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Abstract 

The quality of pavement networks is greatly affected by different distresses. These distresses 

appear in many forms, such as cracking, potholes, rutting and different types of deformation. 

As a result, to ensure effective pavement management, accurate modeling of these different 

distresses has become essential. Moreover, machine learning models have shown great 

potential in modeling pavement performance in recent years. The objective of this research is 

to develop machine learning models for modeling key parameters of pavement distress, 

specifically the International Roughness Index (IRI), fatigue and longitudinal cracking. Data 

for this investigation were extracted from the Long-Term Pavement Performance (LTPP) 

database, with a focus on areas exhibiting environmental conditions similar to those in Egypt. 

By doing so, the models would be applicable to Egyptian settings. The dataset comprised of 

8537 datapoints on 221 different pavement sections. The variables collected include IRI, 

temperature, precipitation, Equivalent Single Axle Loads (ESALs), pavement age, time since 

last maintenance, asphalt concrete layer thickness, average asphalt content, bulk specific 

gravity, granular base thickness, percentage of fatigue cracking, and percentage of 

longitudinal cracking. 

Six machine learning algorithms were used for modeling each output variable: XGBoost, 

Random Forest, K-Nearest Neighbors (KNN), Bayesian Regression, Ridge Regression, and 

Decision Trees. Model performance was assessed using Mean Absolute Error (MAE) and R2 

as evaluation metrics. Comparative analysis revealed that the XGBoost algorithm 

demonstrated superior performance in modeling all three output variables. The results 

showed a MAE of 0.17 and R2 of 0.729 for modeling IRI. For modeling fatigue cracking and 

longitudinal cracking, the model produced a MAE of 4.92% and 2.96%, respectively, with an 

R2 of 0.672 and 0.692 respectively. 

The findings are significant for many reasons. Firstly, they offer a framework for modeling 

pavement distress parameters, which is crucial for effective pavement management and 

maintenance strategies. Secondly, the study confirms the efficacy of machine learning 

algorithms in modeling pavement performance indicators, especially when using ensemble 

models. Lastly, the exceptional performance of the XGBoost algorithm indicates its reliability 

as a tool for both future research and practical applications in pavement management. 

Importantly, the models are tailored to be applicable in Egypt, providing a data-driven 

approach to improve the quality of road infrastructure in the region.
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Chapter 1 

Introduction 

1.1 Research Context  

1.1.1 Importance of Pavement Networks 

Pavement networks are considered one of the most important types of infrastructure, 

affecting multiple dimensions of society, including economics, social welfare, and 

environmental sustainability. This includes a 31.5% investment in pavement 

structures compared to other infrastructure investments in the United States of 

America, according to a report by the Federal Highway Administration (FHWA) 

(Smith, 1994). As forms for transportation, these networks serve critical roles in linking 

markets, influencing trade, fostering economic union, and contributing to overall 

economic progress (Banister & Berechman, 2001). In addition to this, the construction 

and upkeep of such networks generate diverse employment opportunities, thereby 

impacting labor markets both directly and indirectly (Ke et al., 2020). 

With regard to social benefits, well-constructed and adequately maintained pavement 

networks enhance the availability and accessibility of essential services. For instance, 

they facilitate more efficient access to healthcare facilities, educational institutions, and 
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emergency services, which in turn has a direct positive impact on the welfare of society 

(Litman, 2017). Environmentally, the quality of pavement networks is inversely 

correlated with fuel consumption and vehicular emissions, substantiating their 

environmental importance (Streimikiene et al., 2013). Safety considerations are also 

noticeable; superior pavement quality is associated with a reduced incidence of road 

accidents (Chan et al., 2010). 

In addition to the direct benefits, pavement networks exert influence on several 

secondary sectors. One example relates to public health; high-quality networks 

encourage active transportation modes like cycling and walking, thereby promoting 

healthier lifestyles (Pucher & Dijkstra, 2003). Effective management of these networks 

constitutes a valuable asset for any country. Infrastructure asset management 

strategies, encompassing consistent monitoring and maintenance, can lead to 

substantial monetary savings by obviating the need for expensive rehabilitation 

projects (Burningham & Stankevich, 2005). 

