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ABSTRACT 

 
This thesis covers the development of a model updating technique which relies on the 

introduction of correction factors to the elemental stiffness matrix of a beam Finite 

Element Model (FEM). A Genetic Algorithm selects the values of correction factors by 

minimizing the difference between an experimentally measured Frequency Response 

Function (FRF) and the FRF calculated from the FEM being updated. 

 

The model updating technique was employed as a damage detection algorithm. The first 

phase of damage detection is to use model updating to eliminate experimental and 

modeling errors between the FRF of a beam measured experimentally and the FRF of the 

same beam calculated by FEM.  The second step of damage detection is to employ the 

model updating process to match the FRF of a damaged beam measured experimentally 

to the response of the updated FEM. A damage index based on the change in FEM 

correction factors during the second phase is applied to locate damage. 

 

Three different cost functions were evaluated and tuned against two different damage 

cases measured experimentally. Later the best cost function was tested against two 

damage cases with smaller damage magnitude. The damage detection algorithm showed 

reasonable accuracy in determining the damage location in all cases. Additionally, this 

thesis covers the adaptation of strain gauges for dynamic measurement and the associated 

signal processing and filtering. 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

CONTENTS 
 

Figures iv 

Tables ix 

Nomenclature x 

1. Introduction 1 

1.1 Damage Indicators 1 

1.2 Damage Location And Quantification 3 

1.3 Optimization Methods 4 

1.4 Challenges Facing Damage Detection Algorithms 5 

1.5 Research Objectives 5 

1.6 Thesis Organization 6 

2. Experimental Procedure 

 

7 

2.1 Experimental Setup 

 

7 

2.2. Signal Conditioning And Processing 

 

11 

2.2.1 Filtering 

 

11 

2.2.2 Fast Fourier Transform 

 

12 

2.2.3 Automatic Mode Detection 17 

2.3 Vibration Modeling 18 

2.3.1 Response To A General Excitation 

 

18 

2.3.2 FEM Of Beam Element 20 

2.3.3 Calculation FRF Using FEM  21 

3. Model Updating Using Genetic Algorithms 

 

23 

3.1 Optimization Problem Definition 

 

23 

3.2 Encoding 

 

23 

3.3 Genetic Operators  24 

3.3.1 Arithmetic Crossover 

 

24 

3.3.2 Mutation 

 

25 

3.3.3 Individual Selection 

 

25 

3.3.4 Elitism 25 

3.4 Algorithm 

 

25 

3.5 Fitness Function 26 

3.5.1 Frequency Fitness Function 27 

3.5.2 Peak Vector 27 

3.5.3 Weighted Peak Vector 28 

3.6 Optimization Constraints 

 

28 

3.7 Solver Parameters 29 

4. Damage Detection  33 

4.1 Introduction 33 

4.2 Damage Cases 34 

4.2 Damage Index 37 

4.3 Large Structural Damage 37 

4.4 Fitness Function Adjustment 50 

4.5 Small Structural Damage 57 

4.6 Effect of Excitation Location 63 

4.7 Multi-Channel Inputs 68 

5. Conclusion And Recommendations For Future Work 

 

73 

5.1 Conclusions 

 

73 



v 

 

5.2 Recommendations For Future Work  

 

73 

References 

 

74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

FIGURES 

 
Figure (2.1) Experiment Schematic 7 

Figure (2.2) Sample Beam Fixation 8 

Figure (2.3) Experimental Setup  8 

Figure (2.4) Sample beam no. 1 with damage case 1 10 

Figure (2.5) Sample beam no. 2 with damage case 2 10 

Figure (2.6) Sample beam no. 1 with damage case 3 10 

Figure (2.7) Chebyshev Filter Characteristics 11 

Figure (2.8) Comparison between Various Windowing Functions 13 

Figure (2.9) Comparison between Raw Strain Data before and after Filtering 14 

Figure (2.10) FFT for Data after filtering and windowing 15 

Figure (2.11) Averaging Technique 15 

Figure (2.12) Final FRF for a sample beam 16 

Figure (2.13) Automatic Mode Shape Detection Algorithm 17 

Figure (2.14) Highest Amplitude Method applied to an intact beam and Damage 

Case4 
18 

Figure (2.15) Beam Element 20 

Figure (2.16): Force applied to finite model 21 

Figure (2.17): Comparison bet. Theoretical and Experimental FRF for Intact 

Beam 1 
22 

Figure (2.18): Comparison bet. Theoretical and Experimental FRF for Intact 

Beam 2. 
22 

Figure (3.1): Problem GA Encoding 

 
24 

Figure (3.2): Arithmetic Crossover 

 
24 

Figure (3.3): Geometric Probability Distribution 

 
25 

Figure (3.4): Genetic Solver Algorithm 

 
26 

Figure (3.5) Peak Vector Definetion 28 

Figure (3.8): Model Updating Result for Intact Beam 1 31 

Figure (3.9): Model Updating Convergence for Intact Beam 1 32 

Figure (4.1): Damage Detection Algorithm 33 

Figure (4.2): Top View of Damage Location and size 34 

Figure (4.3) FRF Comparison for Case 1 35 

Figure (4.4) FRF Comparison for Case 2 35 

Figure (4.5) FRF Comparison for Case 3 36 

Figure (4.6) FRF Comparison for Case 4 36 

Figure (4.7): Damage Detection Run1 Results  38 

Figure (4.8): Final Correction Factors For Damage Detection Run1  39 



vii 

 

Figure (4.9): Damage Detection Run 2 Results  40 

Figure (4.10): Final Correction Factors For Damage Detection Run 2 40 

Figure (4.11): Model Tuning Results for Run 3 41 

Figure (4.12): Final Correction Factors For Damage Detection Run 3 41 

Figure (4.13): Damage Detection Results for Run 3 42 

Figure (4.14): Model Tuning Results for Run 4 43 

Figure (4.15): Final Correction Factors For Damage Detection Run 4 43 

Figure (4.16): Damage Detection Results for Run 4 44 

Figure (4.17): Model Tuning Detection Results for Run 5 

 
45 

Figure (4.18): Final Correction Factors For Damage Detection Run 5 46 

Figure (4.19): Damage Detection Results for Run 5 47 

Figure (4.20): Model Tuning Results for Run 6 48 

Figure (4.21): Final Correction Factors For Damage Detection Run 6 48 

Figure (4.22): Damage Detection Results for Run 6 

 
49 

Figure (4.23): Model Tuning Results for Run 7 

 
51 

Figure (4.24): Final Correction Factors For Damage Detection Run 7 51 

Figure (4.25): Damage Detection Results for Run 7 

 
52 

Figure (4.26): Model Tuning Results for Run 8 

 
53 

Figure (4.27): Final Correction Factors For Damage Detection Run 8 53 

Figure (4.28): Damage Detection Results for Run 8 

 
54 

Figure (4.29): Model Tuning Results for Run 9 

 
55 

Figure (4.30): Final Correction Factors For Damage Detection Run 9 55 

Figure (4.31): Damage Detection Results for Run 9 

 
56 

Figure (4.32): Model Tuning Results for Run 10 

 
57 

Figure (4.33): Final Correction Factors For Damage Detection Run 10 58 

Figure (4.34): Damage Detection Results for Run 10 

 
59 

Figure (4.35): Model Tuning Results for Run 11 

 
60 

Figure (4.36): Final Correction Factors For Damage Detection Run 11 61 

Figure (4.37): Damage Detection Results for Run 11 

 
62 

Figure (4.38): Model Tuning Results for Scenario #3 using Base Excitation 64 

Figure (4.39): Final Correction Factors for Scenario #3 using Base Excitation 64 

Figure (4.40): Damage Detection Results for Scenario #3 using Base Excitation 65 

Figure (4.41): Model Tuning Results for Scenario #4 using Base Excitation 66 

Figure (4.42): Final Correction Factors for Scenario #4 using Base Excitation 67 

Figure (4.43): Damage Detection Results for Scenario #4 using Base Excitation 67 

Figure (4.44): Model Tuning Results for Scenario #3 using Base Excitation and     

Averaged Normalized Strain 
68 



viii 

 

