........ccciiiiiiieie e 77
Figure 18 DB Connection Pool Sequence Diagram..........cccceeerenereseneeieeieeseesee e 77
Figure 19 CaChe PatterNcccoieeiieiieceee et 81
Figure 20 Caching Pattern Sequence Diagramcoceeeeieierenene s 81
Figure 21 Caching Points shown over the collaboration diagramcccccceveevveceecnenen. 82
Figure 22 Converting Dynamic Pages to StatiC ONeS StrUCTUNE...........cooveeeeeieeieenie e 87
Figure 23 Converting Dynamic to Static Page Pattern (Ideal Scenario).........ccccceevvevnee. 88
FIQUIe 24 Page CONVEITEN ..ottt 89
Figure 25 A dynamic page request in cooperation with Page Reference Keeper 91
Figure 26 Decoupling SQL Statements from Application Class Diagram.............c.c...... 97
Figure 27 SQL Statement Template Sequence Diagramcccceeveeveevesieeseesesieeseennns 98
Figure 28 Logging Pattern Main SIrUCTUIEcoceeieiieiieriesiereesieeeseeeee e 105
Figure 29 Logger Collaboration Diagram...........ccceeeceeeereeiesee e eeeseesseesieseesseeseesneens 106
Figure 30 A Collaboration Diagram Showing Logging Roadmapcccccevererenennens 107
Figure 31 Performance Pattern Language Categori€s.........cccvvveeveeieesieeseereseeseeeseeseens 110
Figure 32 Performance Patterns RelatiONShiP.......ccceveierieriererisireeeeeeee e 111
Figure 33 The Pattern Language APProachcccceeieieeieiiee s seese e esie s 113
Figure 34 Average throughput PEr PAJE........ccerereeierieriesiese sttt nneas 120
Figure 35 Average Latency (Load TeStING)ccceeveeiieeeeieeiieseesieeeeseesie e esse s 122
Figure 36 Average Response Time (Load TeStING)ccvevverververieniireneeeeeeeeseesie e 123
Figure 37 Average Throughput (Load TeStING) ...cc.eccveeeeieeiieiiecieee e 123
Figure 38 CPU Utilization for load testing (100 USErS)cccoevererenieeieeienese s 124
Figure 39 I/O Waiting for |oad testing (100 USEY'S)cceerreeiiereerieeieseesieesieseesreesee s 125

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

LIST OF TABLES

Table 1 Design Pattern MELNICS.cuooiieieicriereeeeee et 19
Table 2 Obstacles for REUSADIITYccvieeiieieiee e 29
Table 3 Knowledge Needed to optimize performance in every stage..........cccoeverenenenns 53
Table 4 Planning for Caching DOCUMENLEcccceiieieiieeseeie e 82
Table 5 Example for aweb Application Page Treecoeiiiiiininenieeeeeeese e 88
Table 6 Page Mapping REPOSITONYccouvieeieeieiie et ete et e e s e e nne e 89
Table 7 Web Application Page Tree (Dynamic & Static) without using Page Reference
(S o SRS OPRRTRR 90
Table 8 Web Application File Tree with Page Reference Keeperccooevevenerenenins 90
Table 9 Web Application Page Tree (Dynamic & Static) using Page Reference Keeper 90
Table 10 SQL template defiNitioN ... 96
Table 11 SQL Construction COMPIEXITY.......ccueveiieeiieieeeeseesie e sre e se e e 96
Table 12 A Logging ROBAMEPDccueiverieriiriirieniieieeee et 108
Table 13 Performance Evolution Testing RESUILS..........ccocceveeveeieesiece e 119
Table 14 Over All Average (Load TESHING)ceververerieerierieriesie e 122
Table 15 Java Naming Convention SUMMAIIES.........cccereeveereerenieeseeseseesseeseeseesseees 136
Table 16 1 User (LOad TESHNG) ...veveeereriirierieeiesieeeeie et 147
Table 17 10 Users (Load TEStING)ccvieereeieiiesieeieseesieeeesieesaeseesee e sree e ennesneesneeneas 147
Table 18 30 Users (LOad TESHING)coververrerrerierierieeeeieseesie e sre e 148
Table 19 60 Users (Load TEStING)cocvieereeieiierieeieeeesieeeesree e eeesee e ssee e enne e sneeneas 148
Table 20 100 Users (Load TESING)covererrerieriereeeeieeesie st s 148
Table 21 CPU Utilization for load testing (100 USEYS)cceveerieeieeseereseesieeneeseesseeneas 148
Table 22 1/0 Waiting for |0ad testing (100 USENS)coerverrerieriereresieeeneesee e 149

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

ACKNOWLEDGMENTS

The author wishes to thank: -

Dr. Hoda M. Hosny for her dedication and participation in this research.

Dr. Amir Zeid for his advice and participation in this research.

Dr. Aly Aly Fahmy and Dr. Sherif El Kassas for their valuable feedback and
suggestions.

Eng. Hassan Ali (IBM) for designing the core of the Static Enabler solution and
for permitting meto wrap it in adesign pattern format.

My parents and my wife for providing me with the needed support.

V odafone Egypt represented in the Internet Development and Data Services
department for allowing meto use their systems.

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications “Es“‘
b

Sty e

& Com
%
00 oo0°

GLOSSARY OF TERMS

Anti-pattern. An anti-pattern is a pattern that tells one how to go from a problem to a bad
situation. The bad situation is revealed by its side effects where the original problem is solved
but unseen or un-anticipated problems are generated [BWMRIS].

Application Server. It works mainly as a script engine that is responsible for interpreting the
logic written inside the requested pages. It receives its requests from the web server.

Cache. An area of storage existing behind the scenes which is used to store copies of
previously requested objects that can be quickly accessed when needed.

Cache Roadmap *. It is an activity which is done in the design phase where all the
collaboration diagrams are reviewed to mark the class methods which will do caching.

Cache Roadmap Artifact *. It is a document delivered from the design phase that contains
all class methods that will do caching and validity period specified for every cache point.

Database Connection. A connection is a session with a specific database where SQL
statements are executed and results are returned within the context of a connection.

Database Connection Pool *. It is a pool of database connections that exists in the
application memory and serves as a recycling place where connections are kept open.
Database Connections that are no longer used are returned to the pool for future access.

Design Pattern. A pattern could be defined as the abstraction from a concrete form which
keeps recurring in specific non-arbitrary contexts [RDZH906].

Design Pattern Template. It is a documentation structure for a design pattern where a
design pattern’s context, problem, and solution are defined.

Dynamic Web Application. Which is the business logic that will decide on the type, and
amount of information that the user will receive. It is geared over a web server, an application
server and other legacy systems may be connected to as well.

Framework. A set of cooperating classes that make up a reusable design for a specific class of
software [GEHR95]. -

HTTP Web Server. It is a server that service files for internet browsers using the HT'TP
protocol.

Load Testing. It is a mechanism by which a very high load is put over an application without
exceeding its maximum capacity in order to test the application behavior.

" Some of these terms are suggested within the scope of this research

-10-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Logger *. It is a resource monitoring solutions for the application by which its behavior is
depicted through its lifetime.

Log Roadmap *. It is an activity which is done in the design phase where all the collaboration
diagrams are reviewed to mark the class methods which will do logging.

Log Roadmap Artifact *. It is a document delivered from the design phase that contains all
class methods that will do logging where the type of information and messages are defined.

Pattern Language. A pattern language is a collection of patterns that guide the developer in a
certain domain context. It is not just a catalog of patterns; it includes design decisions and
domain-specific advice to the developer [MBMTO01].

RDBMS. Relational Database Management System that keeps relational data.

Reusability. Reusability is a general word that takes anything beneficial for later use.
Anything could be reused as long as it meets certain conditions and measurements.

Static Web Application. Which is the business logic that will decide on the type, and amount
of information that the user will receive. Itis geared over a web server only.

Static Enabler *. It is a solution by which dynamic web applications can benefit from the
static pages high performance without spoiling the relations among the dynamic pages and
their content.

SQL Statement Template *. It is a definiion method for SQL statements that are used
inside an application by which SQL statements are externalized outside the application code.

SQL Statement Template Artifact *. It is document delivered from the design phase that
contains all the possible SQL statement templates which can be used in the application.

" Some of these terms are suggested within the scope of this research

-11-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Chapter 1

INTRODUCTION

1.1 Overview

For many centuries now, people have been practicing their lives and along with
them, as time evolved, solutions to their problems. As man gained more experience
in life, he passed it on to others in order to benefit from it. Experience however
varies from one person to another; everyone sees his/her own experience as the
best. As time progresses, new problems emerge and people build up new
experience. As people share ideas and experience with each other, they arrive at the
end at what is called, the best practice. In other words, the best practice is the best
solutions for certain problems in certain contexts. Problems may show up in
recurring situations. Thus, as soon as a problem appears, people tend to search for
previous solutions that have been tried and proven to be the best. This is what is
called patterns. A pattern could be defined as the abstraction from a concrete form

which keeps recurring in specific non-arbitrary contexts. [RDZH96]

A Solution is important, but designing a very good solution is much more
important. People for sure gain experience from a solution, but they will rarely be
able to enhance this solution without knowing how it was originally designed. Not
just knowing the design of the solution, but tracing it back to its origins. This greatly
helps in clarifying the picture, and may lead to discovering new solutions in
completely different tracks. It does not mean that one has to always go to the
primitive solutions in order to enhance an existing one. Sometimes, there are
solutions that prove to be the best in their own domains. These solutions have been

tried many times and there may be no need for tracing them back to their origins.

What is and isn‘t a pattern differs from one person to another according to
his/her point of view. A pattern for one person could represent another person’s
primitive building block [GEHR95]. Experience and context are the key factors that
determine this point of view. For example, developers that use assembly language
may deal with registers to do string manipulations and build their own libraries.
These libraries might have helped at one point in time to be the primitive building
blocks for a programming language like C. C Developers may design patterns over

these building blocks which are obviously primitive in the language. A C developer

-12 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

may want to design certain patterns like inheritance, encapsulation, or
polymorphism. These are totally new patterns for a language like C. However, they
are native to another language like Java. Hence, selecting a pattern and

implementation tool is really important to show the point of view [GEHR95].

The market needs for software have been rapidly changing. Software
development must cope with these very fast changes as well. One cannot start the
development cycle every time from the beginning and build everything from scratch.
Developers must always think of reusability whenever possible. Design patterns
technology is a promising and efficient way to apply reuse and to help developers in
their work. It conveys the knowledge in a high level language which makes the
understanding process very easy. However, this technology is still lacking. It is
always the problem of the developers who do not document their experience; a

process that must be shaped in an organized way whenever possible.

Design Patterns present an interesting research field that aims to help in
communicating technical knowledge in a standard non-technical format. People from
different technical backgrounds can share this knowledge and apply it in their own
way. For example, pieces of a design could be used in different applications and

implemented using different programming languages.

On the other hand, web applications are now becoming more widely spread,
especially e-commerce ones, which achieve a high returns on investment and
establish good relations between the companies and their customers. To maintain
this relationship, a web application must have a good design. The overall design of
the web application is the keyword for keeping an ongoing business. An
Organization definitely loses the trust of its customers if its web application goes

down every now and then.

Web technology is a fast growing field that a large number of organizations are
trying to adopt. However, these companies may make a lot of investments without
getting the expected revenue. This could be because of many technical or non-
technical factors. A web application is like any other application that has to be
covered from all aspects especially from the development and maintenance aspects
which are the main success factors. The products of the development life cycles are
checked against basic factors like reusability, reliability, and complexity. Design
patterns can be used to tackle such aspects. The main success factor for a web

application is reliability. Reliability is the one feature that builds trust for the

-13-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

customers who visit an e-business website. Without trust business cannot continue.

1.2 Motivation for the Research
The Design patterns technology is a very promising area which started to gain

attention since 1995. The primary motivation for this research is proper knowledge
transfer, which is a common problem facing many developers. The aim is to show
the importance of documenting software in a high-level language like design
patterns. Developers are used to transferring knowledge verbally most of the time.
They do not care so much about documenting this knowledge in a professional

manner.

Documentation is considered most of the time a luxury task that need not be
done at all. It is not impossible to see an application where the only reliable source
of information is its source code [PAFJ96]. The verbal knowledge transfer process

has major drawbacks, although it is an easy and quick process for the developers: -

1. Verbal knowledge transfer does not mean full transfer. This means that
the next owner may interrupt the initial developer every now and then to
ask questions about things that are not clear enough for him/her. The
Software development process requires a great deal of concentration. No
one likes to be interrupted every now and then.

2. Time can be wasted in trying to teach others. Verbal knowledge transfer
can sometimes take more than one week. The time could be extended if
there are a lot of interruptions or the audience lose their concentration for
sometime.

3. Developers do not work in projects permanently, which is the nature of
software development projects in large companies. Verbal knowledge
transfer can continue with every new developer. This means that if
knowledge is not documented, extra work must be done to gain this
knowledge from the owners. What can be worse, is that knowledge may

be completely lost if the owner developer disappeared for any reason.

The second motivation for this research is to raise awareness of the sense of
performance for the developers regarding software in general and web applications in
particular. It was found also that there is a lack in this research topic within the
software community. We hope that this research adds some value for the readers.
There is a bad practice that many developers seem to adopt which is: develop to

achieve the functional requirements, and treat the non-functional ones, on top of

-14 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

which is performance, with lower priority. Performance problems can still appear
even if the product passes the User Acceptance Test and after the launch of the
product. At such a time, the cost of problem fixing might be really high on the
business side. It is important to highlight the performance problems in the early
stages of the development cycle and to try to analyze them to avoid future problems
which can be difficult to trace. This early recovery approach for performance

problems can save a lot of time and money.

1.3 The Addressed Problem

Web applications are used nowadays in almost all fields. There are companies
that solely depend on e-business solutions for their revenue. The most common
problem that can cause any web application to fail is: Usability. Web applications fail
at this point either because the site is irrelevant, difficult to navigate, ugly, or slow
[USPROBO0O1]. All these problems can mark the site as unreliable. At the very top of
all web applications problems is performance. Usability is indeed the factor that
guarantees customers’ trust. A usable web application will lead to increased

customer visits which in turn translates into increased revenue.

A performance problem comes mostly from the server-side application, as will
be explained in the web application chapter, because the server-side application is
the variant factor in the web application. Since it is variant, some sort of control
must be imposed over it. Such a control starts from the beginning of the
development life cycle where design decisions taken for performance problems are
handled in the early stages. Performance problems can noticeably decrease if there
is a pattern language or a framework controlling them starting, at least, from the
design phase.

Most research contributions concerned with performance issues are focused on
tuning the ready-made applications like a web server!, RDBMS, or an application
server. Other contributions are mostly focused on suggesting guidelines for
programming languages like Java, and C++. All these areas are very important
without doubt. However, there could always be room for performance guidelines on
the analysis and design levels in order to save time and effort, and the use of a
pattern language that places performance in the first place would certainly help in
that respect. The pattern language may impose a certain strategy to tackle the

major problems in the web applications but it can be the base for a higher-level

1 . . .
Appendix B shows sample configuration hints for apache web servers.

-15-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

pattern language that covers performance aspects from the application point of view,

e.g. application, database, web server, network, and so on.

1.4 Outcomes and Contributions
The main outcomes of this research are the 5 performance-related patterns and

the performance pattern language. The aim of the research is to capture patterns
that help in optimizing the performance for database-driven web applications.
However, some of the patterns, like the cache and the logger, can be extended to

give a wider solution for other applications.

Moreover, the documentation of these patterns is considered a valuable
outcome which can be added to an existing library of patterns. Also, it is hoped that
every reader would be convinced after reading this research that performance is an
integral factor for any application success which must not be overlooked. In other
words, every developer must have good thinking in performance issues whether

he/she uses these patterns or not.

The research has also introduced a new presentation for some of the patterns
by linking them to activities on the design phase. In other words, to show out the
benefits of the patterns, some extra activities must be conducted on the design
phase. If these activities were not performed, the patterns would be left for
individual decisions which lead to diversified implementations. For example, the SQL
templates shown in section 7.4 should be generated in the design phase by the same
team that designed the database structure otherwise individual developers would
have different approaches for constructing them. Also, a separate iteration should
be conducted in the design phase to mark the logging and the caching points in the

collaboration diagrams as shown in sections 7.2 and 7.5.

The research suggests some measurement metrics also for evaluating the
reliability of the patterns. These measurement metrics presented in section 1.5.1
are a start point for building a standard evaluation methodology for design patterns.
The measurement matrices should be useful for both the author and the audience.
The author has to review his/her patterns basically against these metrics to ensure
that the patterns are covered completely. The audience should be able to review
more than one similar pattern and choose from among them the one that meets the
measurement metrics especially if they will implement it. In other words, the
audience should combine his/her common sense of the patterns selection process

with such measurement metrics to come up with the best.

-16 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Our contributions in the area of design patterns may be summarized as follows: -

1. The research has come up with a new variation of the database connection
pool that enables it to use the cache pattern directly and give a common

identity to all the connections. It is explained in section 7.1.

2. The cache pattern is combined with a caching roadmap, an artifact which is
generated from the design phase, as a guideline for the development team
to insert caching points across the whole application. The pattern is

presented in section 7.2.

3. The Static Enabler pattern is a new design pattern. It presents a solution to
speed up the dynamic web applications by converting dynamic pages to

static ones. The pattern is presented in section 7.3.

4. The SQL template is new in its approach although the externalization idea,
which is presented in the pattern, is not new for many developers. It
presents a simple and easy SQL statement template structure that can be
linked to the application directly. The SQL template is generated from the
design phase in the final format to be linked with the application directly.

The pattern is presented in section 7.4.

5. The logger pattern introduces a performance handler by which problems
can be analyzed. It is combined also with a logging road map that is
generated from the design phase to standardize the logging format and the

messages. The pattern is presented in 7.5.

1.5 The Solution Approach

As mentioned earlier, design patterns come with experience. A design pattern
cannot just come by thinking about it even if it provides an innovative solution. It
has to be applied and used in more than one project and proven to be successful in
their context. However, to further prove the concept, the suggested design patterns
have to be implemented and tested. Every design pattern must be implemented,
quality assured, tested, and documented. By documenting the pattern language, a
test environment, as described in Appendix D , had to be set up and an incremental
testing approach was conducted on the final pattern language. Statistics were
gathered during the testing process to prove the reliability of the performance
optimization patterns (Database Connection Pool, Cache, and Static Enabler) as

explained in section 1.5.3. It was important to use anti-patterns to show how good

-17 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

the suggested design patterns are. Figure 1 shows the followed solution approach

plan.

Design Pattern Development

v

Develop a Design |—» Apply QA —p{ Test the Pattern [—Pp» Document
Pattern measures Pattern

T

Iterative Testing Approach

Apply Pattern —p»| Apply Testing |—p| Gather statistics —Ppp{ Tune Testing

T

v

Update Pattern Documentation

Figure 1: Solution Approach

1.5.1 Design Patterns Quality Validation

Some kind of quality metric had to be applied on every design pattern to
validate its quality. This was very useful since it gave an indication of how good or
bad the suggested design is. There are metrics available for every phase of the
development cycle. However, we were interested mainly in applying metrics on the
design phase. This was necessary since some of the design patterns were not directly
tested against performance. For example, the Logger and the SQL Statement
Template patterns could not be directly measured against performance criteria.
Table 1 shows the qualitative design metrics which were applied, whenever possible,
on the design patterns.

A Design pattern is validated against the following criteria: -
¢ Encapsulation and Abstraction [LD93]: Each pattern must describe a well
defined-problem and its solution in a certain context. It abstracts also the

domain knowledge and experience

-18 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

e Openness and Variability [LD93]: Each pattern should be open for extension
or enhancement. It should be recognized also in a variant number of
implementations regardless of the programming language or the platform used.

e Equilibrium [LD93]: Each pattern should show some sort of balance between
its pros and the cons. It is not practical to see a design pattern that has more
side effects than benefits.

e Minimality [CC02]: The pattern must be able to utilize the existing patterns, if

possible, in order not to re-implement the wheel.

Table 1 shows the suggested Metrics for design patterns validation criteria.

Characteristic Metrics

Encapsulation e Does the design pattern have a clear interface that does not
expose private information?

e Does the design pattern include only the needed classes ?

e How will the design pattern interface be affected if

implementation is changed?

Abstraction e Will the design pattern work elegantly if put in a similar
context?
Openness e Can a design pattern be extended to expose more

functionality?

Variability e Is it recognized by more than one programming language?
e (Can it be implemented on more than one platform?
e Does the design pattern show features biased to a certain

programming language?

Equilibrium ¢ What are the benefits shown by the design pattern?

e What are the side effects shown by the design pattern?

Minimality e Does the pattern use other patterns?

e Is it recognized by other patterns?

Table 1 Design Pattern Metrics

1.5.2 Pattern Template

Pattern documentation starts after pattern testing to capture the design

pattern. Documenting a design pattern is the first step to build a pattern language.

-19-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

The following template was used to document a design pattern [GEHR95] [LTO1]: -

Context:

e The general situation in which the pattern applies

Problem:

e Describing the main difficulty in which the pattern applies.

Forces:

e The issues or concerns to consider when solving the problem. If ignored, then
the pattern may be invalidated.

Solution:

e The recommended way to solve the problem in the given context —'to balance
the forces’.

Consequences

e Side effects or tradeoffs of the design. It is important to mention them in order
to evaluate different design patterns

Antipatterns: (Optional)

e Solutions that are inferior or do not work in this context.

Related patterns: (Optional)

e Patterns which are similar to this pattern.

References:

-20 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

1.5.3 Testing

In order to give a clear picture of the pattern behavior, implementation is
provided to facilitate the testing process. Every design pattern has gone through a
testing process in which its behavior was verified. The whole design pattern was
then passed into what we can call a pattern-testing phase. It is like component
testing but not strictly the same as the component has definite and clear usage and
is treated as a black box. However, a desigh pattern is a white box that needs to

work in a certain context and possibly with the help of other patterns.

An incremental testing approach for load testing was conducted in this
research. The Connection Pool, the Cache, and the Static Enabler patterns were
introduced one by one and measurements recorded. The web application was run
under a simultaneous load of virtual users for a certain period of time. The virtual
users are the number of connections opened to the web application. During the

testing period, measurement values were taken.

It is important to clarify here that the load testing conducted in this research
was to prove that web applications that implement performance optimization
techniques achieve better performance. The aim is to introduce to the developers
solutions that can help him/her in his/her work. Hence, implementation of the
solutions is not important from the testing point of view as it could vary from one

person to another.
The main measurement factors that were recorded are: -

1. Latency: the minimum time required to get any form of response, even if
the work to be done is nonexistent.

2. Response Time: the average time needed from the server to serve one
client.

Throughput: the number of successful requests per minute.

4. Reliability: The ratio of failed request to the successful requests. It gives an
indication of the system stability. All other parameters, like maximum client
connections or maximum requests per connection, are not considered in this
testing. They will be set to very high values so as not to affect the testing
results.

5. Server Memory Utilization: design patterns like the Cache, Database

Connection Pool, and Static Enabler have a direct impact on the memory

-21-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

usage. This impact must be checked and reported clearly on the pattern
language documentation as the tradeoffs of the design pattern.

6. Server CPU Utilization: indicates how the server can be busy serving clients
according to server load. It is assumed that the machine is ideally used by
only the web services.

7. Server I/0 Waiting: The average I/O waiting on the server machine

1.6 The Suggested Patterns

All the suggested patterns can solve problems that may occur during the
development phase of a large number of the database-driven web applications
development. They adhere the most critical performance problems that face
developers. They are briefly described below but their detailed designs are

presented in Chapter 7.

1.6.1 Database Connection Pool
It is the concept of maintaining established connections between the application

and the database so that no delay time is suffered when accessing the database
every time information is retrieved. Database connection is a very demanding
activity since it has to allocate resources like memory, communication, and a user
security context. It is very common to see database connections that take up to two
seconds [BH99].

Database driven web applications can suffer severely if database connection
pooling is not implemented. It is one of the basic infrastructure mechanisms that
any database driven web application must implement. There is a connection pool
manager that guarantees proper use of connections, like specifying a minimum, and
a maximum number of connections. However, misuse of the connection pool can
lead to a dramatic leakage and may cause the web application to crash.

The concept is not new. It has been utilized in many contexts. However, it is
very useful in web applications where concurrent access is normal. For web
applications that have very high hits, the connection pool plays a major role. It must

be an integral part of any database driven web application.

1.6.2 Cache

Database Queries may take a considerable time to finish and the query result

might be small and not expected to change in the near future. It is not abnormal to

-22 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

see queries that take more than one minute to finish. Queries can take more than
one minute on very large databases. It also happens that tuning the database, like
creating indices, may be space consuming. Web Applications sometimes interact
with such databases. So, web applications must have techniques to overcome the

database delay.

A web application can use different caching techniques to reduce latency,
minimize network traffic, and consequently reduce timeouts. Caching, as defined by
Brown [BBO02] is “an area of storage existing behind the scenes which is used to
store copies of previously requested objects that can be quickly accessed when
needed.” It improves the performance and makes the web applications more reliable
[BB02]. Caching is not a new technique; it has been used in many software fields
and on different aspects. There is special caching hardware, like cache proxies,
which cache the static web content. There is caching even on the client machines so
that not to download the static content, like images, every time. Clients become

satisfied with the quick response which increases their trust on the web application.

Server-side caching is a performance enhancement technique that is used in
many web and non-web applications. It brings the expensive results to the
application memory. Ideally, a database query result is cached. A caching solution
must handle the object expiration to ensure consistency. When the application
invokes the query it looks up first in the cache before accessing the database. If
looked-up objects are found and are not expired, then they are returned back to the
client without passing through the database bottlenecks to establish a connection
and run the query. The pattern abstracts the different caching solutions and leaves

the implementation to the developer.

1.6.3 Logger

Logging is a technical solution to write, most of the time, certain informative
statements in an external media, like plain files, to record system problems or track
system behavior. Logging is a practice that is usually ignored until the development
phase, usually because it may delay the project. It is usually done to debug the
system behavior. Many developers do not conform to a certain logging standard.
This leads at the end to messy log files that contain a lot of messages from many
sources. This unprofessional development practice happens mostly because of the
over-trust in the final product, especially if it is well tested. Unprofessional

developers do not anticipate future runtime problems. This is why they do not plan

-23-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

for them.

Moreover, performance problems are the least logged issues. These issues are
usually closed in the development phase, as thought by the developers.
Concentration is mainly on logging functional behavior. For example, database
queries can be logged, but their time consumption is not logged which leads

definitely to performance ignorance of the system.

The purpose of this design pattern is mainly to introduce a logging design
pattern technique which targets database querying in the first place in order to build
more robust designs. Once this pattern is applied on the design, it becomes a

standard in the development that no one can ignore.

1.6.4 SQL Statement Template

A key problem with database-driven web applications is that queries are mostly
considered as part of the code. Queries may be structured and very complex.
Coupling code and database queries may be needed because queries are considered
part of the business logic. Separation has been presented but in the form of a code
layer to access the database. This separation is mainly important to map relational
databases to object-oriented software. However, bundling the queries inside the

software code has the following main defects: -

1. Tuning any database query requires re-compilation of the code which may be
time consuming. It happens that very simple keywords are needed in the old
database queries. This happens a lot if new constructs are introduced into
the database query language or a standard modification across all the queries
is needed.

2. Software programmers play the roles of both developers and database
experts which deviate their focus from application development.

3. Database queries are not easily maintained by experts.

4. Database queries decrease readability and understandability.

Externalizing database queries can be introduced to database-driven web
applications and at the same time control the change. Queries can be written in flat
files with some special tags to replace the dynamic constructs. So, database queries
and applications are not 100% decoupled. Programmers and database experts can
still work in parallel without interrupting each other. The query result interface can
be agreed upon in the early stage of the development and the final queries may be

integrated later on.