Figure (4.45): Final Correction Factors for Scenario #3 using Base Excitation 

and  Averaged Normalized Strain 
69 

Figure (4.46): Damage Detection Results for Scenario #3 using Base Excitation 

and     Averaged Normalized Strain 
70 

Figure (4.47): Model Tuning Results for Scenario #4 using Base Excitation and     

Averaged Normalized Strain 
71 

Figure (4.48): Final Correction Factors for Scenario #4 using Base Excitation 

and     Averaged Normalized Strain 
71 

Figure (4.49): Damage Detection Results for Scenario #4 using Base Excitation 

and     Averaged Normalized Strain 
72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

TABELS 

 
Table (2.1) Strain gauges location on a sample beam 9 

Table (2.1) Strain gauges location on a sample beam 9 

Table (2.3) Sample Beam Specifications 9 

Table (2.4) Natural Frequencies of the sample beam calculated by FEA 10 

Table (2.5) Filters used to remove unwanted frequency ranges. 12 

Table (3.1): Genetic Solver Parameters 30 

Table (3.2): Effect of Number of Elements on Solution Fitness 30 

Table (4.1): Damage Cases Details 34 

Table (4.2) Large Structural Damage Detection Runs 37 

Table (4.3) Results for Damage Detection Run 1 38 

Table (4.4) Results for Damage Detection Run 1 39 

Table (4.5): Fitness Function Adjustment Runs Details 50 

Table (4.6): Damage Detection for Minor Structural Damage. 57 

 

 

 

 



x 

 

NOMENCLATURES 

 

a Damage Location Measured from Beam Root 

ACO Ant Colony Optimization 

B Beam Shape Function 

b Damage Width 

c Damping coefficient 

DFT Discrete Fourier Transform 

F Total Fitness Function 

FBDD Frequency Based Damage Detection 

FEA Finite Element Analysis 

FEM Finite Element Modeling 

FFT Fast Fourier Transform 

FRF Frequency Response Function 

Fnc Fitness Function Measured by one senor 

Fo Applied force 

G Genetic Algorithm Offspring 

GA Genetic Algorithm 

Ii Damage index for element i 

k Stiffness coefficient 

ko Stiffness coefficient before model updating 

l Full signal length 

li Signal interval length 

m Mass coefficient 

MBDD Modal Based Damage Detection 

mo Mass coefficient before model updating 

N Number of averaging intervals 

o Averaging intervals overlap 

PkD 
Stiffness correction factor at end of damage detection 

phase 

Pki Stiffness correction factor for element number i 



xi 

 

PkT 
Stiffness correction factor at end of model tuning 

phase 

Pmi Mass Correction factor for element i 

PSO Particle Swarm Optimization 

q Nodal Displacements 

Si 
Fitness function sensitivity for the correction factor 

number i 

VBDD Vibration based damage detection 

Vp Peak Vector 

X Vibration Amplitude 

xe 
Length of truncated segment from end of signal as 

result of averaging 

xs 
Length of truncated segment from start of signal as 

result of averaging  

yE Experimental mode shape amplitude 

yT Theoretical mode shape amplitude 

α Damping stiffness proportionality coefficient 

β Damping mass proportionality coefficient 

γ Fitness function scale factor 

λ Interpolation factor 

Φ Vibration phase 

ω Excitation frequency 

ωE Experimental mode shape frequency 

ωT Theoretical mode shape frequency 



1 

 

 

CHAPTER ONE 

INTRODUCTION 
 

 

The sudden failure of an engineering structure usually constitutes a major economical loss 

and in some cases might constitute a danger to human life. As a result, the majority of 

engineering disciplines have interest in Non Destructive Damage Detection Methods [1, 

2]. All available damage detection methods require prior knowledge of the possible 

damage vicinity. Additionally, In some applications such as aerospace structures or off 

shore oil structure visual inspection might be cumbersome or even impossible.    

 

Any structural damage is associated with a change in the stiffness and mass 

characteristics of the damaged structural member. These changes have direct impact on 

the modal behavior of the structure under investigation. Consequently, detecting and 

quantifying the modal characteristics changes can be used to quantify and locate a 

structural damage [1-5]. Most of these methods, which are known as Vibration Based 

Damage Detection (VBDD) methods, involve comparing the modal behavior of the 

structure under investigation to the modal behavior of a reference structure which is 

known to be undamaged. The question of which parameters to measure and how to 

process and compare these parameters is still an active field of research and development. 

 

1.1 Damage Indicators 

 

Several VBDD methods which involve analyzing the changes in natural frequencies of 

the structure under investigation have been proposed in literature [1]. This group of 

methods is known as Frequency Based Damage Detection methods (FBDD). However, a 

group of factors adversely affect the quality of results achieved by these methods. One of 

factors is that the loss of mass from an unstressed parts in a structure can introduce large 

changes in frequencies without causing real threat to the structure integrity. Another 

factor is that the structure natural frequencies are very sensitive to the boundary 

conditions. Even a slight change in the rigidity of the supports will cause significant 
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changes in natural frequencies without a proportional change in the overall structure 

integrity. Additionally, according to Doebling and Farrar [1], using frequency shifts to 

detect damage is only advisable in application where frequencies can be measured 

accurately in a controlled environment. 

 

Another group of VBDD methods are the Modal Based Damage Detection (MBDD). 

These types of methods monitor changes in modal parameters, such as mode shapes, as an 

damage indicator.  These methods compare measured mode shapes from a reference 

structure to the mode shapes measured from the structure under investigation. One 

important example of MBDD methods is the structural translation and rotational error 

checking.  This method relies on taking ratios of relative nodal displacements as an 

indicator for the difference in stiffness between experimental results and a FEM or 

between two experiments [6]. 

 

Several variants of the MBDD methods use mode shape curvature or strain mode shape 

changes as a damage ibdicator. This group of methods relies on using the derivatives of 

the mode shapes such as curvature, strain or strain energy. An example is the Strain 

Energy Damage Detection Method [5, 7] which is a very promising MBDD method based 

on measuring the change in relative strain energy. For sake of damage detection, the 

structure under consideration is divided into a group of elements, given the strain energy 

is known before and after the damage, a damage index can be formulated based on the 

change in the element’s relative strain energy when compared to the whole structure. 

 

Significant research was done on comparing the accuracy of FBDD and MBDD methods. 

The results indicated that the MBDD more accurate results when compared to FBDD 

Methods [4]. However, measuring mode shapes or its derivatives require a large number 

of sensors to attain a reasonable damage detection resolution.  The accuracy of a method 

based on the mode shape or its derivatives will be directly proportional to the number of 

sensors used. From a practical point of view, installing a large number of sensors, related 

wiring, signal conditioning units and data acquisition units in a fielded structure is not 

always possible. Additionally, if this structure is a lightweight structure like space 

structures, the weight of this equipment might constitute a major design burden. 
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A third category of damage indicators introduced by Huynh et al.[8] uses the FRF from 

non destructive vibration tests. Based on the knowledge of the dynamic stiffness matrix of 

the intact structure and the change in the damaged structure FRF, a damage location 

vector can be evaluated. In the research work by by Huynh et al.[8], The dynamic 

stiffness matrix was calculated from the FEM of an intact structure while the FRF was 

measured by hammer testing.   

 

1.2 Damage Location and Quantification 

 

The damage indicators discussed in the previous section is not sufficient to accurately 

locate the damage on it is own. The change in frequencies or in modal properties can 

indicate the existence of some change in the structure. In order, to determine the damage 

location the problem becomes a type of pattern recognition problem [1].  

 

There are many approaches to translate the change in damage indicator, whether it was an 

FBDD or MBDD, into damage location and size. The simplest of these methods is to 

study the sensitivity of the damage indicator to element attributes such as thickness and 

width [9, 10].  The most popular approach is to formulate an analytical damage index in 

terms of the damage indicator used. A third approach is solving the inverse problem of 

updating the structure FEM to have a response which matches that of the actual structure. 

Also, trained neural networks have been used successfully to identify damage based on a 

combination of damage indicators [11]. 

 

Solving an inverse problem will require a cost function to quantify the difference in the 

damage indicator, in addition to solution constraints and an optimization method.  The 

selection of the most suitable constraints and the most reliable cost function is an active 

filed of research [1]. Due to complexity of the FEM updating problem, direct search 

methods are not a valid option. Evolutionary algorithms are considered ideal for this type 

of problems. Saada [12] applied model updating technique based on the frequency shifts 

between an intact and a damaged beam. In the course of his work Saada investigated two 

optimization schemes Particle Swarm Optimization (PSO) and Ant Colony Optimization 

(ACO) and concluded that ACO gave better optimization results. 
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1.3 Optimization Methods 

 

Solving the inverse problem to find a structural mathematical model that represents the 

changes in the structure has been proven as a promising damage detection method [12]. 

The selection of an optimization method is of primary importance, since finding an 

accurate location is completely dependent on finding the true maxima or minima of the 

cost function used.  As seen in the previous section researchers who attempted to tackle 

the inverse problem in damage detection used global optimization methods. In fact, this 

approach is completely justified for the following reason: 

• Since damage detection algorithms are meant to be generic and should be 

applicable to any kind of structures. The exact behavior of the cost function can’t 

be predicted. Hence, to maintain generality a global optimization method must be 

used. 

• Research work done on inverse problem solutions have proven that even the 

simplest structures such as beams will have complex cost functions for damage 

detection [12]. The damage detection problem has been recognized to be a multi 

modal problem. Additionally, using optimization constraints might introduce cost 

function discontinuities.   

• In direct search methods the final solution depends on the start location. So, unless 

a very lucky guess was made it would be hard to find the absolute maximum of a 

function with multi peaks or have discontinuities. 

• Even for cost functions which can be handled using the direct search methods, if 

the number of variables being optimized was too large, the direct search methods 

will fall short of finding an acceptable solution.   

The optimization method of choice for this research work is Genetic Algorithms (GA). 

The genetic algorithm is a member of the global optimization family. The GA evaluates 

multiple solutions each iteration. Finally, it is a search method capable of handling 

problems with relatively large number of variables.  
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1.4 Challenges Facing Damage Detection Algorithms 

 

The challenges facing the available damage detection algorithms were discussed 

extensively in literature. The most important of these issues and challenges can be 

summarized as follows [1]: 

• Some damage detection algorithms require a Finite Element Model (FEM) of the 

structure. In some applications, such as large existing civil structures, building 

and verifying a FEM might be tedious. However, in most aerospace and 

mechanical engineering applications building such a FEM is applicable. 

Verifying this model and eliminating the experimental errors will then be the 

major challenge. 

•  A group of algorithms proposed in literature use linear structure models to model 

the damaged structure. Assuming the structure would remain linear after 

damage may not be acceptable for all damage scenarios.  

•  Some algorithms tend to use an illogical number of sensors to detect damage. 

While in practice there will always be an upper limit to the number of sensors 

that can be employed. 

• In most applications for the case of long term continuous health monitoring, 

relying on a measurable excitation force may not be achievable. There is a 

definite need for algorithms that rely on ambient sources of vibrations. 

 

1.5 Research Objectives 

 

Based on the challenges summarized in the previous section, the objective of this research 

work is to develop a vibration based damage detection algorithm that takes into 

consideration the following constraints: 

• A model tuning phase should be included where a FEM is updated in reference to 

an intact structure to eliminate modeling and experimental errors. 

• The algorithm should rely only on ambient sources of vibration for measurement. 

This constraint will be satisfied by using white noise as the only source of 

excitation. Additionally, no force feedback will be used since in fields of practice 
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measuring the ambient excitation force is a very complicated process and might 

not be always applicable.  

• The algorithm should detect the damage accurately with a minimal number of 

sensors. 

• Also, most vibration experimental work focuses on using accelerometers for 

modal testing. A promising alternative is strain gauges which can be very 

effective for the practical use in damage detection for the following reasons: 

o The strain gauge is compact in size and lightweight and can be 

accommodated in a structure without major design changes. 

o Strain gauges exhibit fast response and have a good sensitivity 

•  In order to ensure that the damage detection algorithm is applicable, all previous 

goals must be verified experimentally.  

 

1.6 Thesis Organization 

 

This thesis consists of five chapters. Chapter 2 covers the experimental setup and the 

signal processing algorithm used to adopt the strain gauge for dynamic testing. Chapter 3 

discuses the GA used, the model updating process and the model tuning phase. Chapter 4 

covers the damage detection process and the final results of the damage detection 

algorithm. The final chapter covers the conclusions and the recommendations for future 

work. 
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CHAPTER TWO 

2. EXPERIMENTAL PROCEDURE 

 

2.1 Experimental Setup 
 

In order to provide a damage detection method that can be applied practically to 

structures in service such as aircrafts, ships and oil rigs, the conditions discussed in the 

research objectives should be imposed on the experiment design.  

 

In order to investigate the feasibility of the proposed damage detection technique and 

satisfy the practical constraints, the modal response of intact beams were measured. Later 

damage was introduced to these beams and the modal response was measured again. The 

damage detection algorithm was based on comparing the damaged beam modal response 

to the intact beam modal response. 

 

The experimental procedure Figure (2.1) is comprised of a Brüel & Kjær type 4809 

shaker equipped with a fixture on the end of the shaker arm.  The sample beam being 

tested is then fixed in a cantilever position using the shaker fixture. The shaker provides 

excitation to the beam as base motion Figure (2.2). A Brüel & Kjær type 1405 noise 

generator was used to generate white noise which is amplified by a Brüel & Kjær type 

2706 amplifier and then fed to the shaker.   

 

 

Figure (2.1) Experiment Schematic 

Shaker  Noise Generator  Signal Amplifier  

Dynamic Strain  
Measurement Device  

Digital Filters 
and Windowing  

 
FFT  

Automatic Mode  
Shape Detection 

Specimen  

Output from Vibration Sensor  
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Figure (2.2) Sample Beam Fixation 
 

Three strain gauges were fixed to each sample beam. The signal measured by these strain 

gauges was directly fed to a multi channel dynamic strain meter (Koywa PCD-300). The 

three strain gauges were calibrated using variable static loads. The experimental setup is 

shown in Figure (2.3). The signal acquired by the strain meter was fed online to a 

computer for signal processing and mode shape detection. These tasks will be discussed 

in detail in the subsequent section.  

 

 
 

Figure (2.3) Experimental Setup  
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Table (2.1) shows the location of each strain gauge measured from the root of the beam. 

 

Table (2.1) Strain gauges location on a sample beam 

 

Channel Number 
Strain Gauge location from 

root 

1 2 cm 

2 10.5 cm 

3 20.5 cm 
 

 

The modal analysis process was carried out for two identical intact beams. Later two 

damage scenarios were introduced to each beam making a total of four damage scenarios. 

Table (2.2) shows the sample beams specifications.  

  

Table (2.2) Sample Beam Specifications 

Length 32.5  cm  / 30.5 cm from 

fixture 

Thickness 0.7 mm 

Width 26 mm 

Material Stainless Steel 

Modulus of Elasticity 200 GPa 

Density 7800 kg/m3 
 

 

Table (2.3) shows the details of the damage location measured from root and the damage 

size of the four damage scenarios tested in this research. 

 

Table (2.3) Sample Beam Specifications 

 

Damage Case 
Beam Number Damage Location  

from Root 
Damage Size 

1 1 19.5 cm 1mm X 10 mm 

2 2 5.5 cm 1 mm X 10 mm 

3 1 19.5 cm 1mm X 5 mm 

4 2 5.5 cm 1mm X 5 mm 
 

 

 

Figures (2.4, 2.5 and 2.6) show the damage introduced using a handsaw to cases 1, 2 and 

3.  As can be seen from figures the damage is not symmetric around the beam axis. 
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Figure (2.4) Sample beam no. 1 with damage case 1 

 

 
 

Figure (2.5) Sample beam no. 2 with damage case 2 

 

 
 

Figure (2.6) Sample beam no. 1 with damage case 3 

 

The natural frequency of the intact beams was calculated using Finite Element Analysis 

(FEA). The results are shown in Table (2.4). Based on these results the frequency range for 

this experiment was taken form 1 Hz to 250 Hz to cover the first four mode shapes. 