-24-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

1.6.5 Static Enabler

The Internet was a major breakthrough in the field of information technology.
The main benefit from this technology was information sharing. As part of this
evolution, people started to post their information through websites. A website is a
designed location on the Internet that posts information about a certain subject.
Static websites emerged at the advent of this technology. A website normally
contains a mixture of different media objects, like images, flashes, and text. The

only backend application needed to serve a static website is a web server.

Static websites are sufficient for small business where information is not
expected to change quickly. However, if the business size gets bigger, the need for
dynamic content becomes mandatory. The main issues that a dynamic website is

needed for are: -

When Content management for a static website is difficult.

2. When A static website does not integrate with legacy systems. A dynamic
website is mainly needed to achieve an interactive communication with
the website users and the existing backend.

3. Legacy systems may have tons of information that can take a very long
time to be manually posted on a static website.

4. Periodic and automatic change of the content can not be supplied using a
static website

5. Logical and consistent relations of the different parts of a website are
better represented by a content management pool, e.g. a database.

On the other hand, a static website has the following benefits over a dynamic
website: -

1. It responds much more quickly.

2. It is more robust and reliable.

3. It has fewer problems.

4. Implementation is done more quickly than for a dynamic website which

can have many complexities in the backend.

Some applications provide content management tools that build the required
content and publish it as static pages. The limitation here is that large database
systems can consume a huge amount of disk space if they are published as static
pages. Some other people prefer to work with dynamic websites and accept their

limitations for the sake of other benefits as mentioned above.

-25-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

However, a dynamic website can benefit in a number of ways if there are
static pages posting dynamic content: -

1. Highly accessed dynamic pages can be converted to static ones to
introduce a faster response, while it still keeps the dynamic page for
other references and saves at the same time disk space.

2. The decision can be taken to convert all the dynamic pages to static or
just leave the dynamic ones according to the capabilities of the
working environment.

3. Some backend systems can be temporarily shutdown if their

counterpart dynamic pages are converted to static.

1.7 Thesis Organization

The document is organized in 9 chapters. Chapter 1 presents the roadmap of
the thesis. It presents the suggested design patterns that are captured to tackle
performance issues and argues for them. It discusses the different testing and QA
methods that were used to verify the design patterns impact on the testing

environment.

Chapters 2 through 6 cover the background literature of the Design Patterns
and web applications. Chapter 2 discusses the Reusability obstacles and the
different methods that can be used to extract reusable components. Chapter 3 is a
briefing on the history of Design Patterns and related technologies. It also discusses
how to capture, describe, and select design patterns. Chapter 3 complements the
picture of design patterns by presenting pattern languages and anti-patterns, some
framework examples, and shows how they are integrated with design patterns.
Chapter 4 discusses the web technology, shows an ideal architecture for a database-
driven web application, and discusses the performance issues related to a web
application. Chapter 5 presents some quality assurance techniques that could be
used to verify design patterns and identifies testing methods that may be considered
for testing web applications. The background provided here emphasizes on design
patterns as a design technique that can be used in many areas, emphasizes on web
applications performance issues, and at the same time paves the road to show how
design patterns and web applications can be tested. Chapter 6 cites some of the
related work that has been published by some researchers in the area of design

patterns and web applications.

Chapter 7 presents the five patterns, which are the core of the research, and

- 26 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

gives guidelines for their usage. Chapter 8 gives an analysis of the patterns
according to the quality assurance measurements and provides further analysis
according to the testing results. Chapter 9 concludes the research and highlights

some future directions for future.

-27-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Chapter 2

REUSABILITY

The Software Engineering field first started to emerge in 1968 when the NATO
Software Engineering Conference first took place. The conference focused primarily
on the Software Crisis, which was the first time for this term to be used. Software
reuse was the main candidate to overcome this crisis. Some reusable component
libraries were proposed and used effectively in numerical computation, I/0
conversion, text processing, and dynamic storage allocation. Twenty-three years
later, software reuse was still recognized by computer scientists although it failed to

achieve its goal of becoming a standard practice for software construction [KC92].

Reusability is a general word that takes anything beneficial for later use.
Anything could be reused as long as it meets certain conditions and measurements.
A piece of documentation could be reused, classes and objects could be reused, and
design could be reused too [BG94]. Software systems could be built from
predefined, interchangeable common software components as they share a lot of
similarities. It has been shown, in general, that software systems share about 60
percent commonality. This percentage could reach up to 90 percent in the domain
specific projects [MC95]. Usually, when one starts to build a design, he/she tends to
concentrate on the work domain on hand. This approach to a large degree helps in
finding the appropriate classes and objects needed for a new system. However,
another round must be carried out to figure out the general purpose, common, and

domain specific objects.

General-purpose objects are usually found in already existing libraries.
However, if they are not found then, one should start designing them. Actually, one
may be wasting some time in the beginning in order to build something generic, but
this effort pays off in the future when other applications make use of such libraries.
Common classes and objects are not for general-purpose use, but they are used
inside a working system. They are to some degree tied to the work domain, and
generally used internally. The maximum one can wish for is that the design is built
out of general-purpose pieces, and possibly some common classes. However, there

must be some domain-specific classes and objects to solve the problem on hand.

This is all well talking about designs and how to classify objects. However, in

- 28 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

order to keep the design robust, future changes must be anticipated [GEHR95]. A
design that does not anticipate future changes may suffer severe modifications in the
design and implementation as well. Here comes the role of design patterns. They

help in changing different aspects of the system independently from each other.

As Booch says “In successful projects, we have encountered reuse factors as
high as 70% (meaning that almost three-fourths of the software in the system was
taken intact from some other source) and as low as 0%"” [BG94]. This shows how
projects could be finished very quickly if they strive for reusable components. The
reusable components could be anything useful as explained before. Design patterns
are among these reusable components, since they are components of design.
However, identifying a design pattern is not usually done, just to meet project
schedule times. It is very important to know the obstacles in practicing reuse and
how to overcome them, and then develop standard techniques to search for and find

reusable items.

2.1 Reuse Obstacles
It is really difficult to argue against reusability. However, there are many

obstacles that prevent us from making full use of it. Table 2 shows that most

obstacles come from non-technical perspectives [MC95].

No understanding of what to reuse and how to create it for reuse

No planning for reuse

Reuse confined to an individual or within one system

Limited to code-level reuse and reuse-in-the-small

No management involvement or support

No or negative reuse incentives

Reuse practiced only in the coding phase

Cost of reuse is too high

Reuse is contrary to current software culture

Nothing to reuse; absence of a library of reusable components

Too expensive and too dangerous to adapt existing components for reuse in
another system

Inability to recognize what has high potential for reuse

No reuse activities defined as part of the software life cycle process or
methodologies

Reuse is not supported by current software tools

Management not convinced of value of reuse

Software professionals not trained in reuse and do not want to practice reuse

VVVVVYVVYVYVYYVY

\ 24

YV VYV V

Table 2 Obstacles for Reusability

Some software organizations think that they have to practice object-oriented

-29-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

technology in order to practice reuse. Actually, it works the opposite way. Reuse
must be practiced first in order to make use of object technology. Although, object-
oriented technology presents very useful concepts like inheritance, encapsulation,
etc, a non-expert designer or developer can still build a spaghetti solution using it.
Actually, reuse can be practiced in object-oriented technology and in other traditional
software environments. It is the organization that takes the decision on how to go

about Reuse programs [MC95].

Another important obstacle is the recognition of reuse as a separate discipline.
Many software developers think that reuse is too obvious to make plans for [MC95].
They practice it on daily basis in their work. However, they did not recognize that
they do it on individual basis, group basis, or even project basis. These individual
activities can be applied in one project and they might show up again in a future
project doing the same sort of actions. What organizations need is to have a plan for
reuse that monitors all these activities in a smooth way so that they do not interrupt
work progress. When these scattered reuse activities are collected, organized, and
indexed in libraries, other groups and future projects can benefit from them. It will
then become a practice not to start any project before checking out the available
library and search for a solution that can be used directly or at least enhanced or

modified.

In addition to the above, management in some organizations might not be
convinced with reuse [MC95]. Usually, time-to-market and cost are the primary
factors that control any software development. Reusable solutions usually take more
time to develop and test, despite the fact that they make a big difference in
implementing libraries that can be used in the current and the future projects. Direct
and non-reusable solutions are usually built very quickly. Management usually
considers current business needs, they do not look into the future investments. So,
the first thing to ask when considering reusable solutions is that if it is going to delay

the project then do not use it.

This leads us to a basic question: why is reuse not considered in project
planning? Actually, the customer cares only about the final product. Such an internal
process does not mean anything to him. However, any project plan must take some
factor of delay in its initial phases due to reuse. On the other hand, risk potential will
decrease, as reuse will be one of the major factors to reduce it. Management has to

be convinced with such plans as they introduce real benefit to the workflow.

-30-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

To summarize, most of the obstacles, if not all of them, are not technical.

These obstacles are divided into the following major categories [SD96]: -

1. Organizational: where there is an additional effort to catalog, archive, and

retrieve reusable components.

2. Economic: where reuse may cost a lot of money and delay to some

projects.

3. Political: such as not wanting to share components with others or cannot

use free components.

4. Psychological factors: such as not wanting to use components that are

not built in-house.

Reuse could be achieved on a narrow scope but it is very difficult to distribute among

all the development community.

2.2 Extracting Reusable Components
Reusability can be an expensive operation if it is not well planned. Software

must be evaluated to know the data and process components that should be created
as reusable components. The future projects that could be created from reusable
components have to be identified and the portions that have high potential of
reusability must be highlighted. Moreover, business divisions that heavily practice

reusability can be identified and given more focus on their systems [MC94].

The second technique for capturing reusable components is domain analysis.
The objective of domain analysis is to capture and model the information that
describes a domain for the purpose of gaining a better understanding of the domain
and/or to use this information to develop future systems for the domain from
sharable reusable components such as generic architectures and processes [MC94].
Systems that support a certain domain, or a portion of a domain, are a good area to
perform domain analysis. For example, billing systems for telecommunications
companies could be very similar and hence worth building a system that uses

common components.

Domain analysis can be conducted either as a bottom-up or a top-down
approach. The Bottom-up approach works by studying the old or current systems to
get the common components. It is a reverse engineering exercise but focuses only
on common components. The Bottom-up approach gives only half of the picture. In

other words, extracting common components from existing systems, make them

-31-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications “Es“‘
b

Sty e

& Com
%
00 oo0°

available most of the time for future versions of these systems. To complete the
picture, a top-down process is conducted as well to figure out components that can

be used in future systems. Hence, common components can be studied to discover a
generic version [MC94].

-32-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Chapter 3

DESIGN PATTERNS AND RELATED TECHNOLOGIES

3.1 History of Design Patterns

Design Patterns were first introduced in architecture engineering. Alexender
[CA79] in 1979 introduced the concept in his book, The Timeless Way of Building.
His definition of design pattern reflects his engineering thinking point of view. He
says, "Each pattern is a three part rule, which expresses a relation between a certain
context, a problem, and a solution." By configuring context, problem, and solution
with forces linking them together, they make their pattern [CA79]. He gives another
definition “'Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the
same way twice”. Although he wrote his book for architecture engineering, yet it
became much more clear that its effect was found useful in software engineering as

well.

Later, in 1987, Kent Beck and Ward Cunningham published a technical paper
describing how they used Alexender's concepts of patterns to accelerate the
development of user interface in one of their projects [BKCW87]. They proposed five
patterns: -

1. Window Per Task

2. Few Panes Per Window

3. Standard Panes

4. Short Menus

5. Nouns and Verbs
They gave these patterns to a specialist team that were writing technical
specification for a system. The good thing about these patterns, as they said, was
that the team after only one day presented reasonable interfaces. The pattern
language they presented detached the technical team from full knowledge of the
programming language they were using, SmallTalk. It showed a success that made

them decide to write more patterns. They reported that they finished 10 patterns,

sketched out 20-30 more, and expected to have up to 100-150 other patterns

-33-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

[BKCW87].

Meanwhile, Erich Gamma was preparing for his PhD which was on capturing
patterns. He consolidated his ideas with some others Richard Hel, Ralph Johnson
and John Vlissides. The concept of design pattern started to become popular when
these four first published their famous book, Design Patterns Elements of Reusable
Object-Oriented Software [GEHR95]. The book is one of the most famous books in
object oriented design and is considered a bible for almost all researchers in this
field. Design patterns do not come with just thinking, they need real experience.
However, designers, usually, don't do a good effort in recording their experiences for
others to use. [GEHR95]

3.2 Capturing Design Patterns

It is really difficult to capture a design pattern. Although, novel designs could
be created from scratch, a design pattern has to come from experiencing a design
and proving that it is worth using with other projects. A novel piece of design could
be very successful in one application but it may fail in another. So, a design pattern
will not be captured unless it is used in more than one project inside the same

domain or other domains. These patterns need to be documented for future use.

A practice that is really good in building a pattern is to make review sessions
for a team of developers who are working in the same phase of a project, analysis,
design, implementation, or testing and to consolidate their work into a common
design if similarities are found across their work. The technical team leader, for
example, could review the teamwork pieces and build, with the help of the team, a
new design that is generic enough to capture all the team work commonalities.
Afterwards, every member of the team has to adapt the new design. The teamwork
review helps greatly in building reusable patterns that could be used at least in the
limited scope of one project and increases the possibility of using them in other

projects.

3.3 Describing Design Patterns

Is it difficult to describe a design pattern? An expert software designer might
say, No, it is not difficult. There are graphical notations that can tell exactly what a
piece of design is doing. However, are the graphical notations enough? How can
one tell if this design pattern is best suited for an application without knowing the

tradeoffs, design decisions, or the alternatives that the developer encountered? It is

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

more important to know such information before deciding to use a design pattern.
So, the graphical notations are not enough, literal description is important in this

case. But, the graphical notations could support the literal description too [GEHR95].

The following are the basic elements that are needed to describe any design
pattern [GEHR95]: -

1. Pattern name: Naming a pattern is one of the most difficult tasks of
describing a pattern. A good pattern name will describe, to a large
degree, its intent.

2. Problem: When to apply the pattern. This section should encompass the
problem and its context. One may add other pieces of information that
add value to this section like class or object structure, conditions that
must be met before applying the pattern, or other design problems.

3. Solution: The elements from which a solution is composed. It must not
to be an absolute solution, however; it should be abstract enough to be
applied in different situations. The actual design should be left to the
developer

4. Consequences: The results and the trade-offs from applying a design
pattern. Although, they might not be noticed after applying a design
pattern, consequences are important in order to evaluate different design
patterns. The results and trade-offs may address different areas, like
design flexibility, extensibility, portability, or programming language

specific issues.

3.4 Selecting a design pattern for use
There are no well-known search engines for design patterns. One has to strive

to find good patterns for his/her design. It is not mandatory that every project has
to be built from design patterns; however, a user can select certain sections of
his/her past designs and merge them with patterns. These sections could be fully or
partially built over patterns. This kind of reusability ensures: -
1. The high possibility of a rapid and successful overall architecture of a
system.
2. The existence of documentation that is already available on the used

pattern.

So, to start selecting a pattern, one has to start first by narrowing down his/her

needs and comparing different alternatives. One may follow these guidelines to

-35-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

select a design pattern (Figure 2) [GEHR95]: -

1. Know exactly what you are trying to find. Developers may be tempted to
search in the patterns catalogs that are related by name to their work. This
kind of search may succeed and may not. So, try first to categorize your
work and put related words ahead and then search for design patterns related
to these categories. For example, developers who are designing web
applications may face a problem of building or designing heavy weight pages.
The developer's search concern may go first to design patterns of HTML
pages. However, his/her solution could be related to performance issues.

2. Once you defined some design patterns, start comparing their problems and
solutions to the one you have. One may accept a design pattern that partially
solves a problem just because it is promising for better enhancement of the
system rather than a pattern that solves the problem but does not consider
variable changes [GEHR95].

3. Compare the consequences of the selected patterns. Review the
consequences of each pattern and build your selection criteria as you go over
the trade-offs.

Finding a good design pattern to work with could be difficult to the extent that
the developer will take a decision to build the design from scratch. However, a
limited amount of time could be allowed for searching for design patterns at the
beginning of each project. This effort, even if it does not come up with selected
patterns, will help the developer in the way he/she thinks and add more to his/her

knowledge.

- 36 -

GCapturing Design Patterns for Performance Issues in Datahase-Driven Weh Anplications g“m s%;,
)
:

4 N

categorize you

seatch
- Enowr what you select related
are looking for kesrwrords
search

Do not be misled

- L/

Tl

Defined?
a2 N

b
Solves the

¢ problemn?

Cnmpare prublmg gsolution henefits
at1d solutions
S

N _/

L 4
Rewriewr
Conseguences ad
trade-offs

Figure 2 Selecting a design pattern

3.5 An Example of A Design Pattern

Design patterns fall under three categories, Creational, Structural, and
Behavioral. Creational and Behavioral patterns describe objects at runtime.
Structural patterns describe object structure at compile time, Class Declaration
[GEHR95]. For example, virtual constructors in C++ are an example of a creational
pattern where construction is determined at runtime. The appropriate object
constructor will be called according to the object type. Inheritance is an example of
a structural pattern. Class inheritance forces some methods and attributes to the

child class. A good example is the Object class in Java. The Object class declares

-37-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

some methods that any class declared must inherit from. For example all classes in
Java inherit toString() method that returns a string representation of an object,
equals(Object) that indicates whether some other object is equal to this one
[JAVA1.3].

Behavioral patterns are the most commonly used ones in object-oriented
design. They actually can embody the structural and creational patterns in their
implementation. Here is a very good example of one of the design patterns that is
used to break down the difficult algorithms into small pieces of organized and
structured object-oriented code. The pattern captures a certain inherited feature in
some of the sorting algorithms and builds object-oriented patterns that consolidate
their behavior. These algorithms that depend on the divide-and-conquer algorithm
start by splitting into sub-arrays, sorting, then joining (Figure 3). On top of these
algorithms are quick sort and merge sort. The insertion sort could be viewed as a
special case of merge sort where splitting is done with one element at every pass
[NDWSO01].

| unsorted

splt P "~
Eﬁ/ split ? ™y

— -
I:I = unsorted m = sorted { 1= sort process
S :

Figure 3 Hypothetical Sort Recursion Tree [NDWS01]

- 38 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

The main design decision taken here is that: -
1. All the studied algorithms share the same concept of splitting, sorting, and
then merging.
2. The sorted data does not carry its sorting criteria. It is the responsibility of

the user to provide this information through AOrder object.

The pattern represented here is composed of two classes. ASorter that
abstracts the behavior of the sorting algorithms and AOrder that carries the ordering
criteria for the sorting. Both of them could be overridden to give concrete examples.
For example, quick sort can inherit from ASorter to give the needed functionality for
quick sort [NDWSO01].

An added value to this pattern is that it allows the user who wants to monitor
sorting to add graphics animation without changing the code. This is intrinsically the
nature of well-designed object-oriented design. So, a decorator pattern can extend
the functionality of one of the sorting algorithms to show how sorting is done.
Another monitoring pattern can extend AOrder to measure performance.
Measurement is dependent mainly on counting the number of comparisons (Figure 4)
[NDWSO1].

Afasar ACkdnr
H &0rder : aDuder o
H L Sortert & 0dsr aCrdsr]
+ void ; sort(Chject]] &, int 1o, it 1) iee— | 1 <hi) |
i sphiffC¥vjact [T A dnf la, f hi) int s = split(fs Io, i,
HE void . join [Chjeci T 2, it fo, inf 5, ind i) m:tu.sll:. 9_1;_ P
+ wmid : setOrder{ A0mder alrden) somtCh, s, hil:
ﬂ join(4, lo, =, hay;
1@ Bubhle Sorter !
GraphicSorter [|
Heap Sorier
SelectienSarier QuickSorier |
|'I.I.EBE
Y
MerzeSorter InsertonSorier Heapifier

Figure 4 The Template Method Pattern for Sorting [NDWS01]

3.6 Pattern Language

A pattern language is a collection of patterns that guide the developer in a

-39-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

certain domain context. It is not just a catalog of patterns; it includes design
decisions and domain-specific advice to the developer. The choice of the appropriate
pattern will be determined from the advice of the preceding pattern [MBMT01]. 1Itis
very important to note that a pattern language is not just a collection of isolated
design patterns, they are heterogeneous pieces of design that give, at the end, a
good solution for a certain problem. In other words, if a design pattern is selected
for implementation, then succeeding design patterns in the tree (Figure 5) are the
only candidates for future implementation. Figure 4 is a conceptual view of the

pattern language which represents a directed tree of patterns.

Pattern A
'

Pattern B Pattern C Pattern D
Pattern E Pattern F Pattern G
' ‘L

Pattern H Pattern |

Figure 5 A conceptual view of a Pattern Language

An example for a pattern language is the one proposed for parallel application
programming [MBMTO01]. The pattern language is structured into four main
categories that will execute in sequence. The top-level patterns help in finding the
components that can run concurrently. The lower-level patterns help the
programmer to use parallel algorithms to express concurrency. The lowest levels are

concerned with parallel environment’s primitives [MBMTO01].

As mentioned before, the top-level is concerned with finding the components
that will run in parallel. This is supposed to be a higher-level decision and will be
removed from the lower level implementation. The path starts by organizing the
problem information on hand. The next step is to decompose the problem either by
task (TaskDecomposition) or by data (DataDecomposition) or by both (Figure 6).
The designer may keep oscillating between them until a final decomposition is made.
The next step helps the designer to 1) group tasks together whose elements will run

concurrently 2) order the group of tasks according to their data or temporal

-40-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

dependency on each other, and 3) decide on how data will be shared among tasks.
The last pattern consolidates the designer’s use of the previous patterns and makes
sure that they are efficiently used [MBMT01].

| GettinaStarted |

\ TaskDecomposition |

| DecompositionAnalvsis

| GroupnTasks DataDecomposition |

| OrderTasks }(—) DependencvAnalvsis |

| DataSharina

CoordinationFramework
Figure 6 Finding Concurrency Design Space [24]

3.7 Anti-Patterns

An anti-pattern is a pattern that AntiPatterns
tells one how to go from a problem to Soligion + Selution Pairs

a bad situation. The bad situation is
Contextual Causes

revealed by its side effects where the

original problem is solved but unseen l

or un-anticipated problems are AntiPattern
generated. They may be tiny Solution

problems, but they will need time and
effort to solve and will disturb the Symptoms & Consequences

focus of the developer from his
original problem [BWMR98]. v
’ caced N Refactored
ave we ever ace Suc Sﬂlutiﬂﬂ

problems? Yes, and yet we always

tend to think of our solutions as the Benefits Cunsequences
best. We may categorize anti-

¥
patterns as: - Related Patterns & AntiPatterns

Figure 7 Anti-Patterns [BWMR98]

-41 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

- Those that tell a bad solution to a problem that ends into a bad situation.

- Those that tell how to get out from a bad situation into a better solution.
So, if a pattern is defined as “best practice”, then an anti-pattern represents a
“lesson learned” [ABOO]. It is really important to record the anti-pattern practice
and show its counterpart pattern that proves to work well. Actually it could be
more than one pattern that helps at the end in getting out of the problem. Figure
7 shows how an anti-pattern can converge to a better solution. From a practical
experience, developers tend to fall in the trap of anti-pattern of the first category
when they mainly: -

- Focus only on the context on hand and not try to generalize a pattern.

- Do not anticipate future changes.

- Do not propose their solutions for others to criticize.

So, why is it worth knowing an anti-pattern? Like design patterns, anti-
patterns provide a general template where the problem, symptoms, solutions, and
consequences are described clearly. This means that software developers will have a
common vocabulary that they can use to talk about software defects. As the
knowledge base of anti-patterns grows up, the software industry’s common problems
get clearly identified and shared among the development community. Since an anti-
pattern is forced by a certain problem, it could be shared among a number of

developers who have to communicate the problem with each other [BWMR98].

Let’s look into an example that represents the first class of anti-patterns “"Those
that tell a bad solution to a problem that ends into a bad situation.” Following that, a
solution will be given to see how to get out of the bad situation into a better solution,
the second class of anti-patterns. Note that the purpose of presenting the anti-

pattern example is not to give an ideal solution to a problem.

DB operation + Concurrency + Con_nection
Delay Delay creation Delay

Figure 8 Time Delay for a small application

-42-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

However, the purpose is to get close to the picture and try to understand it.
So, the use of the anti-pattern template will not be thorough. It is enough to
describe the problem, the bad solution, and how to get out of the bad situation.
Moreover, the example here will be useful later on when we talk about connection
pooling.

Consider an application that is dependent on a database. The application uses
only a single connection to do all the database operations. The connection is never
closed until the application exits. Every operation is taking a considerable amount of
time. There is no problem if there is only one user who is using the whole
application. However, when more than one user use the application, a time out
problem occurs. This is normal since there is only one connection that could serve
one operation at a time and every operation takes a considerable amount of time.
The developer who designed the application thought of fixing the problem by
creating a new connection for every request, the same way it is done for the single

connection!

It is really a bad solution. Now there will not only be a delay from the
concurrency and the operation time, but another overhead time will be added from
the creation of a new connection (Figure 8). Actually this solution has a very little
benefit in comparison to its side effects. The developer thought of solving the time
out problem, which is mainly due to concurrency, by introducing new connections
every time there is a request. This solution will serve the requests for a limited
period of time then the database connections will be consumed and the time out
problem will appear again. That is because the user repeated the solution of opening
a connection and releasing it while the application exists. Moreover, memory

consumption will be very high on the database side and on the application side.

Is there a solution to this bad solution? The smart developer said, "How about
creating a request for every user”. Now, the database connections will be left free
for a considerable amount of time and they may not be totally consumed. However,
the developer still does not have control over the stability of the system. First, the
number of users could be at one time higher than what is expected. Second, the
database might be configured with a number of connections less than what is

required. Also, the memory consumption might touch the dangerous edge.

The developer is still in a dilemma. “Yes, I should close the opened

connections”. This for sure will solve the time out problem due to the consumption

-43-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

of the database connections and so the memory usage will go a little bit down.

However, the connection creation delay will still be introduced.

This iterative thinking could lead the developer at the end to maintain a
connection pool. This solution has many benefits. First, time out due to the
consumption of the database connections will not occur. Second, memory will
always be under control, since it is only a limited number of connections deteremined
from the start of the application. Third, the user will not suffer the connection
creation delay. Fourth, the concurrency delay will be controlled to a large extent
since the users will be competing over a pool of opened connections, not a single

connection.

To sum up, developers usually start with solutions that do not represent the
best practice, especially if these solutions are new to them. The experience really
makes a big difference in their decision. Experience would make one developer try
only two or three iterations to arrive at the best solution, if it is not reached from the
first time; and would make another developer reach for his/her solution all at once
and not need to go over it at all. Experienced developers, however, will normally

tend to compare alternatives to select the best for their problems.

3.8 Frameworks

A Framework is “a set of cooperating classes that make up a reusable design
for a specific class of software” [GEHR95]. A framework is always geared into a
specific language where it could be reused directly to dictate the architecture of your
application. Although the framework forces a certain architecture, it relieves the
developer from the main design decisions that are already managed in the

framework.

Because the applications built over the frameworks are fully dependent on
them, they are also sensitive to changes of the general design. Actually, here comes
the main advantage of the OOD, where many of the design decisions could be hidden
from the developer. The developer will implement the interfaces proposed by the

framework to do his/her special work.

3.8.1 How Frameworks solve the reusability problem
The framework gives the developers certain guidelines to implement certain

methods and declare certain variables so that the framework could call them. Such

inflexibility limits the developers’ creativity, but it lets the developer concentrate on

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

the problem on hand [GEHRS5]. This is why a developer chooses a framework. Itis
in contrast to the toolkits concept where there are ready-made classes and objects

that could be called to achieve certain functionality.

Frameworks are mainly focused on Object Oriented Technology. They Enforce
flexibility, where you can override certain behaviors, or configure default behaviors.
Moreover, certain design decisions could be deferred to the application developer

where he/she can put his/her solution with the support of the framework.