 

Table (2.4) Natural Frequencies of the 

sample beam calculated by FEA 

 

Mode # 
FEA Frequency 

(Hz) 

1 6.16 

2 38.57 

3 108 

4 211.6 
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2.2. Signal Conditioning and Processing 
 

The strain meter used in the present work provides the necessary power input to the strain 

gauges and automatically balances the strain gauges bridge circuit electronically. The 

output is then converted to strain units and can be either displayed or stored with no 

option to further manipulate the data.  For this reason all signal conditioning and 

processing had to be done separately since the use of conventional spectrum analyzers 

could not be facilitated as available models are adjusted to conventional vibration sensors.  

While this incurred a great deal of computation effort it resulted in better control of the 

signal processing through dedicated algorithms that were developed by the author. These 

are explained in the following sections. 

  

2.2.1 Filtering 

 

The experimental setup described in section 2.1 was used to measure the strain variation 

with time. Though the experiment was conducted in a laboratory environment, as 

expected, the acquired signal was contaminated by other ambient sources of noise.  In 

order to remove unwanted frequency components form the signal, a digital signal filter 

was used [13].  For the purpose of this research work the MATLAB® built in 

implementation for Type 1 Chebyshev filter was selected [14].  

 

Figure (2.7) Chebyshev Filter Characteristics 

 

The filter type is an important parameter to be determined during a filter design process. 

A low pass filter will allow only frequencies lower than the cutoff frequency and block all 

higher frequencies. On the other hand, a high pass filter will allow only frequencies 
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higher than the cutoff frequencies. While a stop band filter will block a certain band of 

frequencies and allow higher and lower frequencies to pass. For this experiment, two 

distinct filters were designed. The first filter removes low frequency ambient noise from 

the signal. This filter was designed as high pass filter with cutoff frequency of 1.14 Hz. 

The second filter is stop band filter that blocks the frequencies in the vicinity of 50 Hz 

which is the laboratory electricity supply frequency.  

 

Another parameter for filter design is the ripple percentage in the pass band. As seen in 

Figure (2.7) a higher ripple will give a sharper transition between the stop band and the 

pass band but will affect the accuracy of the signal. While a lower ripple will provide a 

more accurate signal, it will make a gradual transition for the pass band to stop band; thus 

the filter will either allow a portion of the unwanted frequencies to pass or stop a portion 

of the desired frequencies form passing. The values of ripple and the filter order were 

determined through iterations. Table (2.5) summarizes the filter parameters utilized in the 

present work.   

 

Table (2.5) Filters used to remove unwanted frequency ranges. 

 

Filter  Type Range 

Chebyshev High pass < 1.14 Hz 

Chebyshev Stop band 48 – 52 Hz 

 

 

2.2.2 Fast Fourier Transform 

 

The Fourier Transform is a mathematical method used to decompose a general signal into 

a group of sinusoidal signals [15]. The Discrete Fourier Transform (DFT) is the part of 

the Fourier Transform family which handles non periodic discrete signals. There are 

many limitations for the DFT resulting from its discrete nature. Such limitations that 

could affect the accuracy of the experiment output were studied. 

 

Periodicity: The mathematical nature of DFT enforces the fact the transformation output 

is periodic with a period length equal to the sampling rate [13]. Consequently, the DFT is 

only defined in the range from 0 Hz to the sampling frequency. 
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Symmetry: The DFT is known to be symmetric around the Nyquist frequency which is 

equal to 0.5 the sampling frequency [13]. The DFT output higher than 0.5 the sampling 

frequency is completely redundant. So, for this experiment the sampling frequency was 

chosen to be 500 Hz which is double the upper bound for frequency range of interest.  

Leakage:  The DFT must be carried on a finite number of sample points. For a given 

spectrum component at a given frequency ω, if the sampling period was not equivalent to 

a multiple of the spectrum, in such case, parts of the spectrum components while leak to 

frequencies in the neighborhood of ω. Such phenomenon is known as leakage [16, 17]. 

To minimize the effect of leakage, the full signal was divide into overlapping segments. 

Afterwards each segment was windowed and DFT applied to it separately. The final DFT 

output will be the average of all the segments’ DFT.  

 

Many types of symmetric windowing functions are available [16, 17]. Another available 

category of windows is the asymmetrical windowing functions which are characterized 

by a higher detection resolution [17].  The FEA done for this problem provided an insight 

to the nature of the modal response. Since all modes were sufficiently far from each other, 

no high resolution detection was needed. After testing a group of symmetric windowing 

functions, the Hann window was selected as it produced the best result for the problem in 

hand. Figure (2.8) shows a comparison between a group of symmetrical windowing 

functions.  Figure (2.9) shows a comparison between the raw data and after the 

application of windowing and filtering. 
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Figure (2.8) Comparison between Various Windowing Functions 
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Figure (2.9): Comparison between Raw Strain Data before and after Filtering a) Raw 

Data, b) Data after Windowing and Filtering. 
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The DFT output after windowing and filtering is displayed in Figure (2.10).  The results 

after the windowing were still unsatisfactory due to the presence of significant leakage.   
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Figure (2.10) FFT for Data after filtering and windowing 

 

To fully eliminate leakage an averaging process was employed. As stated earlier this 

process involved dividing the signal into overlapping segments. Figure (2.11) shows a 

signal divided into equal length segments. 

 

 
Figure (2.11) Averaging Technique 
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A factor of major importance is the overlap portion in each segment. Most commercial 

applications set this value to 0.66 and for this experiment it was found to be the optimal 

value.  For a full sample length l, number of segments N and an overlap o the full length 

is can be given by: 

 

 esi xxNlol ++−= )1(  (2.1) 

 

Where xs and xe are the portions of the segments that will be truncated from the beginning 

and the end respectively.  Assuming that: 

 xxx es ==
 (2.2) 

 

 ( )( )ilolx −= 1,mod2
 (2.3) 

Where mod denotes the modulus after division. Solving for li we get: 

 

 

( )No
xl

li −
−

=
1

2
 (2.4) 

 

For this experiment, averaging intervals of length 500 points were taken for 10 000 

readings sampled at 500 Hz. A total of 117 intervals were used at an overlap of 0.66. The 

final FRF of an intact beam is shown in Figure (2.12). 
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Figure (2.12) Final FRF for a sample beam 
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2.2.3 Automatic Mode Detection 

 

There are many available methods for normal modes detection. A detailed listing of such 

methods can be found in [17].  For the purpose of this research work, a method known as 

The Peak Amplitude Method will be used. In this method the natural frequency can be 

determined by finding the peaks on the FRF graph. To implement the peak amplitude 

method, the local maxima for the FRF curves are calculated and sorted form the peak 

with higher amplitude and downwards. The highest four peaks are then selected and the 

rest of the detected peaks will be considered as numerical peaks and will be discarded.  

The next step is to sort the calculated peaks from the lowest frequency which is 

considered the first mode shape up to the highest frequency which is considered the 

fourth mode as illustrated schematically in Figure (2.13). This approach provided 

sufficient accuracy for the purpose of this research work. However, it should be noted that 

in case of a more complex structures a more advanced method should be used [18]. 

 

 

Figure (2.13) Automatic Mode Shape Detection Algorithm 

 

Figure (2.14) shows a sample FRF for the intact and damaged beams showing the peaks 

used for mode shape detection. The peaks are detected correctly using the proposed 

Highest Amplitude Method.  
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Figure (2.14) Highest Amplitude Method applied to an intact beam and Damage Case4 

 

 

2.3. Vibration modeling 

 

2.3.1 Response to a General Excitation 

 

Even the most complicated system can be modeled as a group of single degree of freedom 

systems using the principle of superposition. For a simple mass – spring – damper system, 

the equation of motion is given by [15]:  

 

 ( )tFkxcxm =++
...