3.8.2 Examples of Frameworks
One example of frameworks is the SanFrancisco framework developed in IBM

labs [CJCB00]. This framework is one of the examples where design patterns are
used as an effective element. The development team believed from the beginning
that the framework will not solve all problems, so they provided the application
developers with a hierarchy of solutions from which they can choose the ones to
work with. The team developed a design pattern which supports directed design

decisions, providing the ability to:
e Configure a default behavior for a domain algorithm.
e Override that default behavior on an object-by-object basis.
e Make performance vs. flexibility tradeoff decisions on an object-by-object

basis.

Another example is DIWB (Distributed Interactive Web-site Builder) Framework
[EESWO00]. The framework itself is built over two other frameworks: WebObjects
and OpenStep. The first framework is specialized in web application development.
The second one is focused on data management. The framework uses a different
approach, or if we can say design pattern, for development. The project team
decided to build it over 5-model architectures instead of the famous MVC model. The

5 proposed modules are: -

¢ Presentation layer: to prepare data for display on the web browser.

e UI Components: to provide Ul components for display by the
Presentation layer

e Business Logic: to provide the services that could be called by the UI
Components in the presentation module.

e Data Management: to provide a data management system away from

the database

-45-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

e System Infrastructure: to provide low-level administration of hardware,
network, and operating system.
They argue that this model is better since it decouples the business layer from the

presentation and system layers.

Another framework that has been used in commercial domains for some time
is Expresso. Expresso is a project which aims to build a framework for web
applications that are database driven. It is based on the MVC (Model-View-
Controller) architecture. It provides a lot of basic functionalities that are always
needed like security, login, database connectivity, caching, etc.. As a powerful
framework it integrates its model with Stratus, which is an open source framework,
to build its controller. Its Model can integrate with any standard database. The
view can utilize presentations systems such as Java Server Pages, Velocity
templates, and XSLT [JCORP].

Expresso, like any other enterprise framework, allows the developer to gain a
lot of benefits since he/she will focus on the business logic without having to go into
building code from scratch. This is very useful and gives the development company
a lot of benefits like [JCORP]:

e A Shared Standards Based

e Lower Costs

e Simplify Development

e Faster Delivery and Time to Market

¢ Promote Consistency through Code Reuse

e Promote Quality

e Provides Vendor Independence

e Greater flexibility for customization to requirements

e Improved Web-based collaboration

3.8.3 How Design Patterns integrate with Frameworks
The problem that always faces developers when designing Frameworks is the

separation between the static and dynamic parts. In other words, the developers
would always want to make a framework as generic as possible, but this can never
happen. There has to be a static part that the framework is fully dependent on. The
problem is that framework developers may not be able to satisfy the different

business needs where dynamic and static parts are exchangeable.

-46 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

The role of design patterns appears here. Use the design patterns to decouple
the static parts from the dynamic ones [SDC96]. Some of the most useful patterns
emerge and describe frameworks. Since frameworks are language dependent,
design patterns are used to abstract high-level architectures. The usefulness comes
from reusing these pieces of patterns inside the system or in any other system. In
other words, design patterns could be used to describe frameworks in a language-
independent manner, and frameworks are used to consolidate different design
patterns in a language specific manner. Neither design patterns nor frameworks
precede each other. One could start with a framework then use the design pattern
methodology to describe it. Or a framework could be built around design patterns

that solve problems in a specific domain [GEHR95].

If a framework needs more knowledge and training in order to master its
techniques, then the design patterns are the way to understand it. Frameworks are
in between the toolkits and design patterns. They are more abstract and flexible
than the toolkits, but more concrete and easier to reuse than design patterns [JR97].
Many developers do not consolidate the understanding of a certain design until they
see it implemented. So, if you want to understand a certain design pattern, check its
implementation. It is important to notice that design patterns usually achieve
success in frameworks and a pattern language could be extracted from a framework

design.

-47 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Chapter 4

WEB APPLICATIONS

4.1 A Brief History of the Internet
The origins of the internet goes back to 1962 when J.C.R. Licklider of MIT

started to propose the idea of “Galactic Network” in a series of memos. He described
his Galactic Network as a set of interconnected computers where every one can
access any program or file from any site. Licklider convinced two of his colleagues in
DARPA (Defense Advanced Research Projects Agency), as he became the first head
of the computer research program, as well as Lawrence G. Roberts from MIT with the

importance and real need of this network [LBCVO03].

The real network communication researching started when Leonard Kleinrock
at MIT published his paper on packet switching in July 1961. The packet switching
idea was revolutionary as circuit switching was the primary switching method
available at that time. Roberts, working with Thomas Merril, created the first wide
area computer network ever built when they connected two computers, one in
Massachusetts and the other one in California. The experiment was very successful
as both computers were able to share programs and files remotely. However, it was
found that the dial-up telephone line connection that was used in the experiment was
not efficient in connecting both computers. Roberts was totally convinced that
packet switching would be able serve as an efficient way of communication
[LBCVO3].

ARPANET was the first network to be designed over packet switching in 1966.
With the help of other researchers in England, ARPANET upgraded its line speed from
2.4 kbps to 50 kbps. A team from Bolt Beranek and Newman (BBN) started to
develop the first version of packet switches called Interface Message Processors
(IMP's) in December 1968. The first host computer in ARPANET was installed in the
Network Measurement Center at the University of California Los Angeles (UCLA)
accompanied with the installation of the first IMP in September 1969. The second
node was installed in Stanford Research Institute (SRI). By the end of 1969, four
computers were connected, as two more were added from UC Santa Barbara and the
University of Utah. These universities were also running researches on the network

infrastructure and utilization, which is still a topic of research until today. By 1972,

-48-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

more sets of computers were added to complete the physical architecture of the
ARPANET. The first Host-to-Host protocol was implemented too, called Network
Control Protocol (NCP). By that time, users were able to start developing
applications [LBCVO03].

In 1972, BBN introduced the first application, electronic mail that is installed
on ARPANET. The software was developed to let the developers on ARPANET
communicate easily. It was capable of sending and reading messages. This utility
was expanded to list, selectively read, file, forward, and respond to messages.

Email, which is the largest usage Internet application, took off [LBCV03].

ARPANET was the seed for the modern Internet as known today. However,
the internet had a much more different and diversified structure of the ARPANET. As
ARPANET was a reliable network that has no interference with other network, there
was no error detection built on the communication protocol used (NCP). Error
detection was primarily needed to allow different networks, which might have
different structures, to communicate efficiently. So, Kahan decided to build a new
protocol suitable for the Internet which eventually was called Transmission Control
Protocol/Internet Protocol (TCP/IP) [LBCVO3].

The widespread development of PCs, LANs, and workstations from the
beginning of the 1980’s followed by the development of Domain Name Systems
(DNS) and later followed with the development of different routing algorithms, made
people think of transferring its usage to the host software, especially operating
systems. Thus the Unix operating system was first adapted to support TCP/IP which

is implemented now in all the well known operating systems [LBCV03].

4.2 Web Application Development Lifecycle

The development of a web application involves contribution from many fields.
In addition to the technical perspectives, it includes managerial, organizational, most
probably artistic, and may be social contribution. When there are many contributors,
there are many dilemmas. An application could span more than 3 months just
because the management sees that artistic graphics are not satisfactory or colors are
not that tasty. In addition to the technical issues and problems, a web application

may last for more than one year for average size projects [FP99].

-49-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Prototyping &
Verification

Requirement .

[Conceptualization]
& Evolution

Design:
Structure

Navigation

Presentation

Implementation]

Figure 9 The Life Cycle of a web Application [FP99]

The diagram in Figure 9 shows the most commonly used architecture for a web
application. As noted the iteration of requirements analysis, prototyping, and
conceptualization may repeat several times until the customer is satisfied and

concepts are consolidated [FP99].

In addition to the normal work in the Requirements Analysis phase where
users are identified, the nature of information is defined, and the customer view of
the application is established, a web application adds more to it. A system analyst
should identify the type of audience that will interact with the web application and
their expected behavior with more than one use case. He/She may target more than
one output device (PC, Palm, Mobile, etc) [FP99].

Conceptualization is primarily different from that in normal information
systems. The system analyst has to identify the objects and relations recognized by
the customer regardless of their representation on the system. This does not mean
that the notations that the developer has become used to will change, he/she will

still continue to use the same notations to build his/her solution [FP99].

Prototyping and validation makes the user visualize the GUI of the
application. This is a simplified version of the web application which is built very
quickly to capture user requirements for the interface. A Prototype can be built over
a small context of data to get a general understanding of the web application.
However, it could also be a very good method to agree with the customer on the

final product appearance and functionality [FP99].

Design is responsible for transforming concepts into lower-level

representation. It prepares for the implementation, where it defines the architecture

-B50-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

of the whole application. The architecture of the database is defined, representation
classes and functions of the code are designed, without going into details, and the
GUI is finalized, regardless of the content. Ideally, the phase should be completely
and accurately designed before going into the implementation phase. However, it is
almost impossible to build a final design from the first time, it will most probably

change in the implementation phase [FP99].

Implementation will use the delivery from the design phase with samples of
contents, provided from domain experts, to build the final product using (e.g. HTML,
Java, ActiveX, CGI). From now on, developers will speak most of the time about
lower-levels of detail. One of the major risks that may make a design change in this
phase is the introduction of content. Actual content may greatly impact the
database, and the GUI, as well as the code [FP99].

Evolution and maintenance is a nhormal process phase that is always practiced
after every product. Users may change their requirements again, bugs may appear
in areas that were not carefully tested, or performance enhancements have to be
applied. However, this phase should not last too long. A good web application

should remain stable for a good period of time before applying new changes [FP99].

4.3 Analyzing A Web Application Performance
4.3.1 Quantitative Analysis Cycle

As web applications are becoming an interaction media between the
customers and the companies, performance becomes a very important factor that
defines customer experience. To ensure a web application performance, it is
required not to focus only on the application but also on the customer connectivity.
The following is an 8-steps Quantitative Analysis Cycle of an E-Business Site
[GRSAO01]: -

1. E-Business Site Architecture: where the participating components of
software, hardware, and networks are specified.

2. Measure E-Business Site: Performance measurement is needed from
different perspectives. It has to be measured internally (application side) and
externally (customer side).

3. Characterize Customer Behavior: Build profiles for customer classes that
interact with the site. This allows the site owner to detect the resources

needed by every class.

-51-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

4. Characterize site workload: Every class of users place different load on the
site. To quantify workload, resource demands, visit frequency, site
navigation, and any other load parameters that need to be described
precisely.

5. Develop Performance Models: Performance Models will help in detecting
site performance under different variant changes of configuration, application,
network connectivity, or work load levels.

6. Obtain Performance Parameters: These parameters are used as direct
input to the performance models. Some of the parameters can be directly
measured like the I/O time, CPU speed, etc ... Other parameters need to be
estimated like the bandwidth between remote client and the site.

7. Forecast Workload Evolution: Anticipating the future workload is a very
good practice. It allows the site to avoid dramatic failures due to unknown
problems especially on hot events where workload is expected to be very
high. For example, a telephone company may expect very high workload
every month due to bill release.

8. Predict E-Business Site Performance: If performance models are capable
of detecting future site workload, changes in the site architecture may fail this
model. So, architecture changes could be evaluated to detect the most cost-

effective way to satisfy future workload.

4.3.2 A Response Time Reference Model
A Response Time Reference Model describes the download process of one

website page. It is composed of eight stages. Every stage is a component time.
The summation of all the component times is the response time for a website page.
Two stages are not used in this model as they are not participating directly in the

response time of website page request [LCGRO0O]: -

1. Establishing Internet Connection: which is mainly the responsibility of the
user to get into a network that is connected to the Internet.
2. Starting a Web Browser: It is also the responsibility of the user to get a
web browser started.
The reference model’s response time components are [LCGR0O0]: -
1. DNS Lookup: Where domain names are translated into their target IP

(Internet Protocol) addresses. The Browser sends a request to the Internet

-52 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications L.?“Es“‘
b

3%

Coj
&
m(‘
%
00 aou°.

Service Provider's Domain Name System (DNS) to translate domain names
into their target IP addresses.

2. TCP Connection: After a domain name is resolved, a TCP request is sent to
the web server to establish a connection with it.

3. Server Processing: After the connection is established, a request is sent to
the web server to get the request page from the user. If the request is sent
to get a static web page then the web server serves it directly. In case of
dynamic pages, additional processing is needed to generate the page. The
additional processing may include other applications like application server or
database.

4. Redirection: It happens when the requested page is not fetched, but a
replacement page is sent to the browser. This process could be repeated
several times until the final response is sent to the browser. In other words
the eight steps that we are talking about will be performed every redirection
time.

Base Page Download: After the page is fetched it is sent to the browser.

6. Content Download: The browser then examines the fetched page to check
for the embedded graphics or objects. A request for every object is sent to
the web server in order to download it.

7. Page Rendering: The client browser may take additional time to render the
requested page.

8. User Interaction: The user will then take some time to consume the content
of the page and then decide on what to do next.

Table 3 shows the knowledge areas which one needs to gain in order to fully

understand the performance model [LCGROO].

Stage Domain Knowledge needed to optimize performance
DNS Lookup DNS/BIND
TCP Connection Networking, TCP/IP, Internet connectivity
Redirection Web site implementation, HTTP
Server Processing Web page generation: Systems design, Systems integration, Web servers,

Application servers, Database Servers, Middleware

Base Page Download | Web page construction using HTML, scripting

Content Download Graphics, content distribution networks
Page Rendering Web browser operation, Client OS tuning
User Interaction Human factors, User interface design using HTML

Table 3 Knowledge Needed to optimize performance in every stage

-B3-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

4.3.3 Hardware & Networking

A web server uses TCP/IP connectivity to transfer HTTP requests that come
from the client. TCP/IP connection could be viewed as a black box where a request
comes in and a reply goes out. However, the process contains more details on the

networking and hardware level which are as follows [PFDL96]: -

1. A TCP/IP connection is created according to a certain request received from a
client.

2. The server CPU is interrupted by the network hardware to serve the new
request.

3. A new http process is created to serve the new request.

4. The http process accesses the secondary storage and retrieves the requested
data from the requested file.

5. The response data is sent through the TCP/IP stack where it is sent as
packets.

6. The http process runs the network device driver to pass the reply to the
network hardware. The http process will remain active until the reply is sent
completely.

7. The requested data is placed on the local network. Bandwidth, routers, and

network links contribute in the response time that is seen by the client.

As seen from the above scenario, CPU, Memory, secondary storage, and
network bandwidth are the main bottlenecks. CPU could have many other tasks to
do other than those related with the http process. So, 100% CPU utilization will limit
the http connection rate. If there is no limit on the number of http processes
created, more memory may be needed. However, it is not a big problem as
computer memories can be very large nowadays even for personal computers. The
secondary storage may represent some delay if there is a problem with the
requested file I/0. However, it is not likely to happen as the I/O operation usually
exceeds the network bandwidth. File-cache solutions do solve, to a large degree, the
I/0 bottleneck [PFDL96].

Hardware redundancy can be a good solution for heavy loaded web
applications. Hardware redundancy means that if a web server is located on one
machine, another web server could coexist to share the responsibility with the
current one. Hardware redundancy can be on the machine level where more CPUs

could be added, if possible. Or it can be a complete load balancing solution where

-54-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

more than one machine can share responsibility. Sharing responsibility could be
done on a web server, application server, or database server. However, hardware
redundancy is not always the good thing to do. The web application revenue has to
be measured against the new hardware. If a web site is receiving only 100 requests
per day, then it may not need to have a load balancing solution. In other words, an

accurate assessment has to be done before deciding on using hardware redundancy.

4.3.4 The Server Side

A web application will not run without both the client and the server. The user
usually writes down the website URL and waits for the results. The web application
is more than just a web server with static HTML pages. It can contain a logic that
many parties will share until it goes on duty. The common architecture for a web

application is composed of: -

1. HTTP Web Server: which is responsible for receiving client requests and
responding back with the requested information.

2. Application Server: which is responsible for hosting the web application and
managing the requests that come from the web server.

3. Web Application: which is the business logic that will decide on the type,
and amount of information that the user will receive.

4. RDBMS: where information is stored to be retrieved later by the web

application.
Other components could be used with the application server as needed (

Figure 10). For example, the web application could utilize a reporting server
that fetches information for the database and generate HTML reports with charts. A
search engine could be utilized as well to search in a file system or in a database.
The developer can introduce other components as needed. Every added component
can contribute to the efficiency of the web application and to the latency of the web

application as well.

-B5-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Web Server
objects Remote
o RET Rl
TCP 8 Script M —
Engine O
8 @) 1/0 sub-system
M |o
—_— 0O 3 \ 1/0 Buffers 10
Q o) e | Q
O —
1T 11
Network
Connection
TCP/IP flow control
client

Figure 10 Model of the transaction flows within the Server Side [MREWO0O]

4.3.4.1 HTTP Web Server

The main job of the HTTP web server is to respond to user requests that are
usually in HTTP format. The web server is ideally a file server that responds through
a predefined protocol (HTTP Protocol). Whatever the request is, the web server will
contact other participating servers to build up the page, in case it has dynamic
content, or fetch it directly in case it is static. Each HTTP request proceeds through
four successive phases: TCP Connection, HTTP Processing, SE (Script Engine)
Processing, and Network I/O Processing [HREWO0O]. SE Processing is optional if

there is no dynamic content.

TCP connection is a two-way connection established between the client and the
server. It consists of a TCP Listen Queue and server daemon that picks a connection
to serve the client. The HTTP sub-system is a process that listens to a predefined
port. It receives the client requests through the TCP connection. HTTP sub-system
consists of a Listen Queue and a number of threads that coordinate the processing
performed by the worker threads. An SE sub-system consists of Listen Queue and a
number of handlers that are responsible for interpreting the scripts (e.g. C++, Java,
Perl, etc...) and may interact with other backend systems like a database. The HTTP
sub-system will send the formatted data as received to the client. The I/O sub-

system consists of a nhumber of I/O buffers, I/O Controller, and the connection from

- 56 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

the server to the network. This sub-system is highly dependent on the operating
system [HREWO0O].

Tuning the HTTP web server could be of great help in enhancing the
performance of a website. There are a different number of HTTP servers that have
different configuration settings. However, they almost share the same concepts.
Apache is the most famous HTTP web server that we can take as an example. See

Appendix B for some performance tuning techniques.

4.3.4.2 Application Server

Web applications started with static pages to show data that are static by
nature. However, there was a lot of information that was important to show up and
at the same time must be kept in its database format. Data was not the only motive
behind the application servers; there was also the logic that was not supported by
the static pages. There is also the desk space that might not be able to consume a
lot of data. In other words, a lot of complexities were behind building the application

SErvers.

The application server is installed with the web server as a plug-in. It works
mainly as a script engine that is responsible for interpreting the logic written inside
the requested pages. There are many script technologies like CGI, JSP (Java Server
Pages), ASP (Active Server Pages). The script is supposed to do some logic,
connecting to database, or calling third party software. The final product of any
script is HTML, or any kind of text that the browsers can render. The application
server is mainly a container for web applications. It has a Listen-Queue that receives
requests from the web server then it dispatches it to the proper web application.
The transaction flows related to the SE depends on the object scope and the
threading model [MREWO0O].

4.3.4.3 Web Application

A web application like any other application is built because there is a business
driver. The application passes through all the normal application phases of collecting
requirements, analysis, design, implementation, and testing. The web application
could be built over a database or other infrastructure. The unique feature of the web
application is that it has to always receive HTTP requests and its objects can be

accessed by multiple threads.

Objects can be single-threaded or multi-threaded. A single-threaded object

-57-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

can only be accessed through its methods by a single dedicated thread. If another
thread needs to access the object, then it has to request it from the owner thread.
In contrast, multi-threaded objects need not have an owner thread. The object can
be accessed by multiple threads concurrently. There is no guarantee as to which
thread can execute which method, and no guarantee which thread will run first. A
Multiple-threaded model can lead to improper resource utilization if it is not handled
carefully [MREWO0O].

Objects can be also classified by their scopes. Objects can live during the
scope of the application. In other words, it is a global object that can be used by all
the requesting threads. Only a single instance of a thread can exist during the
application lifetime. The object can also exist during the scope of the transaction.
This means that every transaction can create more than one object that may do
different activities at the same time. Objects can also live during a user session. For
example, if a web application allows its users logon to do some activities, then logon
information (e.g. user name, permissions, and so on) can be instantiated and kept

during this session until the user logs out [MREWO0O0].

4.3.4.4 RDBMS

Almost all modern web applications are dependent on RDBMS (Relational
Database Management System). The amount of information to represent in an e-
business website with the relations that are required to impose on it cannot be easily
represented without a RDBMS. As the business of a company gets larger and larger,
the need for RDBMS increases as well. It then can greatly affect the performance of

the website.

The need for database tuning becomes very clear at this stage. A lot of
techniques are very well known for Database Administrators by which they can
enhance the database performance regarding the given capabilities of the hardware.
The goal for the tuner is to eliminate the bottlenecks, minimize the hard disk access,
and guarantee low response time. The tuner can modify table design, select new
indices, rearrange transactions, tamper with the operating system, or utilize any

other technique that enhances the performance [SHASHA96].

- B8 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Chapter 5
SOFTWARE QUALITY AND TESTING

Any quality software system has to pass through software quality check and
testing scenarios before its release for public use. Software quality is the guidance
on how to design and code to improve program understandability, adaptability and
decrease faults [BJARO0Z2]. All software development stages have quality
measurement factors that must be met from the first stage of collecting
requirements up until the maintenance phase where measurements such as
reliability, complexity, and reusability have to be considered. These factors have
criteria that are measured like completeness, correctness, and size [LKZSO0O0].
Testing is the checking process that guarantees that the software meets its
specification and the needs of the customer [SI95]. It goes beyond validation and
verification to checking system behavior under stress and concurrent use. Testing
scenarios have strategies that should be conducted to capture all the errors in all the

development phases.

This chapter is meant to familiarize the reader with the software design quality
and testing methods used in Chapter 8. Chapter 8 contains analysis information
about the suggested design patterns that the reader would be better prepared for
after reading this chapter. It draws the reader’s attention so that he/she can decide

on the validity of the suggested design patterns.

5.1 Software Design Quality

Building software is similar to constructing a building. If the building is
constructed from good material and has a good architecture, it will remain even if
there is an earthquake. We cannot accept any fault in a construction, since this may
lead to death of thousands of people. The case is similar with software design, in
which external functionality is achieved by internal design. However, it is almost the
trend of most of the developers not to have a good design as long the work is
finished up and the system specifications are satisfied. Software that has a good and
robust architecture works better, costs less, matches user needs, has fewer bugs,

runs faster, is easier to fix, and has a longer life span [CCO02].

The good Software has the following properties [CC02]: -

-59-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

1. Cooperation: Software must be able to work successfully with the
surrounding environment and adapt itself with the available resources. For
example, good software must live with storage areas that could be shared
with others. This means, for example, that the log files that are generated
during its lifetime must be removed after a certain period of time or backed-
up somewhere.

2. Appropriate form: Software should not have fixed rules. They have
appropriate rules that could be used according to the context. For example,
global variables, as we were taught, must not be used. However, they might
be the appropriate choice for a certain application.

3. System minimality: A well-designed software must be able to utilize the
existing libraries. It is the responsibility of the developer to understand the
existing systems in order to make use of its capabilities.

4. Component singularity: The developer has to decide on the software
component’s job and it should not be overloaded with unnecessary
functionality. For example, the component that is doing I/O should not
involve other functionality like graphics utilities.

5. Functional locality: Where related items are placed together. This makes
sense and makes the development work much easier since the development
team will share the same terminology. Bug fixing is very easy as well since
code replacement will be in one place. For example, a Java project may
contain one package that contains all I/O classes together. Upgrading the I/0O
classes means in most of the time replacing the old package with the new
one.

6. Readability: This means that the pieces of design have to be understandable
and very clear. This maps directly also to the code where code must be clear
and readable. Overall, this lets other developers to maintain the code.
Comments have to be written whenever possible to clarify the vague parts.

7. Simplicity: Simplicity is the art of finding simple solutions for complex
problems. Simple software design is much easier to maintain and modify.
Simple software have fewer bugs, run faster, are smaller in size, and are

easier to fix when broken.

The design process is the model that captures the domain problem and reflects
customer’s requirements. It is the conceptual solution that works as a base for

implementation. Design, with analysis, is considered the most important phase of

- 60 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

the software development lifecycle. Experience shows that a fault in the design
phase can cost thousands compared to a fault in the implementation phase. A well
designed software makes maintenance, enhancement, and support replacement an

easy process [LKZSO00].

The most important factors influencing object-oriented software design are
Reliability, Complexity, and Reusability. Reliability is the most important factor, as it
is not accepted to deliver software that fails on regular basis. It is a measure of how
well users think it provides the services that they require [SI95]. Complexity is
measured by the personal experience and the desigh method used. It is always
emphasized that simplicity must be taken as a design goal. It is already inherited in
object-oriented design as implementation almost directly maps the definitions on
design concepts on the implementation language. Reusability may not be a
measurement factor in small projects. However, large projects that reuse modules

or objects are regarded of a better quality [LKZSO00].

The main criteria by which reliability is measured are correctness and
completeness. This means that a design is correctly and completely capturing and

representing the user’s requirements. There are other important criteria like [RUP]:

1. Coupling: which is the measurement of the strength of interconnection

among the system’s elements

2. Cohesion: this means that every single component has to carry out only its

responsibilities and they should be very well defined.

3. Primitiveness: if methods can be constructed from existing methods then

this is not primitiveness.
4. Volatility: how frequently the design can change.

5. Size: It is always an indication, even if it is not an accurate indication, of the
complexity and reliability of the system. For example, depth and width of
class hierarchy, total number of classes, number of classes newly developed,
number of classes re-used, number of attributes in each class, encapsulation
of data in the class, number of methods in the class, reusability of operations,

and length of operations in the class [LKZS00].

5.2 Testing

The main objective of testing is to find errors in a certain system. The

successful test is the one that finds the errors that have not been noticed at all. The

-61-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

developer has to do his best to build tests that uncover errors systematically in a
minimum amount of time. Testing assures that software intended functionality are
met as they are designed, performance requirements are met, and assure the

system quality and reliability [TESTO01].

Testing is divided into black box and white box testing. Black box testing is
usually conducted when there is a component with certain specifications. It is
enough to verify that the specifications are followed up strictly. White box testing is
usually done to verify that a component is conforming to a design. Systems that
have a small number of lines of code can give a very huge number of test cases that
cannot all be checked [TESTO1].

The testing process consists of three main stages: Component Testing,
Integration Testing, and User Testing. All systems must pass through all these
stages except for small ones. They are further divided into five stages as shown in
Figure 11. Other testing stages may be repeated if defects are discovered in later
stages. It's an iterative process where information is feed back from later stages to

earlier ones [SI95].

Unit testing is concerned with each component separately. Each component is
tested separately without other system’s components. Module testing stage makes
sure that a module, which is consistent of independent components or abstract data
types, is working according to its specifications without other parts of the system.
Sub-systems is consistent of collections of modules that compose the sub-system
interface. The most common problems in sub-system testing appear from sub-
system interface mismatch since every sub-system could be independently designed
and implemented. System testing is mainly concerned with testing the integration of
the different sub-systems and system components. System testing has to confirm
that functional and non-functional requirements are met. The final stage comes at
the user acceptance testing where users provide real data, validate user

requirements, and exercise system’s performance [SI95].

An object-oriented application has a testing model where every unit is tested
separately. When integrated with others they have to be tested again. The system
starts with simple components that are tested separately. Simple components are
integrated with each other to form modules. Modules are integrated to form sub-
systems. Sub-systems are finally integrated to form the complete system. The level

of integration is less visible in object-oriented applications. Data and methods are

- 62 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

formed to build an object. Testing an object corresponds to unit testing in figure 10.
Module testing is equivalent to testing a component in object-oriented where a

component could be composed of more than one object [SI95].