 (2.5) 

 

Where m is the mass, c is the damping coefficient, k is the stiffness and F (t) is the force 

applied to the system as a function of time. For the special case of a harmonic forcing 

function, the amplitude of the vibration can be given by:  
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X o
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The derivation of equation (2.6) and (2.7) are provided in details in reference [15]. 

Viscous damping is one of the most widely used damping models for vibration problems 

and will be used through the rest of this research work.  

 

Mutli-degree of freedom systems, like beams, are normally represented mathematically 

by system of coupled Ordinary Differential Equations (ODE). In order to find the system 

response to a given excitation, the system of simultaneous ODE has to be solved. Such 

systems can be solved as a group of second order ordinary differential equations using a 

multitude of numerical methods available for such purpose. Another approach is to 

uncouple these equations by transforming them to the modal coordinates as follows: 

 

 
[ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ]{ } [ ] { }FPzPKPzPCPzPMP

TTTT =+






+







 ...

 (2.8) 

 

 

{ } [ ]{ }zPx =  (2.9) 

 

Where the matrix [P] is the Eigen vectors matrix. Due to the orthogonal nature of 

eigenvectors, in the above equation the stiffness matrix and the mass matrix are both 

diagonal matrices. In order to guarantee that the damping matrix is diagonal as well the 

proportional damping assumption is used. This assumption states that the damping matrix 

takes the following form: 

 

 [ ] [ ] [ ]KMC βα +=  (2.10) 

 

Were α  and β  are constants characteristic for each system. The assumption used in 

equation (2.10) is widely used in commercial finite element packages and will be used 
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throughout this research work.  Once the equation is transferred to the modal coordinates 

it can be solved as uncoupled system of equations by applying equation (2.6) to each 

degree of freedom separately.  

 

2.3.2 FEM of Beam Element 

 

Equations (2.8) and (2.9) relate the nodal displacement to the applied forces. However, in 

this experiment the measurement sensors used were strain gauges; thus, in order to 

compare the theoretical calculations with the experimental measurements the strain need 

to be calculated in terms of the nodal displacement. For the purpose of this research beam 

element is modeled as 2 node element with 2 degrees of freedom at each node a single 

lateral translation and one rotation.  

 

 
Figure (2.15) Beam Element 

 

For the beam element shown in Figure (2.3), the strain can be related to curvature by the 

following relation [19]: 

 

 
[ ]{ }qB

dx

vd
=

2

2

 (2.8) 

 

Were [ ]B  represents the shape function of the beam and can be defined at the beam 

element centroid as: 

 

 [ ] [ ]
ll

B 1010 −=  (2.9) 

 

The stiffness and mass matrices of a beam element can be found in elementary finite 

element textbooks such as [19]. The stiffness matrix and mass matrix is calculated for 

each beam element separately and later the global matrices are assembled. The global 

damping matrix is directly calculated based on the proportional damping approach.  
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2.3.3 Calculation FRF using FEM  

 

As discussed in chapter (1) the proposed damage detection technique relies on comparing 

the entire FRF elements rather than comparing a single element such as frequencies.  

Finding the FRF requires finding the amplitude of vibration when the beam is excited by 

a range of excitation frequencies. The FEM model built for a cantilever beam was 

subjected to a harmonic force acting at the beam tip as shown in Figure (2.16). Applying 

the modal analysis approach, the amplitude of vibration was tcalculated. This procedure is 

done for the range of frequencies of interest (1 -250 Hz). Using this approach the 

theoretical intact beam FRF for both beams being studied were calculated and a 

comparison between the theoretical and experimental results are displayed in Figure 

(2.17) and (2.18). 

 

 

Figure (2.16): Force applied to finite model 

 

The comparison between theoretical and experimental output show that most modes were 

calculated with high accuracy in terms of frequency and amplitude. However, the only 

exception is the first mode shape amplitude which was affected by the transition region 

for the high pass filter used to remove low frequency noise.  It should be noted that the 

FRF calculated from the FEM is a result of tip excitation. However , the experimental 

measurements are a result of a base excitation. Since the FRF is dependent on the exciting 

force location, this contributed to the deviation in the first mode shape. This difference in 

exciting force location was intentional in order to verify that the damage detection 

algorithm can function without prior knowledge of the exciting force. Additionally, since 

the magnitude of the exciting force is unknown, the FRF was normalized in reference to 

the highest peak for each FRF. 
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Figure (2.17): Comparison bet. Theoretical and Experimental FRF for Intact Beam 1 
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Figure (2.18): Comparison bet. Theoretical and Experimental FRF for Intact Beam 2. 
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CHAPTER 3 

MODEL UPDATING USING GENETIC ALGORITHMS 

 

3.1 Optimization Problem Definition 
 

The genetic algorithms (GA) are a form of evolutionary algorithms that have been widely 

used in optimization problems recently.  A typical implementation of genetic algorithms 

will start with a group of random solutions for a given problem encoded in the form of 

genes [20]. Each distinct group of genes represents a distinct solution for the problem. A 

common approach to model updating problems is using stiffness and mass matrices 

correction factors. In this approach correction factors are pre-multiplied with the 

elemental stiffness and mass matrix for each element of the FEM. Thus the stiffness and 

mass matrix of the i
th 

element is given by [10]: 

 

 

 [ ] [ ]
ikii kPk 0=  (3.1) 

 

 [ ] [ ]
imii mPm 0=  (3.2) 

 

The global mass and stiffness matrices are later assembled form the elemental matrices. 

However sensitivity analysis for correction factors given in [9 and 10] showed that the 

stiffness matrix correction factor and the mass matrix correction factors can balance each 

other.  Such behavior might results in unnecessary redundancy when applying the damage 

detection algorithm based on the correction factors. For this reason, in this research work, 

only the stiffness correction factors will be used for model updating and hence damage 

detection. 

 

3.2 Encoding 
 

The majority of the research which involves GA uses real coding for genes which proved 

more efficient than the binary encoding used in the first genetic algorithms [20]. In order 

to select a chromosome that provides versatile encoding of the model updating problem, 

the chromosome was designed to consist of the proportional damping coefficients α  and 
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β  in addition to the stiffness correction parameters of each element. An illustration of the 

used gene is provided in Figure (3.1). 

 

 
 

Figure (3.1): GA Problem Encoding 

 

 

 

3.3 Genetic Operators  
 

3.3.1 Arithmetic Crossover 

 

In the arithmetic cross, two individuals are selected based on the principle of elitism and 

the offspring is generated using interpolation. 

 

 
 

Figure (3.2): Arithmetic Crossover 

 
 

The Offspring chromosome [G] is given by: 

 

 [[[[ ]]]] [[[[ ]]]] (((( ))))[[[[ ]]]]211 1 PPG λλλλλλλλ −−−−++++====  (3.3) 

 

 [[[[ ]]]] (((( ))))[[[[ ]]]] [[[[ ]]]]212 1 PPG λλλλλλλλ ++++−−−−====  (3.4) 

 

Were [ ]1P  and [ ]2P  are parents’ genes and (λ) is a random variable selected between 0 and 

1 for interpolation. Also, values of (λ) greater than 1 can be used for extrapolation.  
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3.3.2 Mutation 

 

Mutation is a fundamental operator in Genetic algorithms. A random individual is 

selected. Then a random gene is selected within this individual and assigned a random 

value within the search space for this gene. Mutation is the operator that ensures the 

solver explores new sectors of the fitness function which could never be achieved using 

crossovers only.  

 

3.3.3 Individuals Selection 

 

The selection of individuals to be used for genetic operations and consequently produce 

offspring is done by giving individuals with higher fitness a higher priority. This can be 

guaranteed by using the geometric distribution. A sample of this distribution is shown in 

Figure (3.3). Unlike the normal distribution which favors the individuals in the middle of 

the population and unlike the uniform distribution which gives equal priority to all 

individuals, the geometric distribution favors the individuals to the left of the distribution. 

By proper sorting of each generation and by selecting the GA operators input using 

geometric the individuals with higher fitness will have a higher chance to be selected.  

 
Figure (3.3): Geometric Probability Distribution 

 

3.3.5  Elitism 

 

To ensure convergence the element with highest fitness from each generation will be 

copied directly to the next generation without passing through any GA operators. 
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3.4 Algorithm 
 

The GA solver starts the first generation by building the theoretical FEM of the beam 

being studied. Then the solver uses the mutate operator on the beam FEM to generate the 

whole first generation. The Fitness function is later evaluated for each individual within 

the population. The next step is to rank the population in ascending order based on 

fitness. Using the geometric distribution, individuals will be selected for mutation, 

crossover and copy. The fitness is then evaluated for the new generation and the solution 

continues on in this manner. In order to guarantee a GA solution convergence, the 

individual with highest fitness within a given generation must be copied directly to the 

next generation. 

 

 
 

Figure (3.4): Genetic Solver Algorithm 

 

3.5 Fitness Function 

 

The fitness function is of primary importance in any optimization problem. The selection 

of such function determines the quality of the output regardless of the optimization 

method used. Many fitness functions were suggested in the literature for damage 

detection and model updating.  In this work a new fitness function that combines the 

merits of both modal and frequency based methods is proposed for damage detection 

purpose. This method relies on the whole FRF rather than the frequencies or mode shapes 

only. Since there can be more than one sensor attached to the structure each operating on 
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a separate channel, the overall fitness function will be the given as the sum of the fitness 

function calculated for each channel separately and can be given by: 

 

 
∑

=

=

=
Channelsnc

nc

ncFF
1

 (3.5) 

 

The fitness function ncF  can take many forms that would express the difference between 

the theoretical FRF and the experimental FRF. Minimizing this fitness function using 

model updating will result in a theoretical FEM closely representing the actual 

experiment. Several functions will be studied in the following sections.  

 

3.5.1 Frequency Fitness Function 

 

The first fitness function considered in this work is the difference between the peak 

frequencies representing the same mode shape for the theoretical and experimental FRF. 

 

 
(((( ))))∑∑∑∑

====

====

−−−−====
ni

i
iETncF

1
1

ωωωωωωωω  (3.6) 

In equation (3.6) Eω represents the expected frequency at which the 
thi peak occurs, while 

Tω is the frequency of the same peak calculated analytically.  This function will be 

referred to as “cost function 1” henceforth.  

 

3.5.2 Peak Vector 

 

The research work done by [10,11 and 21] proved that for a cantilever beam the 

eigenvalues sensitivity for elemental correction factors does not have a unique value for 

each element. Based on this conclusion the results from the previous fitness function 

might show significant error for damage location. Since perturbations for a given element 

correction factor can cause the same effects as perturbations from an element at another 

position. Another fitness function was formulated which relies on minimizing the distance 

of the vector joining the two peaks pV  shown in Figure (3.5) and is given by: 
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It should be noted that, this function takes into consideration the effect of eigenvalues, 

eigenvectors and damping.  This fitness function will be referred to as “cost function 2” in 

later section of this thesis 

 

Figure (3.5) Peak Vector Definetion 

 

3.5.3 Weighted Peak Vector 

 

This weighted peak vector function is similar to the normal Peak vector function but takes 

into consideration the measured amplitude at a given mode shape. This function will give 

the error measured at a mode shape with higher experimental amplitude a higher weight 

than the error at a mode shape with lower amplitude. 
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3.6 Optimization Constraints 
 

The constraints of an optimization problem are of extreme importance for the solution 

accuracy. For the model updating problem, the constraints ensures that the resulting FEM 

is physically meaningful and represents the model of a cantilever beam structure.  
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The first constraint is that all elemental correction factors must be positive. This condition 

ensures that the global stiffness matrix remains consistent. 

 

 0>kiP  (3.9) 

 

The second constraint is that within the frequency region of interest (1-250 Hz) the FEM 

should have a number of modes equal to or greater than the modes measured by the 

experiment in the same region. This constraint ensures that the cost function can be 

evaluated at each mode shape. 

 

With every GA solver iteration new solutions are generated. These new solutions have an 

FRF with different characteristics from the original FEM.  The third constraint ensures 

that the FRF peaks of the new solution lie on the peak vector pV . Applying this constraint 

guarantees that solver gradually moves the initial theoretical solution towards the 

experimental measurements rather than coming up with a totally new solution that is 

unrelated to the original FEM.  This constraint can be given as:  

 

 ( ) PiTT Vy ∈,ω  (3.10) 

 

The effect of applying the third constraint might not be visible for the normal model 

updating problem but was important when solving the damage detection problem. 

 

These three constraints were applied by adding a fitness penalty to the solution violating 

the constraints. The first and second constrains were applied rigidly by adding a very 

large penalty rendering the solution unfit immediately. While solutions violating the third 

constraint were given a small penalty; thus allowing the solution to move in the vicinity 

of pV rather than strictly on it. This approach significantly enhanced the solution 

convergence speed.  

 

3.7 Solver Parameters 

 

The GA solver uses a variety of parameters that affect the solution convergence and 

speed. The solver used in this research work was tuned through iterations to get the best 
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combination of speed and fitness. A list of those parameters and assigned values are given 

Table [3.1]. 

 

Table (3.1): Genetic Solver Parameters 

Parameter Value 

Population Size 100 

Maximum Number of iteration 100 

Mutations 40% 

Crossovers 40% 

Copy 20% 

Solution Convergence criteria 0.05 

Number of Iteration for 

Convergence 

25 

 

 

The population size indicates the number of individuals created with each generation. 

Mutations, Crossovers and Copy indicate the percentage of individuals generated by each 

method for any given generation. Solution convergence criteria stop the solver when the 

solution does not show progress for a set number of generations. 

 

An additional factor is the number of elements used to model the beam. The higher the 

number of elements the higher the number of correction factors. Consequently, the 

problem will be harder in terms of optimization. On the other hand, a larger number of 

elements will result in a more accurate FE solution and consequently overall accurate 

solution. Table (3.2) shows the optimization results using the first fitness function for 

different number of elements. 

 

Table (3.2): Effect of Number of Elements on Solution Fitness 

Number of Elements Best Fitness 

20 21.4 

50 20.39 

100 19.8 
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It can be seen from Table (3.2) that the model with 100 elements will reach the highest 

fitness. However, for the sake of solution speed all models used in damage detection were 

built from 50 elements. 

 

Figures (3.8 and 3.9) show the model updating results for the first intact beam described 

in chapter (2). The theoretical FEM model is then updated using GA and fitness function 

number 2 with 1=γ . It can be seen that the GA solver did generate a significantly better 

solution in terms of mode shape locations and values. Detailed case study with analysis 

will be provided in the next chapter. 
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Figure (3.8): Model Updating Result for Intact Beam 1 
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Figure (3.9): Model Updating Convergence for Intact Beam 1 
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CHAPTER FOUR 

DAMAGE DETECTION 

 

4.1 Introduction 

 

The proposed damage detection method relies on matching the FEM response to the 

experimental results measured for a damaged beam. The first step eliminates the errors 

between the theoretical FEM and the intact structure through model tuning. In this step 

the model updating algorithm discussed in chapter (3) is used to match the intact FRF 

measured experimentally to the FRF calculated theoretically; thus eliminating the 

experimental errors.  The next step is to match the FRF of a damaged structure to the 

update FEM from the model tuning phase. The difference between the correction factors 

from the tuning step and the damage detection step can be sued as an indicator of the 

location and magnitude of damage.  This process is illustrated schematically in Figure 

(4.1). 

 

Figure (4.1): Damage Detection Algorithm 
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4.2 Damage Cases 

 

Four different damage cases were studied in this research work. The first two cases 

represent a major structural damage while cases 3 and 4 represent a small structural 

damage. All damages were induced using a handsaw which resulted in an approximate 

width of 1 mm.  For a FEM of the beams under investigation with 50 elements, a 

definition of damage size and location is given in Figure (4.2) and the corresponding 

element number for cases 1 to 4 are listed in Table (4.1). 