Unit Testing

Module Testing

\ 4
System Testing

Y
Acceptance Testing

Component Testing Integration Testing User Testing

Figure 11 The testing process [SI95]

5.2.1 Testing for Reliability

Reliability is the main factor by which a system can get its users’ acceptance. A
user can accept an inaccurate result from the system, but he can never live with his
system always unavailable. Performance and stress testing cover these aspects
efficiently and discover unseen errors early enough.

Performance testing covers all aspects of software by which a system can fail
under abnormal circumstances. The user’s main concern is to measure throughput,
stimulus-response time, or the availability of the system. There are a number of
goals that the developer has to assess when doing performance testing [VFWE96]: -

1. Test cases are designed for performance testing not for functional testing.
2. The matrices needed to assess the comprehensiveness of the test use case

have to be defined.

- 63 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

The matrices needed to assess the effectiveness of different test strategies.

4. Define the relation between test strategies in order to tell how one strategy
could be better than another.

5. Testing has to be done on more than one hardware platform or program

version when applicable.

There are other performance factors that could be measured like machine CPU,
disk I/O access, database access rate, and so on. Note that it is sometimes
impossible to satisfy all the resource requests. For example, there might be a
request to minimize the hard disk space and minimize the memory usage as well,

which may not be applied in most of the cases [VFWE96].

In order to do good performance testing, performance requirements have to
be gathered from the users. There should be a very clear specification document
that clears out all the performance tests that should be conducted. For example, the
document may include simultaneous access, load testing, availability under load
testing, expected average response time, and so on. However, such requirements
are not usually gathered and if they are found, it may be very difficult to fulfill some
of them [VFWE96].

Stress testing extends the normal load testing beyond the maximum until the
system fails to ensure ‘fail-soft' concept and show up hidden defects. Fail-soft
concept ensures that the system will not cause data corruption or unexpected loss of
user services if the system fails under abnormal circumstances of unexpected events.
Moreover, stress testing may show defects that might not appear in normal
circumstances. Although, It could be argued that these cases could rarely occur, it is
important to know what stress testing will come up with. A major defect that stress
testing could show it early is memory leak. An application may perform perfectly
under normal circumstances or if it is most of the time running in a certain path. A
memory leak could occur on the long run, which can cause of course data loss.

Stress testing could show this defect very early [SI95].

5.2.2 Testing Strategies

A testing strategy is a general approach for testing rather than a method of
composing certain tests for experimented systems. The most applicable ones during

the lifetime of a project are [SI95]:

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

1. Top-down testing: where testing is started from most abstract components to
the bottom.
2. Bottom-up testing: where testing starts from the smaller components to the
top.
3. Thread testing: which is used for systems that execute transactions on
multiple processes or threads.
Whatever testing strategy is adopted, it preferred to do testing incrementally

through sub-system then system testing.

Top-down testing is executed through verifying high-level interfaces then
breaking down and implementing the lower-level components and testing them. It's
important to note that top-down testing is coupled with top-down programming
where testing is always done with no hard separation. The main advantage of top-
down testing is that it ensures a very early limited version of the system. This
demonstrates the feasibility of the system to the management. Validation as distinct
from verification will be available also to the users where feedback could be captured
in early stages of development. However, strict top-down testing is not applicable
because it is really difficult to simulate all the interfaces. It also requires from the
user to feed the system with valid inputs and the system must simulate valid replies.
It may be also very difficult to simulate very complex routines with diversified return
values. This requires a very good knowledge of the final results and their
calculations which may not be available in the early stages. Object-oriented systems
can adopt this strategy on the level of components, but it cannot be applied to
systems that are composed of objects which are usually building up the system from
bottom to top [SI95].

On the other hand, bottom-up testing works first on the level of the
fundamental components and then build the lower level components to make up the
higher levels then testing is repeated over the new ones. Testing drivers, which
simulate the environment behavior, have to be always implemented to verify the
components specifications. Combining top-bottom development with bottom-up
testing requires almost the whole system implemented before testing can begin.
Architectural problems are most likely to appear and code rewriting may be required
which leads to staring testing from the beginning. However, bottom-up testing is
more feasible than top-down testing which almost impractical to conduct especially

for object-oriented systems [SI95].

Thread testing is an event-based approach where there are events that trigger

- 65 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

actions. This strategy can be only used after processes or objects are integrated and
individually tested. It is very difficult to identify all the possible scenarios of inputs
and expected outputs. However, the most exercised ones must be tested very
carefully. Thread testing should start first by identifying as many threads as possible
with the same inputs or with different inputs as shown in Figure 12. Testing then
starts by examining one thread at a time with one input. The next step is to test the
same thread with concurrent inputs. Later, a versified number of inputs is applied to
the system with different threads. Note that this is not a stress testing, this testing
is intended to tackle the system behavior with concurrent users. It is important to

note that web applications are inheritably thread-based systems [SI95].

11(P1)
13 (P1) o
11(P1)
12 (P1) P2 01 (P5)
13 (P1)

Pa 02 (P4)

Figure 12 Thread testing [SI95]

- 66 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Chapter 6
RELATED WORK

This chapter paves the way for the suggested design patterns which will be
presented in the next chapter. It discusses some of the offered solutions that are
related to these patterns. The focus here is on solutions, which do not have to be
design patterns, but do tackle problems for web applications in general and
performance problems in particular. They could be solutions that discuss the
problems of the suggested design patterns from a different perspective. The
purpose is not to compare others’ solutions to the suggested design patterns but
rather to give an overview of related research work and contributions and to provide

a wider context of understandability.

6.1 Active Query Caching for Database Web Servers
The work on Active Query Caching [LQNJ99] presents a solution for caching

dynamic content on proxies. They mainly retrieve database queries through a Java
Applet. Web caching proxies are the main solution for enhancing web applications
performance nowadays. However, they cannot handle dynamic content since they
cache only static files. The collaboration scheme goes as follows between the active

proxy, an experimental proxy, and the web server [LQNJ99]: -

1. The web server passes simple query processing to the active proxy

through the query applet.

2. The query applet can answer queries whose results are a subset of other

cached queries.

Figure 13 shows the architecture of the solution which involves a client, a
proxy, and a server. The client sends a query request through the front end which is
sent to the proxy as an HTTP request. The proxy checks if the URL has a query
applet to invoke; otherwise, forwards the request to the web server. The web server
translates the HTTP request to an SQL query and sends the result back to the proxy
as an XML file. The query result may be sent associated with a query applet to the
proxy. If the same query is called again, the proxy will return its result using the
query applet. Other restrictive queries may use existing cached results if possible

otherwise they are forwarded to the web server to be processed [LQNJ99].

-67-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

;
Databuase
Server

Client Proxy Server

Figure 13 Active Query Caching Architecture [51]

6.2 A Pattern Language for Content Conversion and

Generation on the Web
The research work of Vogel and Zdun [VOZUO02] presents a pattern language

targeting software architects that build highly dynamic, personalized, and content-
centric web applications. The research helps in building a web application that can
serve clients in a consistent and efficient manner. The pattern language consists of

seven patterns which handle content representation and its accessibility [VOZUO02].

There are some patterns intended to separate the roles of the web developers.
So, the web design, developer, and content provider can work in parallel. Figure 14
shows an overview of the pattern language and its interaction. They are briefly
described in the following points [VOZUO02]: -

1. GENERIC CONTENT FORMAT: Content provided from different sources
of information, like RDBMS or legacy systems, should be represented in
an application-independent standard format like XML. CONTENT
CONVERTER pattern is used to convert to the standard format. This
generic format will be used on the web application before processing.

2. PUBLISHER AND GATHERER: It is a central point of management
where content conversion is triggered, content consistency is verified,
lookup in the cache, and other management tasks are provided. It is an
abstraction layer by which different protocols and platforms can be used.

3. CONTENT FORMAT BUILDER: It solves the problem of building
content in different formats and reuses the same code. It provides a
common layer by which content format builders abide without hard
coding.

4. CONTENT FORMAT TEMPLATE: It provides the content editor with a

- 68 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications “Es“‘
b

ety o8

Ci
& Come

o

20v?,

o

simple way to easily add content without going into technical knowledge.

There are special template tags that the content editor can replace.

5. FRAGMENTS: Tackle the development of the web pages by splitting
them into fragments. It is the same concept of Divide-and-Conquer.
For example, a page can be divided into a header, a left navigation
menu, a body, and a footer. Further fragments can be introduced inside

every fragment.

6. CONTENT CONVERTER: It provides a mechanism to convert the
content from one format to another or update the content according to
the change rules. Every format has a tailored converter that has input,
conversion/update, and output processes.

7. CONTENT CACHE: Makes the dynamic content highly available by
providing it inside a central cache. An invalidation mechanism is

provided to control the lifetime of the cached objects.

Message Redirector for
syrmbolic servive abstraction

Message Redirector Service Abstraction Layer
Service-hased
Publisher can act abstraction for
as a Message integrating thlnsher and Gatherer
Redirector multiple is a Facade for the
Annels conversion, generation, and
Publisher and Gatherer] caching components
Publisher and Gatherer =r G
pravide central content b'fm;as”gﬂ mﬂfr‘“‘r
management asks on top mnugrggon generation Facade
of Generic Content Format and caching
Generic Content Format [Content conversion ﬂ\
Stored in
cache
Aliematives for
niormetion| | N
architecture feneration
elements |
Fragments Content Format Builder Content Format Template Content Converter
Fragments arg
basic cache Builders/Templates
elements create Fragments
Content Cache
Results stored Confent conversion, generation,

in cache and caching architecture shield

by Publisher and Gatherer

Figure 14 An Overview of the Pattern Language for Content Conversion and Generation on the
Web [VOZUO02]

6.3 Patterns for Web Applications

Abstract Form, Active View, Bus Class, and Active Proxy are four design

- 69 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

patterns suggested for web applications by Bonura, Culmone, and Merelli [BDCR02].
They suggested these patterns to improve the effectiveness and efficiency of the
development process. They target dynamic web applications where the business
logic layer generates dynamic content from the back-end systems and sends it to the
front-end (browser) [BDCRO02].

The Abstract Form pattern is designed for web pages which carry information
essential for creation of the next page. Abstract Form Pattern shows a clear
communication between a form, front-end, and a servlet, business-logic. The
pattern shows that a servlet can create a form and the form can have a connection
to a servlet. Parameter checking is also covered in this pattern. Formal rules are

used to control parameters and their check [BDCR02].

The Active View pattern makes use of the Observer pattern suggested by the
four Gangs [GEHR95]. The Active View pattern is built over a subserviet (A Subject
Servlet) and an observiet (Observer Servlet). There can be more than one observiet
watching over a subserviet. It gives a method to update an active view when its
content is changed. The business logic layer sends a signal to the front-end to
update its view. The back-end contains triggers that notify the business-layer for

any changes to let it update its views [BDCRO2].

The Bus Class pattern is concerned with the use of the distributed objects in a
connectionless protocol like HTTP. It helps the developers to handle distributed
objects in the business logic layer without losing the connection with the front-end
layer. An ID parameter is used to recognize the clients. This pattern is built on the
pattern “State” suggested by “the Gang of Four” where it can be extended to have

objects with dynamic properties [BDCR02].

The Active Proxy pattern brings the concept of the static proxy to the dynamic
context. Because static websites can be cached on the static proxy level, users do
not suffer from performance problems. Almost all the business logic that the proxy
has to do is to check the validity of the cached page against the one on the server.
The goal of the active proxy is to provide the page saved on the proxy with a state
management solution pattern. The purpose is to refresh the page depending on its

state using the refresh pattern.

6.4 Meta-Patterns

The research done by Moisés Daniel Diaz Toledano [TM02] recognizes some

techniques that minimize the complexity of the design patterns. The researcher

-70-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

introduces some patterns, which are called meta-patterns, that aim to reduce the
complexity of patterns. It tackles a lot of issues like encapsulation, standardization,
and decoupling complexity by introducing indirection to functions, classes,
components, subsystems, etc. The main meta-patterns introduced here are Meta-

Pattern Encapsulator, Meta-Pattern Adder, and Meta-Pattern Decoupler [TM02].

Meta-pattern Encapsulator checks for a distributed functionality among
different classes and simplifies the design with a new role to a certain class. Meta-
Pattern Adder modifies or adds certain functionality in a class by introducing a new
intermediate inheriting class that encapsulate this functionality. The Met-Pattern
Decoupler breaks down a complex functionality in a certain class by introducing an
intermediate class that contributes with the original one to serve the required
functionality. These general meta-patterns are recognized in more specific meta-

patterns like Validator, Persistor, Set, and Logger [TM02].

Validator meta-pattern breaks down a complex validation process by
introducing an intermediate class that does only validation for the given parameters.
Persistor meta-pattern makes persistent data, like files, available in a more flexible
way. It does so by introducing a decoupler class called Persistor. Set meta-patterns
add a new role Set-Mapper which gives information about a collection of objects,
which are generally of the same type. Logger meta-pattern encapsulate all the
logging functionality that are distributed among different classes in one class. This
allows the system to register information about its behaviour in a very standard way
[TMO2].

6.5 Capacity Planning for e-Business
Although Cranmore et al’'s [CAUJ02] research deals with capacity planning and

does not handle patterns in software development, their solution seems to help
greatly in enhancing the performance. It also shows how to control capacity so that
performance solutions do not become a burden. Three patterns are suggested in
their work, namely: Build-in Redundancy, Avoid Overbuild and Share Resources
Carefully. There are also three patlets, in order to avoid improper implementation of
the patterns, which support the main patterns. Figure 15 shows a roadmap for the
patterns, in solid boxes, and the patlets, in the dotted boxes [CAUJ02].

-71-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Underbuild

o

Build-in

Rideoutthe @ |
storm politely : Redundancy

Avoid Share Resources
Overbuild Carefully

Figure 15 Capacity Planning Roadmap [56]

Build-in Redundancy proposes the idea of having redundant capacity of
hardware or software. This idea of redundant capacity increases the e-Business site
availability and enhances performance. The decision to have a redundant capacity
must be carefully taken according to the costs and the benefits. So, if there is an e-
Business site which survives with three servers, then an extra server is considered
an unneeded overbuild. However, if benefits surpass costs, then redundancy is
needed [CAUJO02].

6.6 Conclusion

As shown from the above research paper discussions, there are always
solutions for performance in one way or another. The first three research papers
mentioned in 6.1, 6.2, and 6.3 provide a cache solution which is a direct
performance optimisation mechanism. The fourth research paper mentioned in 6.4
provides meta-patterns for patterns to break down their complexities. It also
provides an indirect performance optimization solution by structuring the design
patterns in a robust way. The fifth research paper mentioned in section 6.5 provides
a set of capacity planning patterns to optimize performance through hardware

redundancy.

From all of these research efforts, it is shown that patterns play an important
role in guiding the developers through the different optimization mechanisms. The
research in this thesis groups performance optimization, and complexity breakdown
solutions together with a resource monitoring solution to build up a pattern language
focusing on performance issues. This pattern language provides solutions for the

most common performance problems in database-driven web applications.

-72-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Chapter 7

THE PERFORMANCE PATTERNS

Web applications are by nature based on multi-threaded architectures. This
enables them to respond quickly and efficiently to the hundreds or may be thousands
of concurrent user requests. The database driven web applications have more
complex architectures because of the inherited database management system
complexity. Although, the complexity is decoupled in every layer (web server,
application server, database), the web application has to always commit itself to a

certain response time, show stability, and be available all the time.

Because of the inherited multi-threaded nature of the web applications, there is
always competition over system resources and it becomes very difficult sometimes to
trace any resulting problems. There are always concurrent user requests for
dynamic web pages, which in turn trigger requests to the subsequent database
access layer. Through the path to the database, there is a competition over
resources such as database connections, or database objects. If the web application
is not ready with good solutions such as the ones mentioned in the up coming

sections, the system would always be in chaos.

Some of the patterns outlined below wrap solutions that have been
implemented in a wide range of previous software and hardware systems. They are
introduced in a pattern format and concentrate on performance as the main problem
to be solved. Some of the contributions of this research have been added either as
enhancements to existing patterns or as completely new patterns as explained in

section 1.4 (Outcomes and Contributions).

-73-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

7.1 Pattern 1: Database Connection Pool

7.1.1 Context

The Database Connection Pool (DCP) solves the problem of database connection

acquisition and release through recycling.

7.1.2 Problem

Creating a database connection is very expensive since the process requires
resources that consume time and memory. A connection is a session with a specific
database where SQL statements are executed and results are returned within the
context of a connection [JAVA1l.3]. In database driven applications, creating a
database connection is a very demanding activity especially those ones that are
designed for multi-access. The problem here is that only one user can acquire a
database connection to retrieve information from the database. If users kept
creating database connections, there will soon be memory overflow which would

eventually cause system instability.

Creating a database connection for every request is too simple a solution and it
can never succeed with the applications that have concurrent access. Another naive
solution is to keep a created database connection for every application session.
However, applications that have thousands of users, like E-Commerce applications,
will have severe memory leak problems that cause system instability which will
ultimately get the applications down since there is no management over the
database connections. The problem here is the expensive acquisition and release of
database connections which have to be done by the database driven applications but

they also have to be stable and responsive.

-74 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Resource User '—\ Resource
N ,."/ *.,}: nvironment
N/ ;?cqu1re| Resource Pool | ® |

-

“T~% _o ._f/’: :ﬁ_*’ "ll

L . |

- \
release - \ . / || ||
|I II

Figure 16 Resource Management [57]

7.1.3 Forces

The following issues must be resolved to solve the pooling problem [KMJP02]: -
e Performance: where wasted CPU cycles should be avoided.

e Predictability: resource acquisition must be predictable even if it is not

predictable from the resource environment.
e Simplicity: the solution should be simple to minimize application complexity.

e Stability: the solution should minimize the system instability.

7.1.4 Solution

Figure 16 shows that the solution is to have a pool of connections to save users
from the tedious acquisition and release process. This pool exists in the application
memory and serves as a recycling place where connections that are no longer used
are returned to the pool for future access. However, since database connections
consume a large space in memory, a good strategy has to be utilized for connections

acquisition and eviction.

Database connection acquisition defines how connections are acquired from the
database management system and stored in memory for use. The level of
acquisition can be lazy, eager, or partial. The lazy acquisition delays the expensive
database connection acquisition until the connection is demanded and then it stores
it in memory [KM01]. The eager acquisition prepares all the database connections
before they get acquired [KMO02]. The partial acquisition implements eager
acquisition at one stage to ensure quick satisfaction for connection requests and then

it starts lazy acquisition to minimize memory consumption until there is a need for it

-75-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

[JPKM02]. The optimization criteria should be decided according to the system

available resources of CPU, memory, and availability of other resources.

Software resources are precious because they are limited, even if there are
several of them. The resource users can be more than the number of resources
which may result in unstable situations if not handled properly. Eviction discusses
how and when to release resources. The problem is that systems may keep
acquiring resources without releasing them which may cause system instability
[JPO1].

However, not all resources should be released, as some of them may be
expensive to re-acquire [JPO1]. There are some issues that must be taken into
consideration if connection eviction is decided like the frequency of using a
connection, CPU utilization, and available memory size. Moreover, the user should

not suffer from the selected solution.

Eviction uses a certain strategy like Last Recently Used (LRU) or Least
Frequently Used (LFU) to control the life cycle of the resource. The resources that
are frequently used or recently used are marked by the application. The evictor,
which can run periodically or in demand, releases only those resources that are not

marked and the other ones continue to stay in memory for later use [JPO1].

A better approach to implement the database connection pool is to consider it
as a variation of the cache pattern. Actually the main difference between the cache
and the pool is that the cache has items with unique identities and may be of
different types but the pool has items of no identities and of the same type. So to
retrieve a cached item, the unique identity has to be provided but the connection
pool returns an item directly without providing any identity. So, think of the
database connection pool as a cache with only one identity. So, if you provide that
common identity to the pool, it would return a connection all the time since all of

them have the same identity.

Figure 17 shows the class structure of the pattern. It shows that the database
connection pool extends the Pooling Pattern [KMJP02] and uses other patterns like

eviction, and strategy.

-76-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications g

has)
ResourcePool Evictor
\ uses
extends uses
\ Strategy
DBConnectionPool Resource

has

DBConnection

Figure 17 Database Connection Pooling
Figure 18 shows the user interaction with the database connection pool. As

shown from the diagram a new connection is not established until the database

connection pool is checked for free ones.

X

 Llsar DEConnaction | | DEConnaction DE Resource
: Pl Enviranrmant
| acquire |]]
1 | I
U ﬂr&acquired? |]
| ! | I
| T Ac fuire | N]
| |]
| | [
DE Cgnnection
| | - 9 |
| ACCRSS |1J | U
I 0 |
j=————- 1 |
| release Rssuurcq | |
H 1 | I
| |]
1

F|gure 18 DB Connectlon Pool Sequence Dlagram

-77-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

7.1.5 Consequences
e Performance: Establishing a connection to a database represents the major delay

to any request. Any one who has worked with a database will definitely
appreciate having a connection pool in his application because the response time
will definitely be much better. Although there is a management time overhead
for acquiring and releasing connections, it is acceptable by the systems if the pool
is tuned correctly.

e Stability [KMJP0Z2]: The applications that implement connection pooling
experience a large degree of stability because acquisition and eviction solutions
maintain the resource environment and ensure that there is no leakage in
resources.

e Predictability [KMJP02]: A database request has fairly good and known response
time if the database connection is served from the pool. On the other hand
requests that constantly have to acquire connections from the database have
long and unknown response times.

e Deadlock: deadlock situations may be reached because of race conditions if the
connections are not properly acquired and released. A race condition can happen
if all connections are not released and a thread acquires a connection and the

pool cannot allocate one.

7.1.6 References
e Data Sources: Some application servers, like IBM WebSphere Application Server,

implements the database connection pool using EJB technology.

e Thread Pools: Systems like web servers and application servers may need to
satisfy hundreds or thousands of concurrent user requests. In order to maintain
a good response time, they implement a pool of threads to handle the concurrent
user requests instead of creating and releasing a thread for every request.

e Caching: Caching is exactly like the database connection pooling from the basic
concepts. However, object identity is more important in caching unlike the

database connection pooling.

-78-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

7.2 Pattern 2: Cache
7.2.1 Context

Systems that need to bring objects to the memory of the server (Server-side
caching) to optimize for performance can use this pattern. This pattern applies to
database-driven applications where queries are the primary key player in retrieving

information.

7.2.2 Problem

Database Queries may take a considerable amount of time to come up with a
result and the query result might be small and may not be expected to change in the
near future. It is not abnormal to see queries that take more than one minute to
complete. Queries can take more than one minute on very large databases. One
minute delay combined with other delay factors is considered too much time for a
web application. It happens also that tuning the database, like creating indices, may
be space consuming for very large database. Creating indices solution may not be
recommended for all database objects. Web Applications sometimes interact with
such databases. So, web applications must have techniques to overcome the

database delay.

7.2.3 Forces

e Performance: The performance problem is a key problem that cache can greatly
reduce. It should minimize the role of the database and network by saving the
database object in the server memory which is a very fast storage area to
optimize performance.

e Reliability: Systems that have different components cannot guarantee the same
service level. For example, a web application may consist of a web server, an
application server, and a database. Every one of these components can have a
different response time due to many other internal factors. If you consider a
database query request trip, you will find that it passes through the web
application, network connection, and the database itself. Caching should
minimize the contribution of the network and the database; hence, the system

must show more stability.

-79-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

e Complexity [KMIP03]: The pattern should not complicate the resource acquisition
and release process. Moreover, implementation must maintain the existing code

uniformity and not change its business logic.

7.2.4 Solution

A web application can use different caching techniques to reduce latency,
minimize network traffic, and consequently reduce timeouts. Caching, as defined by
Brown [BBO02] is “an area of storage existing behind the scenes which is used to
store copies of previously requested objects that can be quickly accessed when
needed.” It increases the performance and makes the web applications more reliable
[BB02]. Caching is not a new technique; it has been used in many software fields
and on different aspects. There is special caching hardware, like cache proxies,
which cache the static web content. There is caching even on the client machines so
that one need not download the static content, like images, every time. Clients
become satisfied with the quick response which increases their trust on the web

application.

Server-side caching is a performance enhancement technique that is used in
many web and non-web applications. It brings the expensive results to the
application memory. Ideally, a database query result is cached. A caching solution
must handle the object expiration to ensure consistency. When the application
invokes the query it looks up first in the cache before accessing the database. If
looked-up objects are found and have not expired, then they are returned back to
the client without passing through the database bottlenecks to establish a connection
and run the query. The pattern will try to abstract different caching solutions and

leave the implementation to the developer.

The Cache pattern is similar to the Database Connection Pool pattern in terms
of resource acquisition and release. However, caching objects always have a unique
identity by which they can be accessed. The Database connection Pool does not
assign an identity to the objects [KMIP0O3]. Also, cached objects can be shared
among multiple users. On the other hand, the Database Connection Pool does not

allow sharing.

The cache consists mainly of entries and an evictor, as shown in Figure 19.
The cache entries are environment resources that are usually expensive to acquire.
The evictor is responsible for periodically removing the entries that have not been

used for a long time [KMJP03]. It can be configured to use different strategies like

- 80 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

LRU (Last Recently Used), or LFU (Least Frequently Used).

The strategy pattern

mentioned by the four Gangs can be used here. By referring to Figure 20, one would

notice that the cache does not always return directly to the user. The cache entry

might have expired or may not be there which leads to the allocation or reallocation

of the cached object. The other benefit of this technique is that the cache can build

itself up through time according to the user needs. The first request for a certain

database query will put data into the cache and later requests will get it from the

cache.

O

[Resource
User
“ ext#nds
|
¢ uses ‘
) has has
Evictor Cache CacheEntry
Figure 19 Cache Pattern
- Lser . Cache . CacheEntrey . Resouree
— Ervdronmerit
|fetch cache d dats]

U \Tl lonkup Entry

acquin resaurs

AN

A

|

|
e

i

L

Figure 20 Caching Pattern Sequence Diagram

-81-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications “Es“‘
b

Sty e

& Com
%
00 oo0°

Planning for caching can highlight the performance optimization path for the
developer. Planning can start from the design phase where caching points can be
depicted over the object interaction diagrams, Figure 21. Planning for caching can
be a quite simple if there is a database access layer designed in the system. It
would be a good idea to have a separate artifact that has a roadmap of all the
caching points. The Cache Roadmap will help in reviewing the performance
optimization through caching by the end of the development phase. Moreover, this
document can be combined with other documents that tackle other performance
issues and a general performance optimization session review can be conducted on
the system before the end of the development phase. Table 4 shows a
recommended document structure where all caching points are listed against their

class methods and their validity period.

Cache point N
A |
s
e
i
- 1: fetch 2 refresh
¢ o f -
_‘)-i Breaking - Mewrs Content
B e Prorvidor
’ \\ 4: 3

User

Figure 21 Caching Points shown over the collaboration diagram

Cache Class Method Validity Description
Point
1 BreakingNews.fetch() 1 hour Any additional
information
2 SportsNews.fetch() 2 hour Any additional
information

Table 4 Planning for Caching Document

The validity period assigned for every cache point in the Cache Roadmap can
be accurately specified if type of the information is well known and the users
behavior is known or correctly anticipated at least. For example, if the information is

changing every one hour and the user demand for this information is very high then

-82-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

it the validity period might be one hour or less. However, if the information is
changing quickly but it is not highly demanded by the users then the validity period

may be set to one and half an hour.

7.2.5 Consequences
e Cost versus Performance: The decision has to be made on how to cache database

objects. For example, all the query results could be cached if they will not
consume a lot of memory and they are highly demanded. Moreover, the queries
that consumes a lot of time to return are the best candidates for caching
especially if they are highly demanded. Other queries may be neglected either
because they return large results that memory cannot accommodate or because
there is no high demand for them. In all cases the cost of memory usage due to
caching must be controlled so that the application does not suffer memory over-
flow. If memory size is very high, caching policy is known, and caching size is
controlled, then performance will be enhanced noticeably.

e Consistency: The application has to have a policy by which caching can be
invalidated to guarantee that it will contain the latest database object
information. The delta between changing information in the database and
updating it in the cache cannot be avoided. However, tuning caching periods,
derived from the Caching Planning document, will always help to minimize this

period or at least it would not be noticeable for the users.

7.2.6 Anti-patterns

Embedding caching inside the database access objects may be tempting, as
SQL query caching will be automatically done for the developer. The problem is that
query results are always cached regardless of the result size. Systems that have a
large size of query results must be given control on whether to cache the results or
not. So, caching blindly along the way is not recommended. However, binding the
cache pattern with the database connection pool is good if there is a safety exit by

which the developer controls the caching criteria.

7.2.7 Related Patterns

e Read-ahead Caches: A system can increase its efficiency if some objects are
cached upon startup. This gives a good experience to the users since they will
not feel any sort of delay. The Read-ahead caches can guarantee an existing

instance ready for read before the read operation exists actually [KMJP02].

-83-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Synchronized Cache: Where cached data has to be always synchronized with its

original source, e.g. database [KMJP02].

Lazy Load: where loading data from database to memory is not done until it is
really needed instead of explicitly load all data in memory which hurts the

performance [FM02].

7.2.8 References
Caching solutions are very widespread. Almost all applications do caching in

one way or another. The following are a few examples that utilize the caching

concept: -

Web Browsers: Almost all popular web browsers such as Netscape and Internet
Explorer does client side caching. Special Meta tags can be set in the web pages

to let the browsers refresh the content from the web server.

Hardware Caching: This is well shown in almost any CPU where caches are very
fast areas to avoid expensive program access. As the CPU cache size increases
the programs response times increase.

Website Accelerators: They are special hardware devices that save the content

closer to the end users. They usually have a large memory capacity.

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

7.3 Pattern 3:; Static Enabler

7.3.1 Context

Dynamic web applications that do not rapidly change their content, and need to

optimize their performance can use this pattern.

7.3.2 Problem

The Internet was a major breakthrough in the field of information technology.
It was an easy method to share information and as part of this evolution, people
started to post their information on websites. A website is a designed location on the
Internet where information is published. It normally contains a mixture of different
media objects, like images, flashes, and text. Static websites emerged as the first of
this technology. The only backend application needed to serve a static website is a

web server which serves pages directly to the users.

Static web applications are sufficient for small businesses where information is
not expected to change quickly. However, if the business size gets bigger, the need
for dynamic content becomes mandatory. The main issues that a dynamic web

application is needed for are: -

When Content management for a static website is difficult.

2. When A static website can’t integrate with other legacy systems. A dynamic
web application is mainly needed to achieve an interactive communication
with the website users and the existing backend.

3. When Legacy systems have tons of information that can take a very long time
and much disk space to be manually posted on a static web application.

4. When periodic and automatic changes of content cannot be supplied using a
static website

5. When a content management pool, e.g. a database, better represents logical
and consistent relations of components in a web application.

On the other hand, a static web application has the following benefits over a dynamic
web application: -

It responds much more quickly.

It is more robust and reliable.

It has fewer problems.

A

Implementation is done more quickly than for a dynamic website which can

have many complexities in the backend.

-85 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

5. It saves server CPU cycles and memory utilization.
The problem here is that the dynamic web application should benefit from the static
web application features and at the same time stays dynamic and maintains content

relations.

7.3.3 Forces

e Performance: Converting dynamic pages to static should optimize for the
performance and not the opposite. The resulting text size of the static page
should be less than or equal to that of the dynamic page.

e Reliability: The web application reliability should not drop, but it should be
enhanced.

e Complexity: The pattern must not add more complexity to the usage or
implementation of the application.

e Page Reference: The existing content relations that are represented by the web
application should not be spoiled.

e Content Validity: The pattern must guarantee that the static pages contain valid

content all the time.

7.3.4 Solution

Some applications provide content management tools that build the required
content and publish it as static pages. The limitation here is that large database
systems can consume a huge disk space if they are published as static pages. The
other choice is to have a dynamic web application and accept its limitations for the

sake of other benefits as mentioned above.

However, a dynamic web application can benefit a lot if there are static pages
bundled inside it for the following reasons: -

1. Highly accessed dynamic pages can be converted to static ones to introduce a
faster response, while still keeping the dynamic page for other references and
at the same time saving disk space.

2. The decision can be taken to convert all the dynamic pages to static or just
leave the dynamic ones according to the capabilities of the working
environment.

3. Some backend systems can be temporarily shutdown if their counterpart

dynamic pages are converted to static.

- 86 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Dynamic Page

uses
- uses
— uses
Page Converter Page Mapping Repository
\
us generates ses
N \/
Scheduler Static Page Page Reference Keeper

Figure 22 Converting Dynamic Pages to Static ones structure
The pattern consists of four components as shown in Figure 22: -
1. Page Mapping Repository: Where the full path of the static page is set for the

dynamic page. Only the pages that will be converted are specified here.

2. Page Converter: which is responsible for converting all the dynamic pages

specified in the repository to their counter part static pages.

3. Page Reference Keeper: It makes sure that the embedded links inside the
converted page are pointing to the converted static pages, if found for that link.
It works directly with the Page Mapping Repository. However, its role will be

shown when the Page Mapping Repository is filled with page mapping entries.

4. Page Conversion Scheduler: 1t schedules the run of the page converter to update

the content inside the static pages.

The ideal usage of the pattern is shown in Figure 23.The use of the pattern
starts by wrapping all the page links that will be converted to static using the Page
Reference Keeper. It is recommended to wrap all other pages for future conversion.
Page Reference Keeper will always get a valid link even if there is no static page for
the specified dynamic page. The repository can be filled either before or after
wrapping all the links. Actually, the Page Mapping Repository is the way to control
the conversion. The repository administrator can remove all the entries to make it
pure dynamic, fill it with all the page links to make it pure static, or make a mixture

of this and that depending on the system capabilities.

-87-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications “Es°
b

O

& Com
“0 =

One may think of the Page Converter component as a client to the system
which simply makes scheduled requests by the Page Converter Scheduler. 1t makes
use of the web application backend, which is already capable of sending static
content out of the dynamic pages, to retrieve the content and save it on disk. This
makes the pattern completely independent from the technology used to build

dynamic or static pages.

: Scheduler . Page Conveder

dant Lrl
u ACCESS |
I
I
I
I
I
I
I
|
I
I
|
I
|
I
I
|
I

: FPage Mapping T Dynamic Fage :Fage RefeEnce
Repo gton Keepar

| - Static Page

dynamic page name

[;\ convert |

|
|
|
|
|
|
|
L!'Lheckembedde d IiQI-al
|
T

-

ACCESE I

—— T

| walid referenceJ

i
|
|
|
I
I
|
I
|

I

I

I

] | u
L matchad stlmt: reference

|

I

|

stafic paoge

ey I
J | : | T

Figure 23 Converting Dynamlc to Static Page Pattern (Ideal Scenario)

gore

For example, Assume that there is a web application that contains five pages
pagel.jsp, page2.jsp, page3.jsp, page4.jsp, and page5.jsp and they are interlinked
as shown in Table 5.

Dynamic Page Embedded Links
Pagel.jsp - page2.jsp, > page3.jsp, > pagesd.jsp
Page2.jsp - pagel.jsp, > page3.jsp
Page3.jsp - page4.jsp, > page5.jsp
Page4.jsp - page2.jsp, > page4.jsp, »> page5.jsp
Page5.jsp - page2.jsp, > page4.jsp

Table 5 Example for a web Application Page Tree

- 88 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications L.?“Es“‘
b

3%

Coj
&
m(‘
%
00 aou°.

Assume also that the Page Mapping Repository contains the following mapping

Dynamic Page Full Path Static Page Full Path
http://<dynamic_path>/pagel.jsp /<static_path>/pagel.html
http://<dynamic path>/page2.jsp /<static_path>/page2.htmi
http://<dynamic path>/page3.jsp /<static_path>/page3.html
http://<dynamic path>/page4.jsp /<static_path>/page4.html

Table 6 Page Mapping Repository
The above table says that all the dynamic pages on the left should be converted from

the <dynamic_path> server to static pages and saved on the physical machine
path <static_path>. The assumption is that Page Converter has full access to
dynamic and static paths. Moreover, a web server should serve the static path.
Figure 24 shows that the page converter can work simply as an end user that
retrieves the content of the dynamic pages and saves them on different physical

machines.

Static Pages Physical Path

£ 3 €3

Fage
Canverter

il

Cynamic Fages full path

Figure 24 Page Converter
Page Converter starts its work by listing all dynamic pages on the table

pagel.jsp, page2.jsp, page3.jsp, page4.jsp, converting them, and saving them as
static text format pages on the specified static path. Page Converter will run
periodically according to the scheduler to convert all the pages in the list again.

More enhancements can be added to the scheduler to trigger Page Converter only if

- 89 -

Capturing Design Patterns for Periormance Issues in Database-Driven Weh Applications g“Es“‘
Sy

2’ o,
> 3
Sty 2

20v?,

content is changed and convert only the pages that are related to that content. The
web application contains now the following pages with their embedded links
(Table 7):

Dynamic Page Static Page Embedded Links
Pagel.jsp Pagel.html - page2.jsp, > page3.jsp, > page4.jsp
Page2.jsp Page2.html - pagel.jsp, > page3.jsp
Page3.jsp Page3.html - page4.jsp, > page5.jsp
Page4.jsp Page4.html - page2.jsp, > page4.jsp, > page5.jsp
Page5.jsp - page2.jsp, > page4.jsp

Table 7 Web Application Page Tree (Dynamic & Static) without using Page Reference Keeper
If we assume that the static html pages are accessible to the end user, then

he/she will access them only once and he/she will end at the dynamic pages again.
So, before converting the dynamic pages to static, Page Reference Keeper must wrap
all the links inside all the five pages. It will make sure that there is a link to the
static page if found or it keeps the only dynamic link as is. Table 8 shows the web
application initially where the dynamic page links are wrapped by the Page Reference

Keeper. After the Page converter runs, the page links will be set as shown in Table 9.

Dynamic Page Embedded Links
Pagel.jsp - Keeper(page2.jsp), > Keeper(page3.jsp), > Keeper(page4.jsp)
Page2.jsp - Keeper(pagel.jsp), > Keeper(page3.jsp)
Page3.jsp - Keeper(page4.jsp), > Keeper(page5.jsp)
Page4.jsp - Keeper(page2.jsp), > Keeper(page4.jsp), > Keeper(page5.jsp)
Page5.jsp - Keeper(page2.jsp), > Keeper(page4.jsp)

Table 8 Web Application File Tree with Page Reference Keeper

Dynamic Page Static Page Embedded Links

Pagel.jsp Pagel.html - page2.html, > page3.html, > page4.html
Page2.jsp Page2.html - pagel.html, > page3.html

Page3.jsp Page3.html - page4.html, > page5.jsp

Page4.jsp Page4.html - page2.html, > page4.html, > page5.jsp
Page5.jsp - page2.html, > page4.html

Table 9 Web Application Page Tree (Dynamic & Static) using Page Reference Keeper

-90-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Although page5.jsp is not converted to a static one, the Page Reference
Keeper can still function and get the right reference. This feature allows the web
application behavior to stay as designed and any other expected references to
dynamic pages will still function correctly. In other words, both dynamic and static
pages are kept for use according to the need. Figure 25 shows how the Page

Reference Keeper as it works for the dynamic pages alone.

User ; Cyvnamic Pade . Page Reference ; Page Manping
e per Eepodtor
| Requests

|
check embedded links I

: i
] e
S
|
|

matched static referencilj

I

I

I

[
I

: valid reference

! I

page with proper link

= | |
==
I

I II

Figure 25 A dynamic page request in cooperation with Page Reference Keeper

7.3.5 Consequences
e Performance: Performance is enhanced greatly since the dynamic page access

process to build the dynamic page is completely avoided. The server CPU and
memory utilization are minimized as well.

e Reliability: The web application will be more robust and reliable. This increases
the availability of the web application.

e Content Validity: Content validity is controlled by the time the Page Converter
runs after the content is changed. If the system owner accepts this period then
there is no problem. However, if the content has to show up on time, then the

Page Converter must be triggered to the needed pages only.

-01-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

7.3.6 References
e Content Management Applications: there are some content management

applications that have publisher modules which buildup static pages out of the

content and publishes them on the web.

-092-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

7.4 Pattern 4. SQL Statement Template

7.4.1 Context
Applications that depend on DBMS for building their business logic and need to break

down code complexity, provide common SQL statements, or externalize SQL

statements can use this pattern.

7.4.2 Problem

An inherited nature that is found in most database-driven web applications is
that SQL statements are considered as an intangible part of the code. This may be
reasonable for the application designer as the SQL statements are the building blocks
of the business logic; hence, they must not be externalized outside the code.
Separation has been presented but in the form of a code layer to access the
database. This separation is mainly important to map relational databases to object-
oriented software. However, bundling the SQL statements inside the application

code has the following main defects: -

1. Tuning any database SQL statement requires re-compilation of the code which
may be time consuming. For example, it may be necessary that very simple
keywords should be added to the old database queries. This often happens
when new constructs are introduced into the SQL or a standard modification
across all the queries is needed.

2. Software developers play the roles of both developers and database experts,
which deviate their focus from application development.

3. Although SQL statements serve the business logic, they may be constructed
at the design phase to relief the developers in the implementation phase.
Given that the development cycle is iterative and the changes in the
implementation phase reflects back to the design phase, it would be very
difficult to map modified SQL statements back to the design phase if they are
bundled inside the code.

4. DB Experts cannot easily maintain SQL statements that are bundled inside the
code either because of their ignorance of the programming language or
because the code is very complex to the degree that it is not easily
understandable or even readable.

5. Readability and understandability decreases, as the code that generates the

SQL statements gets more complex.

-03-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

7.4.3 Forces

There are some issues that have to be considered when working with this pattern: -

e Cost versus flexibility: The quickest way to access a database from an application
is by writing the SQL statements directly inside the code. For the sake of
flexibility extra code, storage, or memory will be required. However, a very
simple change in the SQL statement may require compiling the whole application
which could be very time consuming.

e Standardization: Separating SQL statements from code must maintain the
standard SQL scripting to facilitate reading, debugging, and modifying them for
the DB experts.

e Maintainability: The SQL statement interface must be very clear at the design
phase. Although, it may be changed in the development phase. However, they
must not be changed after they go in production at runtime. SQL statements are
still considered an integral part of the business logic and modifications must be
handled very carefully.

e Complexity: The pattern must provide a solution to organize the SQL statements
and group them in a professional way. It must provide a technique also to handle
the IF conditions by which different blocks of the SQL statements are usually
grouped together inside the code.

e Reusability: The SQL statements should be available for other applications that
may need to access the same Database though they may have different

functionality.

7.4.4 Solution

In database-driven applications, there is usually a database access layer where
SQL statements are embedded. The solution actually isolates these embedded SQL
statements in an external format, for example plain text files, and may be distributed
in more than one file. In order to provide an integration interface for the

applications, SQL statements are defined as SQL templates.

SQL templates are newly introduced here as normal SQL statements with
some special tags to identify the different parts of the statements that will change
their values at runtime. Moreover, if SQL templates will be grouped together, then
there must be a way to identify every template with a unique name. The beginning

and the end of the template must be known. Although the best way to group SQL

-94-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

templates is to put them in one unit, they must also declare their group names to

prevent the ambiguity of collecting unrelated templates in one unit. Table 10 provide

more information on the recommended tags

Tag Tag Name Description Example
--@begin NAME | SQL template It identifies the start of the | -- @egi n | N\VO CE_ACCESS
begin SQL template and gives a --@group INVOICE_GRP
name to the template. -- This template allows a
Template names have to be | ~— Properaccess fo the
unique in order to — invoice table
guarantee the right access. SELECT * FROM INVOICES WHERE
INVOICE_TYPE = $INVOICE_TYPE$
AND PRICE > MIN_PRICE
--@end INVOICE_ACCESS
--@end NAME SQL template It marks the end of the SQL | --@begin INVOICE_ACCESS
end statement. The name of --@group INVOICE_GRP

the template is mentioned

as well.

-- This template allows a

-- proper access to the

— invoice table

SELECT * FROM INVOICES WHERE
INVOICE_TYPE = $INVOICE_TYPES$
AND PRICE > MIN_PRICE
--@nd | NVO CE_ACCESS

--@group NAME | Template group

name

If the template is not
assigned to a group it will
be added to the default
group default.

--@begin INVOICE_ACCESS
--@roup | N\VO CE_GRP

-- This template allows a

-- proper access to the

— invoice table

SELECT * FROM INVOICES WHERE
INVOICE_TYPE = $INVOICE_TYPES$
AND PRICE > MIN_PRICE

--@end INVOICE_ACCESS
TAG_NAME Replaceable tag | This identifies a replaceable | --@begin INVOICE_ACCESS
value tag at runtime. If the tag --@group INVOICE_GRP
value is not replaced and - This template allows a
the result will be unknown. - proper access to the
The tag must start with $ — invoice table
. SELECT * FROM INVOICES WHERE
and ends with the same
_ _ INVOICE_TYPE =
character with no line
$I NVO CE_TYPE$ AND PRICE >
breaks in between.
$M N_PRI CE$
--@end INVOICE_ACCESS
--TAG_NAME | Replaceable This identifies a replaceable | —-@begin INVOICE_ACCESS
comment tag comment which is used to --@group INVOICE_GRP

value

enable a certain construct

-- This template allows a

-05-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

P
S
at runtime. The tag must -- proper access to the
start with --$ and ends with | SELECT
$ with no line breaks in -all *
between. For example, if -- --$invoice_number$ inv_no
all is removed and FROM
INVOICES

--inv_type is removed)
--inv_type WHERE

INVOICE_TYPE = $INVOICE_TYPE$
--min_price WHERE PRICE >
MIN_PRICES--@end
INVOICE_ACCESS

and $invoice_type$ is
replaced by 5 then the
effective SQL will be

Select * from invoices

where invoice_type = 5

Table 10 SQL template definition

There are different complexity levels for constructing the SQL statements inside
the application code. The simple one does not require replacing anything at runtime.
The more complex level is where there are parameters needed to build the SQL
statement, but the statement interface is not changed. The most complex level may
require existence or non existence of different SQL statement blocks and the
statement interface may even change at runtime. Introducing the technique of
replaceable runtime tags inside the SQL templates makes the approach to these

types very simple and easy. Table 11 gives examples of the listed types.

Type Example Description
No replaceable SELECT * FROM INVOICES WHERE INVOICE_TYPE= 1 AND | There is no
value PRICE > 30 preprocessing needed
for this SQL template.
Replaceable value | SELECT * FROM INVOICES WHERE INVOICE_TYPE = $INVOICE_TYPE$ and
only $INVOICE_TYPES$ AND PRICE > MIN_PRICE MIN_PRICES will be
replaced at run time.
Replaceable SQL SELECT The field names are
constructs ~-all * not always fixed nor
--$invoice_numbers$ inv_no the where conditions.
FROM
INVOICES

-inv_type WHERE INVOICE_TYPE = $INVOICE_TYPE$
--min_price WHERE PRICE > MIN_PRICES

Table 11 SQL Construction complexity

The application will access the SQL templates by their uniqgue name given at

runtime. The pattern provides a loader and an indexer. The loader will be

- 06 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

responsible for parsing the files that contain the templates and load them in memory
as long as there are no errors. The indexer will save the SQL template in an
accessible place by which the application can directly request the template by its
name. It is clear from the indexer description that it is a cache. So, the cache
pattern can be used in this context. Every template has a way to expose the
replaceable tags either the normal ones or the comment tags. The class diagram
(Figure 26) below depicts the general structure that can be used for this pattern.
Figure 27 shows how database access beans can use the SQL statement templates to

do their work in cooperation with a database connection.

DBAccess
Log Class N
uses
Loader —
Cache
| DBAccess
| uses Class 2
| has
|
The loader reads the files
that contains the SQL
templates DBAccess
Indexer | ——— Class 1
has
SQLTemplate

Figure 26 Decoupling SQL Statements from Application Class Diagram

-97-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

Coj
& Com
20v?,

o

S
o

ety o8

. DBAccass - md exer : Loader =0 Termplate Databace
ol Dafinition Fi —: "
achuire S0L Tem, 1@]!9

[lozded?

e —

oh load

T H AH
I
| Eﬂtﬂnﬂmj

|
|
! run S0L
I
|

I
| |
Figure 27 SQL Statement Template Sequence Diagram
The Java code below generates a query to get the top 10 calls for a certain customer

-

|
|
|
|
|
|
|
| |
| |
| |
| |
| |
| 1l
| |

according to his/her preferences. The top 10 calls can either be grouped by call, cost
or duration. They can also be against National, International, or Roaming. It shows
how it could be difficult to get the final SQL statement.

if (rpt.equals(“call")) {
query = "SELECT U.O_P_NUMBER AS NUMBER1, TO_CHAR(COUNT(*)) AS VALUE ";
orderBy =" GROUP BY U.O_P_NUMBER ORDER BY COUNT(*) DESC";
} else if (rpt.equals(“cost")) {
query = "SELECT U.O_P_NUMBER AS NUMBER1, TO_CHAR(SUM(U.RATED_AMOUNT)) AS VALUE ";
orderBy =" GROUP BY U.O_P_NUMBER ORDER BY SUM(U.RATED_AMOUNT) DESC";
} else if (rpt.equals("dur")) {
query="SELECT U.O_P_NUMBER AS NUMBER1, TO_CHAR(SUM(U.ROUNDED_VOLUME)) AS VALUE ";
orderBy =" GROUP BY U.O_P_NUMBER ORDER BY SUM(U.ROUNDED_VOLUME) DESC";
}else {
stmt.close();
conn.close();
return null;

}
query = query + " FROM MY010_DWH_CALL_USAGE U";

if (grp > 0)

query = query +", MY010_GROUPS G, MY010_CONTRACT_GROUPS CG *;
String where =" WHERE ";
if (contract_key > 0) {

where = where + "U.CONTRACT_KEY =" + contract_key;

- 08 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

}else {
where = where + "U.CUSTOMER_ID =" + customer_id + " ";
}
/I end of enhancement
if (type > 0) {
query = query + ", CALLVIEW CV ";
}
query = query + where;
if (type == 1) {
query = query + " AND U.CALL_KEY = CV.CALL_KEY AND CV.CALL_TYPE ='National™;
} else if (type == 2) {
query=query + " AND U.CALL_KEY = CV.CALL_KEY AND CV.CALL_TYPE =International™;
} else if (type == 3) {
query = query +" AND U.CALL_KEY = CV.CALL_KEY AND CV.CALL_TYPE ='Roaming’ ";
}
if (grp > 0) {

query = query +" AND CG.CUSTOMER_KEY = G.CUSTOMER_KEY AND CG.GROUPS_KEY =
G.GROUPS_KEY AND U.CONTRACT_KEY = CG.CONTRACT_KEY AND G.CUSTOMER_KEY ="

+ customer_key +" AND G.GROUPS_KEY ="+grp+"",

CMy010Cust cust = new CMy010Cust();
cust.setCustomerKey(customer_key);

String bill_cycle = cust.getBillCycleCode();
query = query +" AND U.BILL_CYCLE =" + bill_cycle + " *;
query = query + orderBy;
/I run the query and fetch the results

One may notice from the above code that there are different SQL statements

generated with different field names, tables, where conditions, etc.
SQL statement would be like this

SELECT
U O_P NUMBERAS NUMBER1
TO_CHARCOUNT(*)) ASVALUE
FROM
MY010_DWH_CALL_USAGE U
WHERE
U. CUSTOMER_ID= $customer_id$
GROUPBYU. O_P_NUMBERORDERBY COUNT*) DESC

The most complex SQL statement will be like this

SELECT

U. O_P_NUMBERAS NUMBER]

TO_CHARSUM(U. ROUNDED_VOLUWE ASVALUE
FROM

MY010_DWH_CALL_USAGE U,

MY010_GROUPS G

MY010_CONTRACT_GROUPS CG ,

CALLVIEW CV

-99-

The simplest

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

WHERE
U. CUSTOMER_ID= $customr_id$ AND
U. CALL_KEY = CV. CALL_KEY AND
CV. CALL_TYPE = $call_type$’ AND
CG CUSTOMER_KE¥ G CUSTOMER_KEWND
CG GROUPS_KEY= G GROUPS_KEYAND
U. CONTRACT_KEY¥= CG CONTRACT_KEYAND
G CUSTOMER_KE¥ $customer_key$ AND
G. GROUPS_KEY= $group_key$
GROUPBY U . O_P_NUMBERORDERBY SUM(U. ROUNDED_VOLUMBESC

The above Java code is complex to the degree that the developer has to write
the code carefully in order not to make any mistake. Moreover, it is not easily
readable or understandable though the resulting SQL statements are very clear. The
following is a sample code that uses decoupling to solve this problem. It is shown
only against the simple SQL statement

- - @egi n CUSTOVER_CALL_USAGE_ACCESS
--@roup CALL_USAGE
SELECT
--$call$ U.O_P_NUMBER AS NUMBER1, TO_CHAR(COUNT(*) AS VALUE
--$cost$ U.O_P_NUMBER AS NUMBER1, TO_CHAR(SUM(U.RATED_AMOUNT)) ASVALUE
--dur U.O_P_NUMBER AS NUMBER1, TO_CHAR(SUM(U.ROUNDED_VOLUME)) AS VALUE
FROM
MY010_DWH_CALL_USAGE U
WHERE
U.CUSTOMER_ID = $customer_id$
--$call$ GROUP BY U.O_P_NUMBER ORDER BY COUNT(*) DESC

--$cost$ GROUP BY U.O_P_NUMBER ORDER BY SUM(U.RATED_AMOUNT) DESC
--dur GROUP BY U.O_P_NUMBER ORDER BY SUM(U.ROUNDED_VOLUME) DESC
--@end CALL_USAGE

The code that will use this query ideally will be similar to this

SQLBIlock sgIBlock = SQLIndexer().getSQL("CUSTOMER_CALL_USAGE_ACCESS");
I/l enable where keyword
sqlBlock.setTagValue(" customer_id ", customer_id);
I report_type is call, cost, or dur
sqlBlock.clearCommentTag(report_type);
Vector result = select(sqglBlock.getRuntimeSq|());

Although, it is not recommended to write the SQL template where field nhames are
not known until runtime, the code complexity has been greatly reduced and the SQL

structure is now isolated outside the code and it is much better understood.

The SQL statements may also be externalized in XML format. For example, the
DAO (Database Access Object) design pattern, which decouples the business logic
from the data access logic, externalizes SQL statements to reduce redundancy. This
is basically done in order to reduce writing similar APIs that share the same SQL
statements [SUNO02].

SQL statements that drive the business functionality can be introduced at the

design phase as a separate deliverable. This deliverable can be integrated into the

- 100 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

code with the minimum amount of effort. The developers can then easily change
SQL statements in the development phase, if required. This leads the development
team to focus more on achieving the functional requirements and not get too

involved in database technical issues.

Actually it happens most of the time that the SQL statements are considered as
an individual activity that is done as part of the implementation, even if there are
implementation guidelines for the whole team. The implementation guidelines would
not be effective in covering all the concerns regarding the database SQL statements.
Since every developer is responsible for completing his/her job in the way he/she
sees, SQL statements may not have a standard or a common approach. Moreover,
there will be a delay in the development if the developer needs consultancy for

building complex SQL statements,

For database driven applications, the database design must be introduced in
the design phase. The database design task is mandatory because the application
database access layer will be built over it. Any design activity in general takes quite
some time of discussion in order to arrive at the best shape of the final product. The
team that spent its time building a database design would definitely have acquired
excellent understanding of the database architecture because they are the ones that
took the design decisions. Hence, they are the best candidates to continue building
the SQL templates.