 

 

 

Figure (4.2) Top View of Damage Location and Size 

 

 

Table (4.1): Damage Cases Details 
 

Damage 

Case 

a(cm) b(mm) Element no. for 50 element 

mesh 1 20.5 10 34 

2 5.5 10 9 
3 20.5 5 34 

4 5.5 5 9 

 

 

 

A comparison between damaged and intact FRF measured for each case are shown in the 

Figures (4.3 – 4.6).  
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Figure (4.3) FRF Comparison for Case 1 

 

50 100 150 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequecny(Hz)

N
o
rm
a
liz
e
d
 A
m
p
lit
u
d
e

 

 

Intact

Damaged

 

Figure (4.4) FRF Comparison for Case 2 
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Figure (4.5) FRF Comparison for Case 3 
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Figure (4.6) FRF Comparison for Case 4 



37 

 

4.2 Damage index 

 

The final output of the model updating process is the stiffness correction factor. While the 

change in these factors might be a sufficient indicator in most cases. However, in some 

cases a more elaborate damage index might be needed. It is important to choose a fitness 

function that has equal sensitivity to changes in all elements. Additionally, after the 

model tuning phase the resulting FEM might have different characteristics than the 

original FEM. Consequently, at this point, the fitness function sensitivity could take any 

unknown form. In order to minimize differences in sensitivity effect, a damage index was 

formulated given by the following equation: 

iiDkTki SPPI /)( −=  

Where 
iI the damage index for the element number i. is 

Tk
P is the element correction factor at 

the end of the tuning phase and 
Dk

P  is the correction factor at the end of the damage detection 

phase. iS  is the sensitivity of the fitness function to the correction factor at the given element. 

For this research work the sensitivity is defined as the amount of change in fitness function 

for a 1% change in the correction factor at a given element. 

 

4.3 Large Structural Damage 

The complete damage detection algorithm was used on damage cases 1 and 2 to determine 

which fitness function gives better results.  The list of damage detection runs used for fitness 

function selection is given in Table (4.2). 

 

Table (4.2) Large Structural Damage Detection Runs 

Run Cost Function γ  Damage 

Case 

Number of modes 

1 1 0 1 4 

2 1 0 2 4 

3 2 1 1 4 

4 2 1 2 4 

5 3 1 1 4 

6 3 1 2 4 
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Damage Detection Run 1 

 

The first damage detection run used the fitness function #1 to detect damage in case 1.  

Since fitness function #1 relies only on the difference in frequencies, the frequencies from 

the model tuning and the damage detection phase are shown in Table (4.3). Both the 

model tuning phase and the damage detection successfully updated the frequencies of the 

FEM to closely match the frequencies measured experimentally. However, the damage 

index shown in Figure (4.7) showed an unacceptable amount of false detections far from 

the expected damage location which is marked by the black arrow. 

 

Table (4.3) Results for Damage Detection Run 1 

Model Tuning 

 

Damage Detection 

 

Experimental 

Intact Frequencies 

(Hz) 

Original FEM 

Frequencies 

(Hz) 

Updated FEM 

Frequencies 

(Hz) 

Experimental 

Damaged 

Frequencies(Hz) 

Updated FEM 

Frequencies 

(Hz) 

5.49 6.16 5.67 5.49 5.58 

36.63 38.57 37.47 36.63 36.62 

104.40 108.01 104.40 102.56 102.56 

205.13 211.66 205.13 203.30 203.30 

 

0 10 20 30 40 50

2.475

2.48

2.485

2.49

2.495

2.5

Element

F
it
n
e
s
s
 F
u
n
c
ti
o
n
 S
e
n
s
it
iv
it
y

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Element

D
a
m
a
g
e
 I
n
d
e
x

 

Figure (4.7): Damage Detection Results for Run1  
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Figure (4.8) Final Correction Factors for Damage Detection Run 1 

 

Damage Detection Run 2 

 

The second damage detection run used the fitness function #1 to detect damage in case 2.  

The frequencies from the model tuning and the damage detection phase are shown in 

Table (4.4). Both the model tuning phase and the damage detection successfully updated 

the frequencies of the FEM to closely match the frequencies measured experimentally. 

Unlike run 1, the damage index shown in Figure (4.9) identifies the correct damage 

location despite negligible false detection towards the beam tip. 

 

Table (4.4) Results for Damage Detection Run 2 

Model Tuning 

 

Damage Detection 

  

Experimental Intact 

Frequencies 

(Hz) 

Original FEM 

Frequencies 

(Hz) 

Updated FEM 

Frequencies 

(Hz) 

Experimental 

Damaged 

Frequencies(Hz) 

Updated FEM 

Frequencies 

(Hz) 

7.33 6.16 6.16 3.66 4.92 

38.46 38.57 38.57 36.63 36.32 

108.06 108.01 108.01 104.40 104.42 

208.79 211.66 211.66 201.47 201.44 
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Figure (4.9): Damage Detection Results for Run 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.10) Final Correction Factors for Damage Detection Run 2 

 

Damage Detection Run 3. 

 

The third damage detection run used the fitness function #2 to detect damage in case 1.  

The model tuning and damage detection phase results presented in Figure (4.11) shows 

that the algorithm succeeded in updating the calculated FRF to a closer match of the 

experimental FRF.  Additionally, the damage index shown in Figure (4.13) identified the 

correct damage location with negligible errors. 
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Figure (4.11): Model Tuning Results for Run 3 
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Figure (4.12) Final Correction Factors for Damage Detection Run 3 
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Damage Detection Run 4 

 

This damage detection run used fitness function #2 to detect damage in case 2.  The 

model tuning and damage detection phase results presented in Figure (4.14) shows that 

the algorithm succeeded in updating the calculated FRF to a closer match of the 

experimental FRF.  The damage index Figure (4.16) displayed a group of peaks around 

the expected damage location rather than a clear single peak. 
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Figure (4.14): Model Tuning Results for Run 4 
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Figure (4.15) Final Correction Factors for Damage Detection Run 1 
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Damage Detection Run 5 

 

For this run, cost function #3 was used to identify the damage in case 1. The model tuning 

results presented in Figure (4.17) shows that the error in amplitude for the third and fourth 

modes increased after model updating and with no significant improvements to the 

amplitude of the second mode. It should be noted that cost function #3 should focus on 

decreasing the error in the second mode since it has the highest amplitude. As for the 

damage detection results presented in Figure (4.19), it can be seen that no significant 

updates was introduced to FRF. As a result, the damage detection results showed 

unacceptable errors. 
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Figure (4.17): Model Tuning Detection Results for Run 5 
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Figure (4.18) Final Correction Factors for Damage Detection Run 5 
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Damage Detection Run 6 

 

For damage detection run 6, cost function #3 was used to identify the damage in case 2. 

The model tuning results presented in Figure (4.20) shows minor improvements to the 

theoretical FRF. But despite the significant improvement for FRF during damage 

detection phase shown in Figure (4.22) the algorithm failed to locate the damage.  

Figure (4.20): Model Tuning Results for Run 6 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.21) Final Correction Factors for Damage Detection Run 6 
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Discussion 

 

By reviewing the results from damage detection runs 1 to 6, it is evident that cost function 

2 which is given by equation (3.7) gives the most accurate results in terms of location. As 

for cost function 3 which is given by equation (3.8), since it will give more emphasis to 

the error on the mode with the highest experimental amplitude and since the first mode 

amplitude was affected by filtering, the low quality of results are expected. 

 

4.4 Fitness Function Adjustment 

 

As cost function 2 showed the best performance, the next step would be to determine the 

best value for the scale factorγ  which adjusts the weight of the error in amplitude versus 

the error in frequency. Damage case 1 was used to adjust this value. Table (4.5) gives 

details for the damage detection runs done. 