The activity of building SQL templates must proceed directly after the database
design is finished as the team has fresh knowledge of the database architecture. If
they combine their knowledge of the database architecture with the application’s
functional and non-functional requirements, they would reach most of, if not all, the
required SQL statements that would be needed in the implementation phase.
Postponing the activity of finding the SQL templates to the implementation phase
would lead to a delay in the development because the development team has to

understand the database architecture before they start.

7.4.5 Consequences
e (Cost: The SQL statement templates are loaded in memory at runtime which may

be a burden on the system if there are a lot of SQL statements and the average
size of every template is large. However, introducing a good caching mechanism

can solve this problem easily to guarantee the optimized usage of memory.

e Maintainability: This solution may be tempting for some unprofessional

- 101 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

developers to change the SQL statements at runtime which may cause some
trouble as changes are not tested. However, all protection methods can be taken
in order to guarantee proper access to the application files when they are
deployed to the production environment. For example the system administrator

may provide read access only on the application files for the non-administrators.

e Standardization: Putting the SQL statements in plain text files is a standard way.
Usually, both developers and DB experts read these files using an SQL editor.

Such an editor makes their work very smooth.

e Complexity: The pattern increases the level of understandability and readability
of the SQL statements for both the developer and the DB expert. It reduces also
the code complexity that would have been used to build SQL statements. The
developer no longer needs to trace the code to search for a simple SQL error and
the DB expert does not have to understand the programming language. Both of
them can simply read the SQL statement stored outside the application and

figure out the problem with minimum effort.

7.4.6 Related Patterns
e DAO (Database Access Objects): The pattern introduces the concept of

separating the business logic from the data access logic. It also hides the data
source from the application in order to make future changes in the data source
irrelevant from the application business logic. It suggests also externalizing the

data source access interface, like SQL statements, in XML format [SUNO2].

e Query Object: it is an interpreter object that contains other objects which can be
formed to generate SQL queries. The query object hides the knowledge of the
SQL inside objects in order to get the change in the SQL statements done in one
place only [FMO02].

- 102 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

7.5 Pattern 5: Logger
7.5.1 Context

Systems that need to monitor their activities and problems can use this pattern

specially when there is a need to trace performance and highlight its bottlenecks.

7.5.2 Problem

Logging is a solution to write, most of the time, certain informative statements
in an external media, like plain text files, to record system problems or track system
behavior. The log files are useful to the developer because they show the system
behavior. The importance of logging is most significant when the application is in
production. This practice is usually delayed until the development phase and it is
usually done on individual basis and they generally do not conform to a certain
logging standard. This leads at the end to messy log files that contain a lot of
messages from many sources. This unprofessional development practice happens

mostly because: -

1. Product time-to-Market is critical and logging is not one of the main

functional activities.
2. The over-trust in the final product, especially if it is well tested.

3. Unprofessional developers do not anticipate future runtime problems. This is

why they do not plan for them.

Moreover, if logging is practiced during development, it targets mainly the
functional behavior of the system. Performance problems are the least logged issues
especially if the system passes the load testing scenarios. However, logging must
still be enabled when the system is in the production phase because test scenarios
cannot detect all problems. For example, an e-business web application might be
tested against a certain number of users and passes successfully. However, the
system fails when it is available for public access because the number of users
exceeds the tester’s expectation. The system could be retested, but it would be
much more efficient if testing is combined with some knowledge from the log files.
For example, a general performance problem can be detected with an e-business
web application. If there are no logs, then the tester will not be able to tell from
where exactly the problem arises. He/She has to test everything again. However,
logs can show that a certain database SQL, for example, needs more tuning, if the

performance behavior is logged.

- 103 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

The purpose of this design pattern is mainly to introduce a logging design
pattern technique whose primary target is proper logging in general and then
database query in order to build more robust designs. Once this pattern is applied

on the design, it becomes a standard in the development that no one can ignore.

7.5.3 Forces

e Planning for Logging: It should be known ahead where to log and what to log.

e Complexity: The solution should not introduce unneeded delay or complexity to
the system functionality.

e Standardization: The pattern must have a standard logging format.

e System Behavior Handling: The system behavior can be tracked only by logging
events and problems. It shows the existing problems and highlights anticipated
ones. A standard and uniform technique must be used across the working
application at least.

e Performance Tracking: The pattern must give a good vision about the system

performance.

7.5.4 Solution

The purpose of this design pattern is to introduce a technique which traces a
system’s performance in the first place and hence to build more robust applications.
If this pattern is introduced to the design phase, it becomes a standard in the

development phase that no one can ignore.

Enabling an application with the logging pattern requires two things: a good
logging solution and a clear roadmap for logging. If either one of these activities is
dropped, then logging will end up into chaos. The logging solution guarantees
proper and standard representation of the application activities and problems, does
not complicate the system, and introduces configuration capabilities. The /ogging
roadmap is invented here as a way to let the developer know what and where to
make logging. The roadmap is best started and represented in the designh phase.
One of the roadmap benefits is that it emphasizes and clarifies the duties of the
developers regarding logging. Moreover, it prevents individual developers from
inventing their logging methodology which may contradict with others’

methodologies by providing a standard logging solution.

-104 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

The logger defines the - SarEET
logging fomnat S
L memte 7
Configuration can be — _,ff""’
done over here as well | _ | Leoger

\

b
defagates Pedaamance lssues

i
iy

F eiformanceHandler

Figure 28 Logging Pattern Main Structure

Figure 28 shows the main pattern components that the logging solution is
providing which are the logging formatter, logging Levels, and performance problems
handler. The logging formatter is used to render the message in a standard format,
usually in an external media, e.g. a plain text file. The format has basic attributes by

which the log line is understood: -
1. Timestamp: the time the message is printed.

2. Log Level: The type of the message, e.g. (Critical, Error, Warning,

Information, Debug, etc).

3. Logging Point: The place where the message is logged. This should

have been shown in the logging roadmap.
4. Message: The message is already defined from the logging roadmap.

5. Performance Measurement (Optional): The criteria by which the

system can tell that there is a possibility of a performance problem.

These attributes have to exist even if the solution will be modified or
extended. The first four attributes are common for many logging solutions. The
performance measurement attribute is a suggested addition in this research. For
example, the measurement criteria can be the maximum amount of time that the
database SQL statement cannot exceed, e.g. 15 seconds. If an SQL statement
exceeds 15 seconds then the logger will log this problem indicating that it is an
expected performance bottleneck. In addition, this performance message can be
delegated to another handler which can add more explanation, take action to solve

the problem, or notify the system administrator.

Logging Levels is the method that makes the system administrator control the

- 105 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

amount of information logged out of the application. It is the responsibility of the
system administrator to determine the kind of information that should be logged,
from the log levels, according to the system stability and the business need.
However, the log level tuning must not put a burden over the system itself and cause
a performance delay. For example, if the system has a CRITICAL log level at one
end and DEBUG log level at the other end, then the administrator may choose to
start with the DEBUG level in the soft launch of an e-business application. A DEBUG
level means that the application will log all the messages for this level and for the
other levels. When the customer visits increase, the level can be set to CRITICAL to

log only the CRITICAL messages.

If the logger encounters a possible performance problem, it delegates it to the
performance handler which captures the message, analyzes it, and takes an action.
For example, the performance handler may check the memory, disk space, database
connectivity, etc and try to recover them if possible. However, the message has to
be detailed enough to indicate the right source of the problem. Actually, the
performance handler can be a system in its own right which makes a full self-
recovery and that requires a good Knowledge base. Figure 29 summarizes the

previous discussion about the logger.

6: Performance Problem 7

—
3. Log Lewel met ?
—
1. log activities m 2: format message
— . — .
System Entity Lo '
- Formatter

N

alyse perfarmance

E xternal . PedormanceHandler
Media

Figure 29 Logger Collaboration Diagram
On the other hand, a logging roadmap should be developed on its own to

indicate the locations that will hold logging points. This activity can be started from

the design phase. A separate iteration should be conducted over the design after it

- 106 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

is completed. The logging roadmap iteration process involves the following
activities-

1. Visit all the collaboration diagrams and depict where the message
should be printed.

2. The message or at least the type of information that should be logged
(e.g. error, message, or performance) should be decided at every
location.

3. Performance measurement criteria may be decided for some
components. Sequence diagrams can be used to highlight the
locations that will most affect performance.

4. A separate artifact can be delivered out of this iteration to indicate the
locations, log level, message, and whether there is a performance

logging or not.

For example, Figure 30 clarifies precisely the methods that are needed to log
events, errors, and performance behavior. Notice that the diagram does not show
how logging will occur as it is not the issue discussed in the logging roadmap. Table
12 shows a suggested logging roadmap document that can be delivered to the
development team to start working. This document can evolve to contain more
roadmap points. Actually, the logging roadmap is not a waste of time. It can
actually be added to the documentation and handed to the system administrator as

part of his manuals.

Log Point # 1

Log FPoint #2 N tyégr énﬂr
Perforrance (20=c) message ; Fetch Info

T —

b -

\ -
—
i fa:i:h, - 2 refresh
= Ereaking = MNewves Contant
Mem@ Piwd dor

I
- User

Figure 30 A Collaboration Diagram Showing Logging Roadmap

- 107 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Log Point Class Method Type Message

1 BreakingNews.fetch() Error Fetched info

2 SportsNews.fetch() Performance (20sc) Performance
problem in database

Table 12 A Logging Roadmap

This standard logging technique opens the door for log analyzers to run over
the logs at runtime and generate valuable reports about the system. These reports
can be very important for the administrators, developers, and even the system

owners. Bug fixing and enhancement can be partially fetched from such reports.

7.5.5 Consequences
e Cost versus Performance: Logging is considered an infrastructure practice to any

system although it may increase the development time. If a product is
overwhelmed with logging points, its performance will suffer greatly. Logging
must be classified to levels which would allow the application administrator to
change them at runtime.

e Behavior Monitoring: The choice is for the developer to either log or not. As
mentioned before if he/she logs then the system runtime behavior will be very
clear for him/her. If not, then system failures, if any, cannot be explained until
the system is retested.

e Consistency: By composing a logging roadmap, developers will be obliged to use
common messages and by using the same logging format logs are no longer

messy.

7.5.6 References
e Java Logging API: Java has recently utilized new Java APIs. It has become part

of the language.

e HTTP server logging: All well-known HTTP Servers like apache, Sun IPlanet, IBM
http server, or Microsoft IIS use logging techniques. Moreover, there is a well-
known format of the logs which allows other reporting applications to analyze

them and generate valuable reports.

- 108 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

e Windows system logging: Windows operating systems have a logging tool that
shows the results of running applications.

e UNIX logging: UNIX operating systems can be configured to log system activities
by sending a mail to the administrator. These mails are by default sent to the

user mailbox to show the status of the applications in case of failures.

- 109 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

7.6 Performance Pattern Language
The Performance Pattern Language is the collection of the selected patterns

with guidelines of the best method to use them. Figure 31 shows the three
categories of patterns into which the five patterns that resulted from this research
study, can be divided: -

1. Performance optimization patterns that have direct impact on enhancing
performance. The Database Connection Pool, Cache, and Static Enabler
Patterns fall into this category.

2. The Logger pattern monitors application behavior and performance related

issues.

3. The SQL Statement Template pattern breaks down the application complexity
to help in optimizing database SQL statements.

Performance Pattern Language

Performance Optimization

Complexity break down K}:{} Performance Monitoring

Figure 31 Performance Pattern Language Categories

Every one of the listed patterns can be introduced on its own. However,
introducing all of them together makes the developer handle the performance
optimization process from many aspects. Figure 32 shows the suggested
relationship among all the suggested patterns. The figure shows that the Logger and
the Cache are the most recognized patterns. The logger is considered also as an
infrastructure for all the other patterns although it is not a mandatory component for

all the patterns.

- 110 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Faooling
—

E:'ctenu:isf-"r

Static Enabler

!
Catsbase Connection Foal USES

T
T

-H-\""‘u
watiation of—.__

USES SOL Statement
= Termplate

Cache

Figure 32 Performance Patterns Relationship

The SQL statement Template provide the developer with an easy and
understandable method to tune and fix the database queries which are the access
points to the source of information. The Database Connection Pool, the Cache, and
the Static Enabler patterns provide direct improvement to the web applications if
they are properly applied. However, the logger remains the application eye that tries

to see other performance bottlenecks and application problems in general.

For example, if the developer chooses to apply only the performance
optimization patterns in a database-driven e-commerce application that have
thousands of visits then he/she may face problems. These problems may not be
resolved easily because of his/her ignorance of a particular problem and the best
way to solve it. Even if the problem is known, which will definitely take more time
for investigation, then fixing it may be very expensive if it had resulted from the

database SQL statements. The fixing process requires the following: -

1. A thorough investigation of the application code to know the source of the
problem. The investigation may require adding ad hoc logging
statements, which may be left after the problem is resolved to introduce

other side effects to the application.

2. If the source of the problem is due to an SQL statement, after
investigation, then the developer has to fix it and maintain at the same

time the application code consistency after he/she finishes.

3. The developer has to test the application again not only against the failure
point but also against all other related cases in order to ensure that the

fixing does not corrupt other components in the application.

-111 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

4. The new compiled code has to be deployed, which may result into a down

time of the web application.

On the other hand, if the application was enabled with the Logger and the SQL
Statement Template patterns, then the source of the problem would have been most
properly known in details. This logged information provides the technical people with
the guidance to investigate, if investigation was required, and may not require
investigation at all. Moreover, if the fix of the problem would require tuning an SQL
statement, then the SQL statement change is done straightforward in the SQL
statements file. Also, the SQL statement fix could be tested against the database
directly without getting the application down. The code of the web application in this

case was not changed at all.

Figure 33 shows our suggested approach for performance optimization. In
the design phase, all the patterns can be developed concurrently, but the roadmap
visits for logging and caching should be done at the end of the design phase. The

expected artifacts to be delivered are: -

1. Cache Roadmap Document: where caching positions are shown clearly against
the class methods. [Refer to the caching pattern in section 7.2 for more

information.]

2. Logging Roadmap Document: where logging points are shown against the class

methods. [Refer to the Logger pattern in section 7.5 for more information.]

3. SQL Statements Templates Document: This is an initial SQL statement
specification, which may be changed in the implementation phase. This
document can feed the implementation phase directly without any change in the

document format.

4. Collaboration Diagrams (Revisited for Caching & logging): If the roadmap
documents show the logging and caching points across the whole application,

collaboration diagrams show them across the different scenarios.

-112 -

PREr S

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications SR
o

2’ o,
> 3
Sty 2

20v?,

Phase Progress

|, .
% Design Phase
<)
E o /
3 De5|gn|n? the Logger s Cache Roadrmap
a solution g Docurment
> © \\
2 S - ox
@ Designing the Static ©.w
@ Enabler solution o> 4
[c Logging Roadmap
Design the Database o Document
Connection Pool > _
Delivered
Design Cache Solution o3 artifacts SQL Statement
tE, Templates Document
©
Prepare SQL Statements | 2
o>
N c Collaboration diagrams
Designing the SQL o X . .
Statement Template Q with Iog%!;go%]scachmg
Solution - P

Other design activities, and artificats

Implementation Phase
Q
£
3 3
W 25
Q o0 o>
« ol e £
@ v 39 <
S| e o
o2 o O
S
o ®
o
o Q
- ©
£
®
Refining SQL Statements o
o>
The SQL Statement Template 5,
g
The Static Enabler Solution
Other implementation activities

Figure 33 The Pattern Language Approach

- 113 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

The artifacts comprise the starting point for the implementation phase. As
shown in Figure 33, there are partial dependencies across logging, Caching, and the
Connection Pool. The logging solution should be developed first because it is the
infrastructure that will be used in the cache, and the connection pool. Logging is
used globally across the whole application. However, it does not prevent the
implementation of other scenarios such as refining SQL statements, implementing
the SQL Statement template pattern, and implementing the Static Enabler pattern.
In order not to disrupt the work of the development team with the non-functional
activities, an iteration can be conducted over the whole application to insert the
logging and the caching points. This iteration can be conducted on the class,
component, package, and application levels with the help of the roadmap
documents. Note that the implementation plan may start logging and caching

roadmap visits early according to the collaboration diagrams check points.

It is important to understand that the activities that are performed in the
design phase and resulting to artifacts are mandatory to develop the suggested
design patterns. However, they provide the development team with the best
practice to efficiently use the patterns. In other words, the wrong usage of the
patterns invalidates their implementation and makes the developed application

unreliable.

-114-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Chapter &
ANALYSIS OF THE SUGGESTED PATTERNS

In this chapter, the results of experimentation with the suggested patterns are

analyzed and discussed.

8.1 Quality Validation

The quality validations listed below are intended to give an analytical view of
the suggested design patterns. They attempt to qualify the suggested pattern
language from many aspects in order to prove that it is worth implementing. They
do not represent a judgment on the validity and applicability of the pattern language
since judgment should be left to the reader. It gives a broad discussion of the
suggested pattern language and shows examples from the five patterns, whenever
possible, to prove their validity. However, judgment can always differ from one

reader to another.

8.1.1 Encapsulation and Abstraction
All the suggested patterns define their problems and give detailed solutions

according to their context. As a reminder, all patterns are targeting database-driven
web applications. For example, the Static Enabler Pattern specifies its solution for
the web applications that want to combine the benefits of both the dynamic and
static pages. So, the applications that will live forever as static may not use this
pattern as well as the applications that have dynamic pages and will not accept any
static pages.

All the patterns suggested in this research were introduced in an abstract
format in order to allow the developer to seek the most suitable implementation
according to the available resources and the selected programming language. The
developers are not forced to use specific method names or even class names.
Moreover, almost all the introduced patterns can work elegantly if applied to
database-driven desktop applications. If a desktop application has a concurrent
access feature and it is database-driven then there will be no problem applying
them. In addition, the concept of the SQL Statement Template Pattern could be
applied to the client-server applications that depend on XML formatted messages in

their communications.

-115-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

8.1.2 Openness and Variability

Because of the abstract nature of the patterns, they could be extended to give
more specific ones according to the application context. For example, the database
connection pool pattern can be extended to be specific to certain database systems
like Oracle and DB2. Moreover, the Database Connection Pool and Cache patterns
can have different variations like lazy (resources are allocated on demand) and eager
(resources are allocated at once) acquisition in both of them. The same concept
could be applied to the Static Enabler pattern by which the conversion of the
dynamic pages to static may be done on demand or according to a scheduler that

converts all the dynamic pages.

There is nothing that prevents the implementation of all the patterns using
Java, C#, or C++ for example since their designs are generic enough. They could be
implemented on different platforms, as there are no constraints regarding this point.
Moreover, the patterns are totally independent from any programming language.
For example, the SQL Statement Template pattern introduces the Indexer
component which is responsible for indexing the SQL statement templates in the
application memory to speed up their access. Actually, such a concept is natively
implemented in a language like Java as a class called java.util. Hashtable. Although
the proof-of-concepts implementation of the patterns was done in Java the
component itself was introduced completely separate from Java to leave up to the

readers to implement them according to the chosen programming language.

8.1.3 Equilibrium

All the patterns introduced numerous benefits each according to its context.
The optimization patterns are specifically supported by testing results as specified in
section 8.2. The side effects shown in every pattern would be expected if the
developers apply the patterns in a wrong context or if they mis-implement them.
For example, database-driven applications, that have small memory and very few
users, may be hurt if connection pooling is used with eager acquisition. Please refer
to the Consequences sections for every pattern for more details on their pros and

cons.

8.1.4 Minimality

All the patterns have shown their relations with other patterns either in this

research or from other researchers. For example, The Connection Pool pattern may

- 116 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

recognize other patterns from the research like the Cache and the Logger. The
Cache is recognized by itself from the Connection Pool and the SQL Statement
patterns. Please refer to section 7.6 for more information about the patterns

relations.

8.2 Testing

The test cases were tested on two environments, windows and Solaris
operating systems. The load testing was conducted on the Solaris operating system
with an average number of virtual users. The results were found satisfactory since it
is a load testing experiment to prove the validity of the proposed solutions and not to
verify the reliability of the web application used in the testing. Testing was not
intended to compare design patterns implementation with other solutions as the
research proposes designh solutions that could be implemented differently from one

developer to another.

The Vodafone Website was used as the testing web application in this research.
Two sample pages from the website promotions channel were mainly used in all the
test cases. They are of average size content and receive a fair number of database

requests as follows:

= A Ljst of All Vodafone Promotion Types: The content size is almost 20K and

content is retrieved out of 19 database requests.

= A List of A promotion Type Details: The content size is almost 24k and content is

retrieved out of 26 database requests.

8.2.1 Memory Utilization

The memory utilization is an implicit job for any application where memory
objects are allocated and de-allocated. As the number of memory allocation and de-
allocation operations increases, the performance of the application decreases. Both
allocation and de-allocation operations are application decisions. If a memory object
is allocated and not de-allocated, this will lead to a memory leak; hence the

application becomes unstable and most probably it will crash.

A good optimization of the memory utilization according to its capacity can
make the application live longer. Hence, a memory utilization analysis has to be
done for the application to estimate the needed memory. The memory analysis has
to take into consideration the expected number of objects, their size, and the

expected lifetime of every object. Other systems that have concurrent behavior like

-117 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

the web applications must be analyzed against memory utilization and user load. For
example, there could be a web application that does not have memory leaks at all,
but it has very high utilization of memory and a high number of users. In the web
application rush hours, the high number of users will slow down the application
because there will be wasted CPU cycles on the server for memory allocation and de-

allocation operations.

A Database driven web application in particular can suffer greatly from the
database connections utilization, and database objects. The database connections
usually consume a good memory size, take good number of CPU cycles, and
consume a fair I/O percentage of the server operations. By allocating a pool of
connections, the heavy memory utilization is greatly reduced especially if the pool
size stays stable for a long time since all memory operations will be restricted in the
read operation. The number of database objects is basically tied with the number of
connections. However, the database objects can vary in size dramatically. Their
memory utilization behavior may be very close from the database connections
memory utilization behavior if not more. Caching usually solves most of the
database objects utilization problems. However, cache size usually changes more

quickly than the database connections pool size.

To summarize the above discussion, the memory utilization for a database
driven web application is directly affected by the following factors: -

1. The number of objects in the memory.

2. The size of every object.

3. The lifetime of the objects in memory.

4. Memory allocation and de-allocation rate.

5. The number of users at a certain time.

CPU is the main victim of all memory utilization operations. It has to strive all
the time to allocate and de-allocate memory for the application process. Some
operating systems utilize the disk space to allocate virtual memory for the processes.
Some other operating systems, like UNIX, swap processes to disk directly if there is
not enough physical memory. It can be understood that processes that have part of
its memory swapped to disk will perform slower than those that work from physical
memory. The application process that requires more memory will suffer greatly if
the part of its memory will be swapped to disk because its memory utilization’s

normal delay will increase until the required memory blocks are loaded to the

- 118 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

physical memory.

8.2.2 Performance Optimization Evolution
The first testing scenario shows that a web application performance can be

enhanced greatly if it implements the performance optimization techniques
suggested in the research. This testing has been run on a IBM WebSphere
application server test environment. The test environment is by nature slower than
the real products. However, since the environment is not changed, the result can be
acceptable to verify the optimization point. The following are the runs that have
been tried: -

1. No Connection Pool & no Caching: A database connection was allocated with
every database hit and released after the database query returns. The query
result was always fetched from the database as well. This scenario represents
the situation in the absolute absence of the minimum available patterns. It could

be thought of the control of the experience.
2. Connection Pool: A connection pool solution was introduced but without caching.
3. Caching: Caching is enabled in addition to the database connection pool.
4. Static Page: Identical copies of the dynamic pages have been tried.
The following settings have been fixed during all the runs
1. The test scenario ran for one minute
2. Number of users = 1

3. Number of test pages = 2

Page Throughput | Avg. Latency (sec) Avg. Response
Time (sec)
R1|R2|R3| R4 |R1| R2 R3 R4 |R1| R2| R3 R4

A Jist of All Vodafone Promotion Types | 5 | 12| 14| 613 [0.2]| 0.1 |0.095| 0.04 |5.5| 3.1 | 2.35 | 0.047

A list of A promotion Type Details 5 (11|14 | 613 (0.1 0.11 | 0.097 0.05 8 | 25| 2.05 0.05

Over All Avg. 5 (12|14 | 613 |0.2| 0.1 |0.096| 0.045 [6.7]| 2.8 | 2.2 0.048

Table 13 Performance Evolution Testing Results

- 119 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

700

600

500
400

300

200

100 A

Figure 34 Average throughput per page

We note the following on the above results as following: -
1. In general throughput, latency and response times show improvement.

2. There is a noticeable improvement from runl (no connection pool and no
caching) to run2 (connection pool and no caching). However, the improvement

from run2 to run3 (connection pool and caching) is not as large.

3. Throughput, latency, and response time are dramatically much better for the

fourth run (static html) than any other run.

4. Latency values for all the runs are very small compared to the Response time

values.

5. Latency values for all the runs barely improved from the first run until the fourth

run.

The analysis of the above points and data gathered in Table 13 shows that the
solutions used to optimize the performance are generally effective. Moreover,
implementing a connection pool without implementing caching can be sufficient if the
database SQL statements are fast enough. However, implementing a caching
solution can show improvement but it does not mean that the database connection
pool should not be implemented since the cache will be refreshed and the application
will open a database connection at any point in time. The optimization solutions
show that the best optimization solution is to have static pages as shown in Figure
34.

To summarize, dynamic web applications that do not plan to have static pages

as replacement must have connection pooling. Caching is mandatory if the database

- 120 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

SQL statements are very time consuming, but it can be neglected if the SQL
statements show a fast enough response time. Static web applications do not have
to worry about performance since they have good throughput and response time by

nature.

8.2.3 Load Testing

A test environment was established as described in Appendix D and a load
testing utility was used to impose virtual users over the web applications. The utility
used is described in more details in Appendix E . Load testing results were gathered
from the testing tool and the web application server. These results are listed in
detail in Appendix F . Load testing was conducted over several scenarios as

following: -

1. S1 (No Connection Pool & no Caching): A database connection was allocated
with every database hit and released after the database query returns. The
query result was always fetched from the database as well. This scenario
represents the situation in the absolute absence of the minimum available

patterns. It could be thought of the control of the experience.

2. S2 (Connection Pool): A connection pool solution was introduced but without

caching.
3. S3 (Caching): Caching is enabled in addition to the database connection pool.

4. S4 (Static Page): Dynamic pages have been converted to static ones to test

their performance and compare it with the previous three scenarios.
The following settings have been fixed during all the runs
1. The test scenario ran for one minute

2. The Number of test pages was fixed to two (Refer to section 8.2 for more

information on pages).
3. The numbers of virtual users used are 1, 10, 30, 60, and 100 virtual users.
The following points were noted from the load testing: -
1. There is a noticeable improvement from the first to the fourth scenario.
2. The fourth scenario is generally much better than all other scenarios.
3. The first scenario is the worst scenario for all the measurements.
4

When there were 100 virtual users the throughput declined for the third and the

fourth scenarios.

-121 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

5. The fourth scenario experienced some failures for 60 and 100 users.

The analysis of the above points and the data in Table 14 show that a
connection pool solution is a must especially when the number of users increases
otherwise the users will always experience bad latency and response time (as in
Figure 35 and Figure 36). Moreover, a connection pool solution is enough for an
environment that has a low number of users. However, other solutions, like caching,
are required to improve the performance when the number of users is expected to
increase. Caching may be enough for the environments which normally have a large
number of users to achieve a good response time. Hence, converting dynamic pages

to static ones shows a fair improvement in throughput than caching (see Figure 37).