 

Table (4.5): Fitness Function Adjustment Runs Details 

Run Cost Function γ  Damage 

Case 
Number of modes 

7 2 5 1 4 

8 2 10 1 4 

9 2 25 1 4 
 

 

 

 

Damage Detection Run 711 

 

This damage detection run used fitness function #2 to detect damage in case 1 with the 

scale factor γ  set to 5. The model tuning and damage detection results presented in 

Figures (4.23, 4.24 and 4.25) respectively showed a significant improvement in damage 

detection accuracy when compared to the case of .1=γ  
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Figure (4.23): Model Tuning Results for Run 7 
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Figure (4.24) Final Correction Factors for Damage Detection Run 7 
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Damage Detection Run 812 

 

This damage detection run used fitness function #2 to detect damage in case 1 with the 

scale factor γ  set to 10. Figures (4.26, 4.27 and 4.28) shows model tuning and damage 

detection results which showed an improvement in damage detection accuracy when 

compared to the case of 1=γ but not better than the case of .5=γ  
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Figure (4.26): Model Tuning Results for Run 8 
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Figure (4.27) Final Correction Factors for Damage Detection Run 8 
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Damage Detection Run 9 

 

For this run cost function # 2 was used with a scale factor of 25 to solve for the damage 

case1. Despite what appears to be good model tuning and damage detection FRF results 

which are shown in Figures (4.29, 4.30 and 4.31), the damage index was far from 

accurate. The algorithm detected a clear damage at the element number 16 while it should 

be located at element number 34. 
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Figure (4.29): Model Tuning Results for Run 9 
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Figure (4.30): Final Correction Factors for Damage Detection Run 9 
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4.5 Small Structural Damage 

 

Most available damage detection algorithms which rely only on changes in the natural 

frequencies tend to have accuracy problems with small structural damages. The proposed 

algorithm is characterized by detecting the location of small structural damages such as 

case 3 and case 4. In order to verify this accuracy, the adjusted cost function number 2 

(equation (3.7)), the two cases were solved. The results are given in the following section. 

 

Table (4.6): Damage Detection for Minor Structural Damage. 

Run Cost Function γ  Damage Case Number of Modes 

10 3 5 3 4 

11 3 5 4 4 
 

 

Damage Detection Run 1016 

 

The results for this verification run are presented in Figures (4.32, 4.33 and 4.34).  

Despite the small damage size, algorithm was able to locate the damage with negligible 

errors. 
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Figure (4.32): Model Tuning Results for Run 10 
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Figure (4.33): Final Correction Factors for Damage Detection Run 10 
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Damage Detection Run 1117 

 

This damage detection run used fitness function #2 to detect damage in case 1 with the 

scale factor γ  set to 5. Figures (4.35, 4.36 and 4.37) shows model tuning and damage 

detection results. The model tuning phase was not able to add any significant 

improvement to the original FEM which can be attributed to experiment quality, since the 

theoretical FRF is close to the experimental FRF. The damage detection phase located the 

damage near the actual location. However, there is a minor false detection towards the 

beam tip.  
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Figure (4.35): Model Tuning Results for Run 11 
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Figure (4.36): Final Correction Factors for Damage Detection Run 11 
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Discussion 

The damage detection algorithm showed acceptable accuracy in detecting small structural 

damages. This accuracy is much appreciated in the light of the practical constraints 

imposed on the algorithm design such as: the absence of feedback and relying on white 

noise as the source of excitation. 

 

4.6 Effect of Excitation Location 

 
In the previous sections, the FRF measured experimentally was a result of base excitation. 

However, the FRF produced analytically from the FEM was a result of tip force 

excitation.  According to Ertuk and Inman [22] the vibration resulting from base motion 

of a cantilever beam should be modeled as a distributed pressure reflecting the beam’s 

own weight and not as a tip force. Also, it can be seen from results shown in previous 

sections that the theoretical FRF differs from the experimental FRF in terms of 

normalized amplitude while frequencies can be considered matching.  

 

Despite the difference in FRF, the overall damage detection algorithm was able to detect 

damage with acceptable accuracy. This can be attributed to the model tuning phase. 

During this phase, the errors resulting from the difference in excitation location was 

neutralized. Thus, during the damage detection phase the damage detection algorithm was 

only sensitive to the differences coming from damage. 

 

In this section, damage detection results are calculated from an FRF simulating base 

excitation. In this model the exciting force is applied as distributed pressure acting within 

the beam plane with a maximum at root and gradually decreasing to reach zero at the tip. 

This model was used to solve the two verification cases (scenario #3 and scenario #4). 

The results are shown in Figures (37-42). 

 

The results show that using the base excitation model for theoretical FRF produced 

results closer to those measured experimentally. In addition, the overall damage detection 

produced more accurate results. Thus, it is advisable to use the same type of excitation 

force for both the experiment and theoretical model. However, if no prior knowledge of 

the exciting force location the model tuning phase can neutralize the errors resulting from 
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the difference in FRF and the damage detection algorithm can operate with acceptable 

accuracy. 
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Figure(4.38) Model Tuning Results for Scenario #3 using Base Excitation 
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Figure (4.39) Final Correction Factors for Scenario #3 using Base Excitation 
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Figure(4.41) Model Tuning Results for Scenario #4 using Base Excitation 
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Figure (4.42) Final Correction Factors for Scenario #4 using Base Excitation 
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4.7 Multi-Channel Inputs 
 

Despite the availability of the measurements from 3 channels, only 1 channel was used 

for damage detection in the previous. The reason behind this approach is that using the 

summation of the cost functions from all channels as a global cost function resulted in 

poor damage detection results. This can be attributed to the fact that optimizing more than 

one objective that might be competing by summing them will yield a solution that is not 

essentially the optimal [23].This multiple objective problem requires a different approach 

such as the Strength Pareto Approach [24]. Though the results were sufficient for the case 

of a simple beam, it is the assertion of this author that a single channel will not be 

sufficient for more complicated structure and the use of multiple sensors and multiple 

objective optimizations will be a necessity. 

 

An alternate approach that will be used in the next section is using the average of the 

normalized strain measured from the three channels as a target for a single optimization 

function. Figures (4.43-4.48) shows the results of scenario #3 and #4 calculated using the 

averaged normalized strain and base excitation. The results show an improvement in 

damage detection algorithm accuracy when using normalized averaged strain form the 3 

channels instead of 1. 
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Figure(4.44) Model Tuning Results for Scenario #3 using Base Excitation and Averaged 

Normalized Strain 
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Figure(4.45) Final Correction Factors for Scenario #3 using Base Excitation and 

Averaged Normalized Strain 
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Figure(4.47) Model Tuning Results for Scenario #3 using Base Excitation and Averaged 

Normalized Strain 
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Figure(4.48) Final Correction Factors for Scenario #3 using Base Excitation and 

Averaged Normalized Strain 
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5. CONCLUSION AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

5.1 Conclusions 

 

The Peak Vector cost function which includes both the amplitude and frequency showed high 

accuracy when used to detect damage in stressed and unstressed parts of the structure. On the 

other hand, the frequency cost function can only detect damages which have significant effect 

on the fundamental frequencies. 

 

The model tuning phase is an important feature of the proposed damage detection algorithm. 

This phase will minimize the effect of modeling and experimental errors on the damage 

detection algorithm. The overall damage detection algorithm can be considered reliable and 

error resilient.  

 

The proposed damage detection can function relying on ambient noise and without the need 

of excitation force feedback. Also, averaging the results from multiple sensors can enhance 

the damage detection accuracy. 

 

Strain gauges have been shown as a reliable and convenient sensor for modal analysis when 

coupled with appropriate signal processing. 

 

5.2 Recommendations for Future Work  

 

Three Dimensional modeling of beams 

While this damage detection algorithm is generic, it should be noted that the FEM model 

used doesn’t include transverse displacement and torsion displacement. In order to verify 

that no transverse bending modes or torsion modes will interfere with the experiment 

results. The sample beam was selected of relatively high rigidity for torsion and bending 

in the transverse direction. Additionally, sweep modal testing was done for the 

frequencies between 1 and 250 Hz in, as well as, FEM models built using NASTRAN 

which all verified that there are no unwanted modes in the region of frequencies of 

interest. However, to deal with any kind of beams a 3 dimensional beam element should 

be used and sensors measurements directions should take all degrees of freedom into 

account.  
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