Throughput Avg. Latency |Avg. Response| Reliability
(sec) Time (sec)

Over All Avg. S1|S2|S3|S54([S1|S2)S3|S4|S1|S2/S3|S4|S1|S2|S3| S4
1 User 7 |53|222]455[0.02| 0 [0.06]/0.03| 4.3 |0.6(0.1(0.1] 0] 0] O 0

10 Users 10 369 901 (1694|0.38|0.1(0.05[0.04[35.8{0.8|0.3(02| 0 [0 | O 0
30 Users 30 [377]930 [1761(17.1]0.5(/0.19|0.09| 116 |2.4| 1 |o5] 0| 0| O 0
60 Users 60 (418|954 [1789(89.5|2.7|1.14| 0.6 | 197 [45[/1.9]| 1 [0 | 0 | 0 |0.0083
100 Users 100 [430| 947 [1601| 170 [5.6 |2.45(|1.44| 277 |7.5(3.3| 2 [0 | 0 | 0 |0.0085

Table 14 Over All Average (Load Testing)

% / —+—S1
30
Y
—A—S3

20
15 4 S4

5,
-/l;:

N/
0 +—= s 25 T = T

1 User 10 Users 30 Users 60 Users 100 Users

Figure 35 Average Latency (Load Testing)

- 122 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

50 f
45
40 -
% / —+—S1
30 / —m-S2
25
20 —A— S3
i 4 S4
10

5 .

0 X ,Aﬁ—%fé\,é

1 User 10 Users 30 Users 60 Users 100 Users
Figure 36 Average Response Time (Load Testing)

2000 -
1800
1600
1400 -
e
1000 —a— & —3a —A—S3

800 -

600 - S4

400 /.———.—— —i —

200 "/ —

0 U/ * —————— * ‘ M ‘
1 User 10 Users 30 Users 60 Users 100 Users

Figure 37 Average Throughput (Load Testing)

On the other hand, the server side analysis did not show server memory
utilization work. This is mainly due to the nature of the application server which is
based on Java. Java garbage collection policy works as a lazy process where
memory is allocated when needed. However, the CPU utilization has shown some
noticeable change as a result of the load testing. Figure 38 shows that the CPU
utilization for the first scenario. It is mainly because every virtual user was very
busy retrieving a page that takes a very long time to download which left the CPU
idle with almost no work. However, the case was different with the other three
scenarios where CPU utilization was in the normal distribution shape. As shown in

Figure 38 the fourth scenario (static pages) has the lowest CPU utilization behavior,

- 123 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

followed by the third scenario (caching), and then the second scenario (connection

pooling).

S
< ——51
'*E —-—S2
= —— S3
5
5 S4
o
)

Time Snapshots

Figure 38 CPU Utilization for load testing (100 users)

In the second scenario, the memory utilization is high, as database queries are
run and allocated in the memory every time there is a database access. The third
scenario relaxes the memory utilization by using the cache. The fourth scenario does
not go to the application server at all, but it still has a high CPU utilization due to the
very high throughput.

The following may be observed from the obtained results in (Appendix F ,Table
22) which are mapped in Figure 39 regarding CPU I/O waiting: -

1. CPU I/O waiting for all the scenarios did not exceed 50% of the CPU

processing in general.

2. The third scenario (Caching) shows zero I/0O waiting.

3. The second scenario (Connection Pool) shows noticeable fluctuating in CPU

I/0 waiting.
4. The fourth scenario shows almost zero I/0O waiting but fluctuate abnormally

at one point in time.

5. The first scenario shows very small I/O waiting on scattered intervals.

- 124 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

100
90 -
80

70 4
60 —e— Seriesl

50 - —m— Series2
Series3

40
30 '\ Ti f Series4
20
107 N
[AT R AR r‘\ o «~‘ ARASARARAS \V\M‘N‘V /wwwwm\(

— < N~ o
-

1/0 Waiting (%)

T|me Snapshots

Figure 39 I/0 Waiting for load testing (100 users)

A large value for I/O waiting is a bad indicator for the application because it
means that the process is idle due to blockage in I/0. The second scenario which
made the highest fluctuation in I/O waiting time curve due to the fact that the
throughput was high and the hits that were not served directly with a database
connection had to wait until a connection was returned or until a new database
connection is created. In the third scenario there was no access to the database at
all; that is why the throughput in the third scenario is far beyond that of the second
scenario. The fourth scenario experienced some I/O waiting mainly because the very
high throughput and the limited connections allowed by the web server made the
virtual users wait for sometime acquiring a connection. The first scenario did not
show any active I/O waiting values because its throughput was very low compared to

the other scenarios and I/O was distributed across the whole load testing period.

I/0 waiting analysis shows that the Cache and the Static Scenarios achieve d
the maximum utilization of the CPU because they are served with the information
directly. However, the second scenario is served from the memory directly, but the
fourth scenario is served from the files on the disk. The database connection pool
wastes CPU cycles because the users had to wait for connections or they had to

acquire new connections.

To sum up, if one wants to achieve the best performance for a database-driven
web application, then he/she must have a database connection pool, a cache, and

may be some static pages. It is left to the user to decide which content should be

- 125 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

cashed and which should be converted to static, given that the dynamic pages are
still there. The web applications that have a very high number of hits may also build
redundant hardware to achieve better performance. However, web applications that
have small to medium visits will stay stable and reliable if the optimization solutions

are implemented without the need to add more hardware.

- 126 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Chapter 9

SUMMARY AND CONCLUSION

The aim of this research work was to suggest a number of essential design
patterns and a pattern language that handles performance problems for database-
driven web applications. The emphasis is to show the importance of design patterns
and their use as stand-alone designs and with other technologies like frameworks.
The suggested design patterns in this study are meant to help in solving performance
problems, breaking down database SQL statements complexities, as well as
monitoring resource utilization. They could be applied as well in normal desktop
applications. However, from experience, they are very effective on web applications
where the customer load is most probably unknown. It is very important to mention
here that performance issues must be addressed as early as the design phase, or
even earlier, and it is not enough to tune some parameters after the development

phase to get the required performance.

9.1 Research Conclusion

Studying web applications in details within the context of a certain organization
shows that it is the web application that varies where the web server, application
server, and database are all products that have been tested and verified. Problems
arise, most of the time, from the application itself and its misuse of the available

resources.

There are many benefits for working with the suggested design patterns for

web applications in general: -

1. The patterns help in building a solid performance optimization infrastructure
for web applications. This can be integrated later on inside a framework.

2. Performance bottlenecks are considered at the early phases of design. For
example, if developers properly use connection pooling throughout a
project, then establishing a connection with a database will not be blamed
for delay.

3. Post implementation performance problems will be easily tracked and
analyzed where log analysis engines could be implemented to give accurate

reports on system performance.

- 127 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

4. Testing scripts can give more weight for functional and non-functional
testing. Performance testing must be conducted as well. However, testing
scripts will not take much time to complete.

5. Tuning database queries will be an easy process that is not tightly coupled
with the code.

6. Highly accessed dynamic pages can be converted to static versions, if
possible, which puts the entire load on the HTTP server and leaves the
Application Server, and the database, to be utilized more efficiently in other

areas.

It would be practically more useful if a pattern language was bundled within a
framework that is tailored for web applications. Actually, the suggested pattern
language in this research can then be used to document the framework’s
performance issues. Or it can become the nucleus of a new framework that focuses

on web applications.

9.2 Directions for Future Work
The area of design patterns is still in need for future research in many aspects.

The mentioned patterns are just a small number of patterns that may be used in an

application. The following points outline some ideas of anticipated research: -

= Decoupling Database SQL Statements from Applications: An application can be
developed to help the designer build the required SQL templates and produce

them in the required format.
= Logging to Debug Performance Issues:

o Generic Log analyzers can be developed to report against system behavior

and performance issues.
o The developed reporting tool can link the logged runtime SQL statements
with their templates to help the developer trace application problems.

= Web Application Framework: The suggested patterns in this research can be
collected in a framework that focuses on web applications, or they can be added
to existing frameworks such as Expresso [Refer to section 3.8.2 for more

information on Expresso framework.]

- 128 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Appendix A UML Notations

GENERAL-PURPOSE CONCEPTS USE-CASE DIAGRAM

Can be used on various diagram types Shows the system’s use cases and
which actors interact with them

Package, dependency, note

] Actor, use case, and association

package 1
name

.] COMMURiEaton
| N
optiona depe;nd-enm.r nama association name
—1 ¥
I

uSTEEQTyYpE Names
packane 2 R noite text acior name USE-;A5E name
name .

.
“J {eonstraint_taxt}

CLASS DIAGRAM Shows the existence of classes and their relationships
in the logical view of a system

Class Class Mame | Parameterized class
(lass Name e
attribute { Formal Arguments. |
sttribute - data_type tamplata nama [template definition

attribute : data_type = init_value

class instantiated
from template

operation template name <actual srgumentss> ‘
operation (arg_list) ; result_type

- 129 -

ST,
-
Iy

~
L o
Sty ed

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

S
)
s

c
o O

Association classes Role names and derived associations

Association
[Cass1 |- 2socionName —rrses] [Class-1

| Assaciatian Mams
I rola-1 role-2

Clazs-2

Aderived association

association
class name

attribute
oparation

Aggregation, navigability, and multiplicity Constraints

| Whale Class Name | Class 1 al Class2

g1 % aggregation. .1 % composite agaregation, ‘T"
umidirechional bidiractional navigability {zanstraint;
nawvigability i al
n* 0.

| Part1 Clazs Nama I | Part? Class Name | ﬁ}

a3 I.* |arderad)

Visibility and properties

Class
- private attriputs
protected attribute
/- private derived attribute
+3class public attribute

+ public operation

protectad oparation

- private aperation
+$class public operation

Optional visibility icons
Attributes Operations

¢ public @ public
?‘prntemed T?pruten:ted

%priva‘te 'prl‘-.fate
T’implementatinn l. implementation

Qualified association Generalization/specialization

Superclass-B

Assogiation Name -
i Superclass-A gration
m quallﬁ“ rola=1 rola=2 | P | P

AN

| Subelass-1 | Subclass-2

oparation

-130-

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

STATE-TRANSITION DIAGRAM Shows the state space of a given context, the
events that cause atransition from one state to

another, and the actions that result

State icon State transitions

avant|arqumants|[condition)
Stata Nama laction
“send targetsend event {send arguments)

-

gtry; entry-action
di; activity-A
on eveit-1; actian-1

&—— st
BXIt: exit-action 3 stop
History @

Mesting

e

, o

INTERACTION DIAGRAMS Show objects in the system and how they interact

Sequence diagram

X

actor nama: object 1: . . ‘class
Actor class Class name ohjgct 2 abiect 3 nameg
script text levent | i
2, operation i
3. operation

[parameter list}

P

4, operation
{parameter list)

5. oparation

{parameter list)
l Ll

more script text

- 131 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Collaboration diagram

F operation [parameter list)
1: evant

%—' ohject 1: Class name

4: pperation (parameater list
aehar namme l P 'p :
Artor I:Iass 5: operation {parameter list)

— ; I
—| =3 object flow
ohject 3 | clags nama HJ

2: oparation
—

COMPONENT DIAGRAM
Shows the dependencies between software components

companent 1 component 2

DEPLOYMENT DIAGRAM
Shows the configuration of runtime processing elements

node1 | [linkname——| pogey

- 132 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Appendix B Tuning the Apache Web Server

The following parameters are the most common ones that make difference when
tuned in the apache web server. There are other parameters that are related to the
hardware and the operating system which can add more to the over all performance.
However, they are not considered in this section. The following are configuration

parameters that are found in httpd.conf of the Apache Web Server [GD].

. KeepAlive - The default for this setting is "on." Make sure "on" is selected if

it is not already. There are two good reasons for using this setting:

o The other "number of servers" settings do not work when KeepAlive is set to
"off" -- they are no longer optimizations and will probably slow your

execution.

o Building the connection with each mouse click is time-consuming. This option
alleviates that pressure from your server, and the server assumes you'll ask

for more data.

. TypeOfServer - If you are performance-tuning your server, make sure it is
set to "Standalone." This is the current default, but double-check just to be sure.
When running in inetd mode, Apache uses inetd (or xinetd) to make its

connections, which is much slower.

. KeepAliveTimeOut - The values used here are in seconds. Set the value so
it does not keep connections lingering too long after the user has disconnected,
but long enough that connections in use don't have to be rebuilt frequently. If all
your customers are on 1200-baud dial-up, the default of 15 seconds is probably
too low, but if you're serving on an intranet, it might be too high. As long as this

connection is "live," one of your connections is being used and is not available.
When visitors click away from your site, you'll be holding on to a dead connection

for as long as this value is set, so don't turn it up arbitrarily.

. MaxKeepAliveRequests - This setting controls how many requests a single
connection will stay alive for. In a situation where your server is overtaxed,
reducing this number will cause more users to have slower access. The default is

high -- 100 or 300, depending upon the operating system (or distribution) you're

- 133 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

running. It should be high. Use the KeepAliveTimeOut value to clean up most
connections, and give it a high number so that any long-running resource issues
are cleaned up once in a while. If you don't want your connections to time out,
set this value to "0." However, be aware that your server will be kept alive to

listen to the connections.

. StartServers - This is the number of child processes to start up when Apache
is run. This number can be a problem only in heavily loaded servers. Since there
are other settings to control the maximum number of servers when the system is
stressed, the StartServers setting only applies at start-up. If you restart your
Web server a lot, it is a good idea to set this number reasonably high, so that
your users can get back in quickly. If you do not reboot often, the default

(normally 5 for a server installation) should be enough.

. MaxSpareServers - This is the number of servers that are hanging around,
waiting for a connection. If you are well tuned, you'll have a few of these, but not
many. The servers are there to handle spikes in service, but they're not wasting
your resources when you don't need them. Leave this setting at the default
unless your site is "busy" (for example, you get suddenly swamped at certain
times of the day). Don't set it too low, because starting servers up takes quite a
chunk of CPU time.

. MinSpareServers - This value indicates when Apache should run more
copies of child servers to hang about waiting for connections. The default is 5 on
most server installations. This means when you only have 4 idle servers, Apache
should start a new one. Playing with this value can have wild results, depending
upon the CPU speed, load, and memory of your server. If you use settings you're
comfortable with, and your performance degrades, use "top" or an equivalent
program to look at CPU and memory usage. You may need to upgrade your

hardware.

. MaxClients - So you changed all the previous settings, and nothing
happened? Well, this setting is the "overlord" of child processes. It controls the
maximum number of children that can be running at any one time. Do not drop
this number too low because the server will reject connections when this nhumber

of connections is reached. The default is 150. Consider raising it if you have

-134 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

problems with connection rejections. According to the httpd.conf documentation,
this setting's purpose is to keep the Web server from dragging the entire system
down if the server goes wild. So make sure this value is not so high that you
cannot log in if it is ever reached. Keep the default unless you know that

"connection denied" is something your customers are seeing occasionally.

. MaxRequestsPerChild - This setting determines the number of separate
requests the server handles before it becomes obsolete. It should be set to a
reasonably high number. Like MaxKeepAliveRequests, this setting is useful
because it keeps your system from running out of resources if there is a problem
with the server or a shared object the server uses. Starting with the default of
150 is a good idea, but the higher this number, the fewer times Apache will kill a

child process than create a new one to replace it.

. HostnameLookups - assigning this parameter to on adds latency to the web
server where every request has to be looked up in the DNS Server. Note that it's
possible to scope the directives, such as within a <Location /server-status>
section. In this case the DNS lookups are only performed on requests matching
the criteria. Here's an example which disables lookups except for .html and .cgi

files:

HostnameLookups off
<Files ~ "\.(html|cgi)$">
HostnamelLookups on
</Files>
. DirectoryIndex - If possible avoid content negotiation where wildcard file

name is used such as:

Directorylndex index
Try to use a complete list of options:

Directorylndex index.cgi index.pl index.shtml index.html

- 135 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

Appendix C Java Naming Convention
Naming conventions make the code more readable and understandable.

Programmers can know from the first look if a certain name is a package name or a
constant. Code-naming convention is important for many reasons [JAVACONV]: -
1. It enhances code readability and understandability.
2. 80% of the software lifetime cost goes to maintenance.
3. The original software developer is rarely the one that maintenances the
software.
4. If the software source code is shipped, then it must be guaranteed that the
source code is as good as any other product.
The following table is an excerpt from the Java documentation that describes briefly
the recommended naming conventions. For more information about Java Code

Convections visit http://java.sun.com/docs/codeconv/index.htmil.

Table 15 Java Naming Convention Summaries

Identifier |[Rules for Naming Examples
Type
Packages |The prefix of a unique package name is always com.sun.eng

written in all-lowercase ASCII letters and should be com.apple.quicktime.v2
one of the top-level domain names, currently com, edu.cmu.cs.bovik.cheese
edu, gov, mil, net, org, or one of the English two-
letter codes identifying countries as specified in ISO
Standard 3166, 1981.

Subsequent components of the package name vary
according to an organization's own internal naming
conventions. Such conventions might specify that
certain directory nhame components be division,

department, project, machine, or login names.

Classes Class names should be nouns, in mixed case with the
first letter of each internal word capitalized. Try to class Raster;

keep your class names simple and descriptive. Use class ImageSprite;
whole words-avoid acronyms and abbreviations
(unless the abbreviation is much more widely used
than the long form, such as URL or HTML).

- 136 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Rer SN
~
.

Sty e

ci
o O
Q aov®

%,

Interfaces |Interface names should be capitalized like class interface RasterDelegate;

names. interface Storing;
Methods Methods should be verbs, in mixed case with the first |run();

letter lowercase, with the first letter of each internal |runFast();

word capitalized. getBackground();
Variables |Except for variables, all instance, class, and class int i

constants are in mixed case with a lowercase first char C;

letter. Internal words start with capital letters. float myWidth;

Variable names should not start with underscore _ or

dollar sign $ characters, even though both are

allowed.

Variable names should be short yet meaningful. The

choice of a variable name should be mnemonic- that

is, designed to indicate to the casual observer the

intent of its use. One-character variable names should

be avoided except for temporary "throwaway"

variables. Common names for temporary variables

are i, j, k, m, and n for integers; c, d, and e for

characters.
Constants |The names of variables declared class constants and of |static final int MIN_WIDTH = 4;

ANSI constants should be all uppercase with words
separated by underscores ("_"). (ANSI constants

should be avoided, for ease of debugging.)

static final int MAX_WIDTH =
999;

static final int GET_THE_CPU =
1;

- 137 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Appendix D The Test Environment

The power of the pattern language cannot be shown unless all its patterns are
integrated and collectively tested. The testing environment simulates the real one.
Moreover, it explores the tradeoffs of the pattern language on similar environments.
The pros and cons of the pattern language will appear clearly after checking the
cooperation of the different design patterns. This can be seen as an integration
testing although there may be no clear division of the integrated modules.

A commercial environment is suggested here as the test bench. Vodafone

Egypt website www.vodafone.com.eqg is selected to be the test bench. Vodafone

Egypt website satisfies the required tools and it has a very good design on the level
of the application or the database. Selecting an existing application as the test
bench makes the testing results related mostly to the design patterns without
focusing on the testing environment problems. The purpose is not to test the
Vodafone website, but to show the benefits of the suggested pattern language for a
commercial web application. So, testing will ignore any business logic and will

mainly concentrate on the system before and after applying the pattern language.

The Following are the technical specification for the environment that the

research development and testing will be conducted on:

¢ Development Environment

2. Visual Age for Java 3.5.3: the development kit that is used. It has a robust
testing environment for web applications. It uses the rapid application
development (RAD) to build Java applications, servilets, applets, and java
beans [TOHFO1].

3. WebSphere Studio 3.5.2: It is used to develop HTML and JSP pages.

4. UML: It is used to depict the design pattern notations. The Unified Modeling
Language (UML) is the standard language nowadays for designing, visualizing,
documenting software. This notation is flexible enough to design even a
database which helps in bridging the gap between the developers and the
users [UMLCENTER]. Almost all the design patterns, if not all of them, will
have blue prints of UML to visualize them. Appendix A has more information
on the UML notations.

5. A Java-based load testing utility is used. A Commercial load testing software

was not possible.

- 138 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

6.

JDK (Java Development Kit) 1.2.2: It is used as the implementation
language. Java is currently very widespread in the internet community for its
network flexibility and its innovative solutions like applets [JAVA1.2].

JSP 1.1: It is used to develop the dynamic pages for the web application.
Java Server Pages (JSP) are like HTML pages, but they provide dynamic
content inside the HTML. It is very useful to have this separation since the
developers will no longer need to know how to build HTML and leave it to the
graphics designers. All that they need to know is where to put their dynamic
content [WUFM].

e Deployment Environment

1.
2.

Oracle Database Engine/Management

WebSphere Application Server Advanced Edition 3.5.6: This is the
application server that hosts the web application. It is a java based
application that supports servlets, JSP, XML, and EJBs technology.

IBM HTTP Server: It is a web server that is based on Apache. Apache is the
most widespread web server in the world. It is bundled with WAS
(WebSphere Application Server).

Windows 2000 is used as the platform for the client connections.

IE6 is used as the testing browser.

A Unix machine with dual processors and 2GB memory running on Solaris 2.6 is
used to host WebSphere Application Server 3.5.6.

- 139 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

Coj
& Com
20v?,

o

S
o

ety o8

Appendix E Load Testing Utility Source Code

This testing utility is built fully in Java. It consists mainly of two classes and
one property file where configurations are saved. Tester.java is responsible for
reading the properties file and loading its configurations, creating virtual users, and
generating the report. URLRun.java is a virtual user that keeps calling the pages
specified in the properties file and accumulate statistics about its usage.
Tester.properties is used to specify the load testing duration in minutes, the number
of users to run, and the pages to be called. Please refer to Appendix C for more
information on Java naming conventions. The command used to run the load testing
utility is

java -cp .;<jar file path> Tester

Sample Report

Users ran concurrently for at least 1 minutes
Number of users = 1

Start Time = Sat Nov 01 15:24:15 EET 2003
End Time = Sat Nov 01 15:25:15 EET 2003

Number of test pages = 2

Details on every page

page (http://10.230.91.29/JSP/personal/promotions/promotionTypeDetails_14.html)

Total number of requests = 455

Failed requests = 0

Total successful response/download time = 13.99 seconds.

Total successful latency time = 7.931 seconds.

Average response Time (total success response time / (No. of requests - No. of request
errors)) = 0.03074725274725275 seconds

Average latency Time (total success latency time / (No. of requests - No. of request
errors)) = 0.017430769230769232 seconds

page (http://10.230.91.29/JSP/personal/promotions/promotions.jsp)

Total number of requests = 454

Failed requests = 0

Total successful response/download time = 45.939 seconds.

Total successful latency time = 22.909 seconds.

Average response Time (total success response time / (No. of requests - No. of request
errors)) = 0.10118722466960352 seconds

Average latency Time (total success latency time / (No. of requests - No. of request
errors)) = 0.05046035242290749 seconds

total requests = 909

total failed requests = 0

Failed ration % = 0.0

total request time = 59.929 sc

Average latency time per page (total response time/(total requests - total failed
requests)) = 0.03392739273927393 sc

Average response/download time per page (total request time/ (total requests - total
failed requests)) = 0.06592849284928493 sc

Tester.properties
number of users to go on with the test

- 140 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications “Es“‘
b

ety o8

Ci
& Come

o

20v?,

o

usersCount=1

the pages that will go in the scenario
pagel=http://<path>/JSP/personal/promotions/promotions.jsp
page2=http://<path>/JSP/personal/promotions/promotionTypeDetails.jsp?Pro
mTypelD=14

duration of the test in minutes

duration=1

Tester.java

import java.net.*;
import java.util.*;
import java.io.*;
/**
* The test manager. It is responsible for creating the virtual users. It loads also the
pages
* that will be called by the user.
* @author: Osama Mabrouk
*/
public class Tester extends Thread {
public static Boolean finished = new Boolean(true);
ResourceBundle rs = null;
/** The number of users that will run the test */
private int usersCount = -1;
/** sequences of pages to test */
private String[] pages = null;
/** duration of testing in seconds */
private int duration = -1;
java.util.Date startTime = null;
java.util.Date endTime = null;

public Tester() {

super();

try {
String time = new Date().toString();
time = time.replace(’:’, "_’);
File f = new File("report_" + time + ".txt");
f.createNewFile();
PrintStream out = new PrintStream(new FileOutputStream(f));
System.setOut(out);

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

rs = ResourceBundle.getBundle("Tester");
/** The number of users that will run the test */
usersCount = Integer.parselnt(rs.getString("usersCount"));
/** sequences of pages to test */
Enumeration keys = rs.getKeys();
String key = null;
Vector v = new Vector();
while (keys.hasMoreElements()) {
key = (String) keys.nextElement();
if (key.indexOf("page") !=-1)
v.add(rs.getString(key));
}
pages = new String[v.size()];
for (inti=0;i<v.size(); i++) {
pages[i] = (String) v.get(i);

/** duration of testing in seconds */
duration = Integer.parselnt(rs.getString("duration"));

}

public int getDuration() {
return duration * 1000 * 60;

- 141 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications g

& Com
Q

2%

§

3%

}

public java.lang.String[] getPages() {
return pages;
}

public int getUsersCount() {
return usersCount;
}

public static void main(String[] args) {

Tester tester = new Tester();
tester.run();

private void report(URLRun[] user) {

double[] singlePageAvgTime = new double[pages.length];

double totalRequestTime = 0;

double[] singlePageResponseTime = new double[pages.length];

double totalResponseTime = 0;

int[] singlePageNumOfLoadTrials = new int[pages.length];

int totalRequests = 0;

int[] singlePageNumOfErrors = new int[pages.length];

int totalErrors = 0;

double pageAvgTime = 0;

for (inti=0; i < user.length; i++) {

for (int j = 0; j < singlePageAvgTime.length; j++) {

singlePageAvgTimel[j] += user[i].getPageAvgLoadTime()[j];
singlePageNumOfLoadTrials[j] += user[i].getNumberOfLoads()[j];
singlePageNumOfErrors[j] += user]i].getPageError()[j];
singlePageResponseTime[j] += user[i].getPageResponseTime()[j];

}

System.out.printin("Users ran concurrently for at least " + getDuration() / (1000
* 60) + " minutes");

System.out.printin("Number of users =" + getUsersCount());

System.out.printin("Start Time =" + startTime);

System.out.printin("End Time =" + endTime);

System.out.printin("Number of test pages =" + pages.length);

System.out.printin(" !

System.out.printin("Details on every page");

System.out.printin(*'---------=-=--=------ ");

1

for (inti=0; i < pages.length; i++) {

System.out.printin("page (" + pagesl[i] +")')

System.out.printin("

System.out.printin(“Total number of requests =
singlePageNumOfLoadTrials[i]);

System.out.printin("Failed requests = " + singlePageNumOfErrorsi]);

System.out.printin(“Total successful response/download time =" +
singlePageAvgTimeli] / 1000 + " seconds.");

System.out.printin(“Total successful latency time =" +
singlePageResponseTime[i] / 1000 + " seconds.");

double avgTime = (singlePageAvgTimeli] / 1000) / (singlePageNumOfLoadTrials[i]
- singlePageNumOfErrorsi]);

double avglLatency = (singlePageResponseTime[i] / 1000) /
(singlePageNumOfLoadTrials]i] - singlePageNumOfErrorsi]);

System.out.println(

"Average response Time (total success response time / (No. of requests -
No. of request errors)) ="
+ avgTime
+ " seconds");
System.out.println(
"Average latency Time (total success latency time / (No. of requests - No.

of request errors)) ="

+ avglLatency
+ " seconds");
System.out.printin();

- 142 -

00 a0u

Xer SN

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Ci
& Come

o

20v?,

O
o

Styyy o

}

for (inti=0; i < pages.length; i++) {
totalRequestTime += (singlePageAvgTime[i] / 1000);
totalResponseTime += (singlePageResponseTime[i] / 1000);
totalRequests += singlePageNumOflLoadTrials[i];
totalErrors += singlePageNumOfErrorsi;

}

System.out.printin("

System.out.printin("total requests =" + totalRequests);

System.out.printin(“total failed requests =" + totalErrors);

System.out.printin("Failed ration % =" + ((float) totalErrors / (float)
totalRequests) * 100);

System.out.println(“total request time =" + totalRequestTime + " sc");
System.out.println(
"Average latency time per page (total response time/(total requests - total
failed requests)) ="
+ totalResponseTime / (totalRequests - totalErrors)
+"sc");
System.out.println(
"Average response/download time per page (total request time/ (total requests
- total failed requests)) ="
+ totalRequestTime / (totalRequests - totalErrors)
+"sc");

}
public void run() {
URLRun[] user = new URLRun[getUsersCount()];

try {
for (inti = 0; i < getUsersCount(); i++) {
user[i] = new URLRun(getPages());
user[i].setDaemon(true);

startTime = new java.util.Date();

System.err.printin(startTime);

for (inti = 0; i < getUsersCount(); i++) {
user[i].start();

System.err.printin(“Total users " + new java.util.Date() + " " +
URLRun.getCurrentRunsCount());

Thread.currentThread().sleep(getDuration());

URLRun.setRunning(false);

/I sleep for one minute until all threads are killed

while (URLRun.getCurrentRunsCount() > 0) {

try {

Thread.currentThread().sleep(500);

System.err.printin("Total users =" + URLRun.getCurrentRunsCount());
} catch (InterruptedException €) {

}
}

endTime = new java.util.Date();
} catch (InterruptedException e) {

report(user);

public void setDuration(int newDuration) {
duration = newDuration;
}

public void setPages(java.lang.String[] newPages) {
pages = newPages;

public void setUsersCount(int newUsersCount) {

-143 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

usersCount = newUsersCount;

}
}
URLRun.java

import java.io.*;

import java.net.*;

import java.util.*;

import com.clickgsm.internet.web.common.*;

/**

* A virtual User

* @author: Osama Mabrouk

*

public class URLRun extends Thread {
private String[] pages = null;
private double[] pageAvgLoadTime = null;
private double[] pageResponseTime = null;
private int[] pageError = null;
public static Boolean running = new Boolean(true);
private int[] numberOfLoads = null;
static public int currentRunsCount = 0;

public URLRun() {
super();

public URLRun(String[] pages) {
super();
this.pages = pages;
pageAvgLoadTime = new double[pages.length];
pageError = new int[pages.length];
numberOfLoads = new int[pages.length];
pageResponseTime = new double[pages.length];
setCurrentRunsCount(getCurrentRunsCount() + 1);

}

public URLRun(Runnable target) {
super(target);

public URLRun(Runnable target, String name) {
super(target, name);

public URLRun(String name) {
super(name);
}

public URLRun(ThreadGroup group, Runnable target) {
super(group, target);

public URLRun(ThreadGroup group, Runnable target, String name) {
super(group, target, name);

public URLRun(ThreadGroup group, String name) {
super(group, name);
}

synchronized public static int getCurrentRunsCount() {
return currentRunsCount;
}

public int[] getNumberOfLoads() {
return numberOfLoads;
}

public double[] getPageAvgLoadTime() {
return pageAvgLoadTime;

-144 -

PREr S

o

ety o8

Ci
& Come

o

20v?,

o

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

}

public int[] getPageError() {
return pageError;
}

public double[] getPageResponseTime() {
return pageResponseTime;
}

public static boolean isRunning() {
return running.booleanValue();

}
public void run() {
URL url = null;
long startUrlTime = 0;
long endResponseTime = 0;
long endUrITime = 0;
InputStream input = null;
byte[] bytes = null;
/I continue loading as long as running is true
while (isRunning()) {

/I go over the pages one by one
for (inti=0; i < pages.length && isRunning(); i++) {
try {

startUrlTime = System.currentTimeMillis();
url = new java.net.URL(pagesli]);
input = url.openConnection().getinputStream();
endResponseTime = System.currentTimeMillis();
bytes = new byte[1000];

while (input.read(bytes) != -1) {

input.close();
endUr|Time = System.currentTimeMillis();

pageResponseTime[i] = pageResponseTime[i] + (endResponseTime -

startUrlTime);

pageAvglLoadTimeli] = pageAvgLoadTime[i] + (endUrlTime - startUrITime);

} catch (java.net.MalformedURLException e) {
pageError[i]++;
System.err.printin(url.toString() + " " + e);

} catch (IOException e) {
pageError[i]++;
System.err.printin(url.toString() + " " + e);

} catch (Exception e) {
pageError[i]++;
System.err.printin(url.toString() + " " + e);
} catch (Throwable e) {
pageError[i]++;
System.err.printin(url.toString() + " " + e);

} finally {
numberOfLoadsl[i]++;

yield();
}

setCurrentRunsCount(getCurrentRunsCount() - 1);

}

synchronized public static void setCurrentRunsCount(int newCurrentRunsCount) {
currentRunsCount = newCurrentRunsCount;
}

public void setNumberOfLoads(int[] newNumberOfLoads) {
numberOfLoads = newNumberOfLoads;
}

- 145 -

PREr S

o

ety o8

Coj
& Com
20v?,

ES
@

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

}

public void setPageAvgLoadTime(double[] newPageAvgLoadTime) {
pageAvglLoadTime = newPageAvgLoadTime;

public void setPageError(int[] newPageError) {
pageError = newPageError;

public void setPageResponseTime(double[] newPageResponseTime) {
pageResponseTime = newPageResponseTime;

public static void setRunning(boolean newRunning) {
running = new Boolean(newRunning);

- 146 -

Xer SN

S)
/3)
S A 8
o v/

Styyy o

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Appendix F Detailed Load Testing Results

The following are the settings that have been used in the load testing scenarios

= Load Test Duration = 1 minute

= Number of Pages = 2
= IBM HTTP Server Maximum Clients = 150

= IBM WebSphere Application Server Max Connections=25

= Database Connection Pool startup Size = 5 and maximum size=30

= Cache is considered infinite.

The following are the different scenarios that have been tried

n S1 =
= S2

No connection pool and no Caching

Connection Pool and No Caching

= S3 = Connection Pool and Caching
= 5S4 = Static Pages

The number of the virtual users which have been tried are 1, 10, 30, 60, 100 virtual

xer s,
A O

o
o

N

20v?,

2’ o,
> 3
Sty 2

users. The following tables list all the results for all the runs across the previous four

scenarios
Page (1 User) Throughput [Avg. Latency (sec)| Avg. Response Reliability
Time (sec)
S1|S2|S3| 54| S1 |s2|53| 54 |s1|s2|s3|s4|s1]|s52]| 53] 54
List All Vodafone 7 | 53 | 221 454 | 0.02 [0.07]0.05[0.017| 3.6 | 0.5 [0.13]0.03| 0 | © 0 0
Promotion Types
List A promotion Type 7 | 53 | 222 455 | 0.02 [0.01]0.066| 0.05| 5 [0.64|0.14] 01| 0 | O 0 0
Details
Over All Avg. 7 | 53 | 222 | 455 | 0.02 [0.04[0.058]0.034| 4.3 [0.57|0.14]0.07| 0 | © 0 0
Table 16 1 User (Load Testing)
Page (10 User) Throughput |Avg. Latency (sec)| Avg. Response Reliability
Time (sec)
S1|S2|S3| 54| S1 |S2| 83| S4 | St |S2|S3|S54]|S51|52] 83| 54
List All Vodafone 9 | 367|898 |1692[0.013]/0.05/0.05/ 0.03| 45 |08 |03 |03] 0 | 0O 0 0
Promotion Types
List A promotion Type 11 | 371 | 903 [1695 0.74 | 0.04| 0.04 | 0.04 | 26.6 | 0.8 | 0.3 [0.06 0 | © 0 0
Details
Over All Avg. 10 | 369 | 901 | 1694 [0.377]0.05[0.045(/0.035| 35.8| 0.8 | 0.3 [0.18] 0 | © 0 0
Table 17 10 Users (Load Testing)
Page (30 User) Throughput [Avg. Latency (sec)| Avg. Response Reliability
Time (sec)
S1|S2|S3| 54| S1 |s2|53| 54 |s1|s2|s3|s4|s1]|s52]| 53] 54
List All Vodafone 370 | 920 | 1759 0.5 | 0.18|0.084 24109409 0| 0 0 0
Promotion Types
List A promotion Type 30 [383]939 1763 17.1 | 0.5 | 0.2 [0.098|116.2| 2.4 | 1 [0.12] 0 | O 0 0
Details

- 147 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

Over All Avg.

PREr S

o

és
0]
(]

N

20v?,

2’ o,
> 3
Sty 2

| 30 ‘ 377 ‘ 930‘1761| 17.1 ‘ 0.5 ‘0.19‘0.091|116.2‘ 2.4 ‘o.97‘o.51| 0 ‘ 0 ‘ 0 ‘ 0 |

Table 18 30 Users (Load Testing

Table 21 CPU Utilization for load testing (100 users)

- 148 -

Page (60 User) Throughput [Avg. Latency (sec)| Avg. Response Reliability
Time (sec
S1|S2 |83 |54 | S1 |S2| 83| S4 | st |s2|53|54|51|82]|83]| 54
List All Vodafone 402 | 935 | 1778 2.68 (1.157| 0.6 45 [192]142| 0o | © 0 | 0.007
Promotion Types
List A promotion Type 60 | 433|972 [1799| 89.5 [2.61|1.13| 0.6 [196.6{4.39] 1.9 06| 0 | © 0 |[0.0095
Details
Over All Avg. 60 | 418 | 954 [1789 89.5 [2.65 [1.144| 0.6 [196.6/4.45|1.91[1.01| 0 | © 0 [0.00825
Table 19 60 Users (Load Testing)
Page (100 User) Throughput [Avg. Latency (sec)| Avg. Response Reliability
Time (sec
S1|S2|S3| 54| S1 |Ss2| 83| S4 | st |s2|8s3|54|51|582]|83]| 54
List All Vodafone 400 | 922 | 1583 5.8 | 2.5 | 1.47 78 3324|010 0 [o0.011
Promotion Types
List A promotion Type 100 | 460 | 972 [1619| 170 | 5.4 | 2.4 | 1.4 [276.7]7.24| 32 | 15| 0 | © 0 | 0.006
Details
Over All Avg. 100 | 430 | 947 | 1601 | 170 | 5.6 | 2.45|1.435(276.77.52|3.25[1.95| 0 | © 0 [0.0085
Table 20 100 Users (Load Testing)
Time S1 S2 S3 S4
0 0.1 2.6 0.1 0.1
2 0.1 4.2 3.7 4.7
4 0.1 12 11.6 | 135
6 0.1 20 185 | 195
8 0.6 27 24 254
10 0.8 33 29.3 | 30.9
12 1.2 38 34 35
14 1.3 42 38 38.5
16 1.5 45 416 | 41.9
18 1.6 48 447 | 43.9
20 1.6 51 46.7 | 44.6
22 2 53 48.5 | 46.9
24 2.2 55 499 | 47.7
26 2.3 56 50.4 | 49.8
28 3 56 51.6 | 51.3
30 3 57 52.8 | 524
32 3.1 58 53.8 | 53.1
34 3.2 59 54.7 | 52.6
36 3.3 60 55.6 | 52.8
38 3.3 60 56.1 | 52.9
40 3.2 61 56.7 | 52.6
42 3.2 61 48 48.4
44 3 56 40.4 | 40.7
46 3 47 334 | 33.9

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

S4

10
17

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

S3

S2

34

14

16

32

37

19

34
35

43
22

13
30
35

N/A

S1

Time

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

42

44
46

48

50
52
54
56
58
60
62

64
66
68
70
72
74
76

Table 22 I/0 Waiting for load testing (100 users)

- 149 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

10.
11.
12.

13.

14.

15.

16.

17.
18.

19.

20.

BIBLIOGRAPHY

[ABOO] Brad Appleton. Patterns and Software: Essential Concepts and
Terminology (2000). http://www.enteract.com/~bradapp/docs/patterns-
intro.html.

[BB02] Bradley D. Brown (2002). HIGH PERFORMANCE WEB SITES WITH
WEB CACHE. Oracle Development Tools. www.odtug.com.

[BDCRO2] Diego Bonura, Rosario Culmone, and Emanuela Merelli (2002).
Patterns for Web applications. ACM Press.

[BG94] Grady Booch (1994). Object-Oriented Analysis and Design with
Applications, Second Edition.

[BH99] Hans Bergsten (1999). Improved Performance with a Connection
Pool. http://www.webdevelopersjournal.com/columns/connection_pool.html
[BJARO2] James M. Bieman, Roger Alexander, P. Willard Munger III, Rin
Meunier (2002). Software Design Quality: Style and Substance. ACM
[BKCW87] Kent Beck, Ward Cunningham. Using Pattern Languages for
Object-Oriented Programs (1987). OOPSLA-87.
http://c2.com/doc/oopsla87.html

[BWMR98] William Brown, Raphael Malveau, Hays McCormick, Thomas
Mowbray, and Scott W. Thomas (1998). Anti Patterns Refactoring Software
Architectures, and Projects in Crisis.
http://www.antipatterns.com/briefing/index.htm

[CA79] Alexander, C. (1979). The Timeless Way of Building. New York:
Oxford University Press.

[CAUJO02] A.Cranmore, J.Ure, R.G.Dewar, A.D.Lloyd, R.J.Pooley (2002).
Capacity Planning for e-Business. EuroPLoP 2002.

[CCO02] Charles Connell (2002). Most Software Stinks!. http://www.chc-
3.com/pub/beautifulsoftware.htm

[CICBOO] JAMES E. CAREY, BRENT A. CARLSON (2000). Deferring Design
Decisions in an Application Framework. ACM Computing Surveys.
[EESWO0O0] Ezra Ebner, Weiguang Shao, Wei-Tek Tsai (2000). The Five-
Module Framework for Internet Application Development. ACM Computing
Surveys.

[FMO2] Martin Fowler and others (2002). Patterns of Enterprise Application
Architecture. http://www.martinfowler.com/eaaCatalog/.

[FP99] PIERO FRATERNALI. Tools and Approaches for Developing Data-
Intensive Web-Applications: A survey. ACM Computing Surveys, Vol. 31, No.
3, September 1999.

[GA] Antonio Garicia. The Strategy Design Pattern.
http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/StrategyPatter
n.htm.

[GD] Dean Gaudet. Apache Performance Notes.
http://httpd.apache.org/docs/misc/perf-tuning.html

[GEHR95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns, Elements of Reusable Object-Oriented Software.
[GRSAO01] Richard L. Gimarc and Amy C. Spellmann (2001). Performance
Modeling for Web Application Optimization Part I — Modeling the Customer
Experience. HyPerformix Inc.

[HENDER96] Brian Henderson-Sellers (1996). Object-Oriented Metrics,
Measures of Complexity. Prentice Hall PTR.

- 150 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

21.
22.
23.
24.
25.

26.
27.

28.
29.

30.
31.

32.
33.

34.

35.

36.

37.

38.
39.
40.

41.

42,

43.

[HPATTO1] History of Patterns (2001). http://c2.com/cgi-
bin/wiki?HistoryOfPatterns

[HREWO0O] R. Hariharan, W.K. Ehrlich, D. Cura, and P.K. Reeser (2000). End
to End Performance Modeling of Web Server Architectures

[JAVAL1.2] java 2 Platform, Standard Edition (J2SE).
http://java.sun.com/products/jdk/1.2/

[JAVAL1.3] Java 2 SDK Standard Edition Documentation Version 1.3.
http://java.sun.com/products/jdk/1.3/index.html

[JAVACONV] Code Conventions for the JavaTM Programming Language.
http://java.sun.com/docs/codeconv/index.html

[JCORP] http://www.jcorporate.com/

[IPO1] P. Jain (2001). Evictor Pattern.
http://www.cs.wustl.edu/~pjain/papers/Evictor.pdf.

[JPKMO2] Prashant Jain and Michael Kircher (2002). Partial Acquisition
Pattern. PLoP 2002. http://www.cs.wustl.edu/%7Emk1/PartialAcquisition.pdf.
[IR97] Ralph E. Johnson (1997). Frameworks = (Components + Patterns).
Communications of the ACM.

[KC92] CHARLES W. KRUEGER (1992). Software Reuse. ACM Press.

[KM] Mika Kujala. Java in Design Patterns. Tik-76.270, Research Seminar:
Java-based Software Technologies.

[KMO1] Michael Kircher (2001). Lazy Acquisition Pattern. EuroPLoP 2001.
http://www.cs.wustl.edu/%7Emk1/LazyAcquisition.pdf.

[KMO02] Michael Kircher (2002). Eager Acquisition Pattern. EuroPLoP 2002.
http://www.cs.wustl.edu/%7Emk1/EagerAcquisition.pdf

[KMJIPO02] Michael Kircher, Prashant Jain (2002). Pooling. Corporate
Technology, Siemens AG. Munich, Germany.
http://www.cs.wustl.edu/%7Emk1/Pooling.pdf.

[KMJPO3] Michael Kircher, Prashant Jain (2003). Caching. EuroPLoP 2003
http://www.cs.wustl.edu/%7Emk1/Caching.pdf.

[LBCVO03] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn,
Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, Stephen
Wolff (2003). A brief history of the Internet.
http://www.isoc.org/internet/history/brief.shtml

[LCGROO] Chris Loosley, Keynote Systems Inc. Richard L. Gimarc and Amy C.
Spellmann, HyPerformix Inc (2000). E-COMMERCE RESPONSE TIME: A
REFERENCE MODEL

[LD93] Doug Lea (1993). Christopher Alexander: An Introduction for Object-
Oriented Designers. http://gee.cs.oswego.edu/dl/ca/ca/ca.html

[LKZS00] K. Liu, S. Zhou and H. Yang (2000). Quality Metrics of Object
Oriented Design for Software Development and Re-development. 1IEEE.
[LQNJI99] Qiong Luo, Jeffrey F. Naughton, Rajasekar Krishnamurthy, Pei Cao,
Yunrui Li (1999). Active Query Caching for Database Web Servers.

[LTO1] Timothy C. Lethbridge and Robert Laganiére (2001). Object-Oriented
Software Engineering: Practical Software Development using UML and Java.
McGraw Hill.

[MBMTO01] Berna Massingil, Timothy Mattson, Beverly Sanders (2001). A
Pattern Language for Parallel Application Programming.
http://www.cise.ufl.edu/research/ParallelPatterns/

[MC94] Dr. Carma McClure (1994). Reuse Engineering: Extending
Information Engineering to Enable Software Reuse. Extended Intelligence,
Inc. http://www.reusability.com/papers4.html

- 151 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications

44

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

.[MC95] Dr. Carma McClure (1995). Getting Started with Software Reuse:
Secrets to Reuse Success Revealed. Extended Intelligence, Inc.
http://www.reusability.com/papers5.html

[MREWO0O] R.D. van der Mei, W.K. Ehrlich, P.K. Reeser, J.P. Francisco
(2000). A Decision Support System for Tuning Web Servers in Distributed
Object Oriented Network Architectures. ACM SIGMETRICS Performance
Evaluation Review, volume 27 Issue 4.

[NDWSO01] Dung (“Zung”) Nguyen, Stephen B. Wong (2001). Design
Patterns for Sorting. ACM SIGCSE Bulleti, Volume 33 Issue 1.

[PAFJ96] Allison L. Powell, James C. French, John C. Knight (1996). A
Systematic Approach to Creating and Maintaining Software. ACM Press.
[PFDL96] F. Prefect, L. Doan, S. Gold, Th. Wicki, W. Wilcke (1996).
Performance Limiting Factors in Http Web) Server Operations. HAL Computer
Systems, Inc.

[RDZH96] Dirk Riehle and Heinz Zullighoven (1996). "Understanding and Using
Patterns in Software Development".
http://citeseer.nj.nec.com/rd/0%2C14269%2C1%2C0.25%2CDownload/http%253A%252
F%252Fwebfuse.cqu.edu.au/Information/Resources/Readings/papers/tapos-96-
survey.pdf

[RUP] Rational Unified Process. http://www.rational.com/

[SD96] Douglas C. Schmidt (1996). Using Design Patterns to Guide the
Development of Reuseable Object-Oriented Software. ACM Computing
Surveys.

[SDC96] Douglas C. Schmidt (December 1996). Using Design Patterns to
Guide the Development of Reusable Object-Oriented Software. ACM
Computing Surveys.

[SHASHA96] DENNIS SHASHA (1996). Tuning Databases for High
Performance. ACM Computing Surveys.

[SI95] Ian Sommerville (1995). Software Engineering, Fifth Edition. Addison-
Wesley Publishing Company.

[SUNO2] Sun Microsystems (2002). Data Access Object (DAO).
http://java.sun.com/blueprints/patterns/DAO.html.

[TESTO1] University of South Australia. School of Computer and Information
Science. Software Engineering. http://louisa.levels.unisa.edu.au/sel/testing-
notes/test01_1.htm

[TMO02] Moisés Daniel Diaz Toledano (2002). Meta Patterns: A new Approach
for Design Patterns. http://www.moisesdaniel.com/wri/metapatterns.doc.
[TOHFO01] Osamu Takagiwa, Frederik Haesbrouck, Veronique Quiblier, and
Sarah Poger. Programming with VisualAge for Java Version 3.5.
http://www.redbooks.ibm.com/redbooks/SG245264.html

[UMLCENTER] UML Resource Center.
http://www.rational.com/uml/index.jsp?SMSESSION=NO

[USPROBO1] Usability problems.
http://www.leafdigital.com/class/lessons/usability/3.html

[VFWE96] Filippos I. Vokolos, Elaine J. Weyuker (1996). Performance Testing
of Software Systems. ACM

[VOZUO02] Oliver Vogel and Uwe Zdun (2002). Content Conversion and
Generation on the Web: A Pattern Language. EuroPLoP.

[WASO02] IBM (2002). WebSphere Application Server.
http://www.ibm.com/websphere/

[WUFM] Ueli Wahli, Mitch Fielding, Gareth Mackown, Deborah Shaddon, and
Gert Hekkenberg. Serviet and JSP Programming with IBM WebSphere Studio
and VisualAge for Java. http://www.redbooks.ibm.com/

- 152 -

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

A

Abstract Form Pattern
Abstraction
acquisition

Active Proxy

Active Proxy Pattern
Active Query Caching
Active View Pattern
ActiveX

Algorithm

Anti Patterns

AOrder

Appropriate form
ARPANET

ASorter

ASP

Assembly Language
Attribute

Avoid Overbuild

B

BBN

Behavioral Pattern
Best Practice

Black Box Testing
Bottom-up Approach
Bottom-up Testing
Build-in Redundancy
Bus Class Pattern

C

C++

Cache

Cache Roadmap

Cache Roadmap Document
Caching

Capacity Planning

CaGI

Classes

Collaboration Diagrams
Common Components
Complexity

Complexity Break Down
Component Libraries
Component Singularity
Component Testing
Conceptualization
Connection Pool
Consequences
Constants

INDEX
CONTENT CONVERTER 69
CONTENT FORMAT BUILDER 68
70 CONTENT FORMAT TEMPLATE 68
115 Content Validity 86
75 Cooperation 58
67 CcPU 64
Zg Creational Pattern 36
70

50 D
37 DAO See Data Access Objects
2,40, 41 DARPA 47
38 Data Sources 78
59 Database 21
47 Database Access Objects 102
38 Database Administrators 57
56 Database Connection Pool 74
11 Database Query 21, 67, 79
36 Decoupling Database Queries 23
71 Design 27, 49

47
37
11, 41
61
30
64, 65
71
70

36

79

82

112
22,78, 80
71

50, 56
137

112

30

12, 58, 60
110

27

59

61

49

43

34, 35
138

- 153 -

Design Patterns 2, 11, 12, 28, 32, 33, 34,
35, 36, 37, 39, 41, 44, 46

desktop applications 115
Distributed Objects 70
Divide-and-Conquer 37, 69
DIWB 44
DNS 48
Domain 27
Domain Analysis 30
Dynamic Content 67
Dynamic Storage Allocation 27
dynamic web application 86
E
eager acquisition 75
E-Business 14
E-Business Website 13
E-Commerce 12
Economic 30
Electronic Mail 48
Email See Electronic Mail
Encapsulation 12, 115
equals(Object) 37
Equilibrium 116
Error Detection 48
Expresso 45
F
Fail-Soft 64
Functional locality 59

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

G
Galactic Network 47
GENERIC CONTENT FORMAT 68
Graphics 48
GUI 50
H
History of Design Patterns 32
HTML 56
HTTP 67,70
HTTP server logging 108
HTTP web server 56
I
I/O Conversion 27
IBM 44
1IE6 140
IMP 47
implementation guidelines 101
Inheritance 12, 36
Insertion Sort 37
Integration Testing 61
Interface Message Processors See IMP
Interfaces 138
Internet 48
J
Java 12, 37, 50, 55
Java Applet 67
Java code 100
Java Code Convections 137
Java documentation 137
Java Server Pages See ISP
JDK 140
JSP 56, 140
L
Lazy Load 84
Listen Queue 55
load testing 20
log analyzers 108
Logger 103
Logging 22,103
Logging Roadmap Document 112
M
Merge Sort 37
Meta-Pattern Adder 71
Meta-Pattern Decoupler 71
Meta-Pattern Encapsulator 71
Method 36
Methods 138
Minimality 116

-154 -

MIT 47
Multi-Threaded 73
MVC 45
N
Naming conventions 137
NCP 48
Numerical Computation 27
@)
Object 36
Object-Oriented 60, 61
Openness 115
Organizational 30
P
Packages 137
Packet Switching 47
Page Conversion Scheduler 87
Page Converter 87
Page Mapping Repository 87
Page Reference Keeper 87
Patlet 71
Pattern Name 34
Patterns 12
Patterns Catalog 10, 35, 39
Performance 23, 103
Performance Monitoring 110
Performance optimization patterns 110
Performance Requirements 64
Performance Testing 63, 64
Political 30
Polymorphism 12
Problem 34
Product time-to-Market 103
Prototyping 49
Psychological factors 30
PUBLISHER AND GATHERER 68
Q
Query Applet 67
Quick Sort 37, 38
R
RDBMS 57
Readability 59
Reliability 12, 58, 60, 63
Requirements Analysis 49

Reusability 10, 12, 27, 28, 30, 34, 43, 58,
60, 73

Reuse Obstacles 28

Reverse Engineering 30

Capturing Design Patterns for Performance Issues in Datahase-Driven Weh Applications %

o
S Transmission Control Protocol/Internet
Protocol See TCP/IP
SanFrancisco 44 Trigger 70
Server-Side Application 14
Server-side caching 79 U
Server-side Caching 22,80
Simplicity 59 UML 130, 139
Software Crisis 27 Unix 48, 140
Software Engineering 27 Usability 14
Software Systems 27 User Acceptance Test 14
Solaris 140 User Testing 61
Solution 34
Sorting 37 V
SQL Complexity Levels 96
SQL Query 67 Variability 115
SQL statement Template 111 Variables 138
SQL Statement Temp|ate 93 Verbal KnoWledge Transfer 13
SQL Statements Templates Document 112 Virtual Constructor 36
Static Enabler 85 virtual users 20, 117
Stress Testing 63, 64 Visual Age for Java 139
Structural Pattern 36 Vodafone 139
System Analyst 49 Vodafone Website 117
System minimality 59
W
T _—
Web Application 12, 49
TCP 55 Web Browsers 84
TCP/IP 48 Web Technology 12
Text Processing 27 WebSphere Application Server 140
Thread 66 WebSphere Studio 139
Thread Testing 65 White Box Testing 61
Top-down Process 31 Windows 140
Top-down Testing 64, 65
toString() 37 X
Total Hits 20
XML 67, 115

- 155 -

	Capturing design patterns for performance issues in database-driven web applications
	Recommended Citation
	APA Citation
	MLA Citation

	Microsoft Word - RefinedThesis.doc