Lastly, pavement networks hold implications for the tourism industry. Adequate road 

infrastructure increases the likelihood of attracting tourists, thereby improving the 

economic state of a nation (Alkheder, 2015). Furthermore, the resilience of pavement 

networks is particularly crucial in locations that are susceptible to natural disasters, 

serving as critical evacuation routes and playing an instrumental role in the logistics 

of relief and recovery operations (Boakye et al., 2022). 
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1.1.2 Current State of Pavement Management 

Over the years, subjective evaluation models, as well as reactive measures were the 

main tools of infrastructure asset management. That is specifically true when it comes 

to pavement deterioration management. These methods are advantageous in terms of 

simplicity; however, their disadvantages include a lack of quantitative accuracy, 

reproducibility, and scalability. Disadvantages also include subjectivity and human 

error, which is especially included when it comes to manual surveys and visual 

inspections. These errors might result in inconsistent data leading to ineffective 

management decisions (Li et al., 1997). 

Over the years, computer models have been used to create more rigorous, data-driven 

methodologies in infrastructure asset management. In the field of pavement 

management, the international roughness index (IRI) has been a commonly used 

metric to evaluate pavement performance and ride quality. The reason for that is 

because IRI can provide an objective and quantitative means of evaluation. This 

coupled with data analytics resulted in an evolutionary shift in pavement 

management. Moreover, machine learning models made it possible to transition from 

reactive to proactive infrastructure management strategies (Hanandeh, 2022). These 

machine learning models have proved to produce predictions on the rate of pavement 

deterioration influenced by different environmental and load conditions by their 

ability to analyze large datasets. This in turn, would result in both financial and 

sustainable effectiveness in pavement networks. Another benefit of the usage of 
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machine learning models in pavement management is the resulting proper resource 

allocation and preventative maintenance strategies (Bashar & Torres-Machi, 2021). 

However, there are different aspects that should be addressed due to this transition. 

On one hand, these models will provide a reliable and effective framework for 

pavement management due to their predictive modeling capability. However, further 

investigation is required on means to incorporate these techniques into the current 

practice as well as re-evaluate the current models. Moreover, due to their link to 

computer sciences, this transition would also require the need to integrate between 

the conventional engineering fields and computer science. This in return, would 

produce a wider range of research opportunities with the goal of developing more 

advanced prediction models to be used in infrastructure management (Justo-Silva et 

al., 2021). 

Even though predictive modeling has advanced over the years, there are still some 

issues that should be addressed. These issues include the need for consistent data 

collection procedures, the need for large datasets in order to train prediction models, 

and the need to validate the predictive capabilities of these models against actual 

scenarios (Papadimitroulas et al., 2021). Another potential issue is the potential of 

cybersecurity issues associated with the use of digital, datacentric strategies. This issue 

should be addressed to maintain the integrity and safety of different infrastructure 

management systems (Chen & Hoang, 2012). 
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1.1.3 Pavement Condition 

There are many reasons pavement integrity is of a great priority; this includes safety 

and economic productivity. That is why attention to pavement condition is an area of 

great concern. This is especially important when it comes to load-related distresses 

such as fatigue/alligator cracking and longitudinal cracking. Moreover, a significant 

variable used to represent pavement conditions is IRI. It was introduced in order to 

provide a standardized quantitative approach for evaluating the accumulated vehicle 

suspension motion to distance traveled (Sayers et al., 1986). 

Alligator cracking, which is also referred to as fatigue or flexural fatigue cracking is 

one of the most common types of load related cracks. It usually appears as 

interconnected cracks in a pattern similar to an alligator’s skin. Due to its link to traffic 

loads, it is usually directed along the direction of loading. The main reason this type 

of cracking occurs is because of recurrent or cyclical loading on pavement. Over time, 

these cracks deteriorate the tensile strain at the asphalt layer’s base. It is very common 

to see this type of crack in parking spaces and narrow lanes which are subjected to 

constant loading and unloading. Fig. 1 shows an example of a pavement section with 

fatigue cracking (Cong et al., 2017). 
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Figure 1: Fatigue/Alligator Cracks (Ahmad & Khawaja, 2018) 

Another type of load related crack is the wheel path cracking. This type, however, is 

produced in areas of pavement sections which are subjected to direct tire pressure. 

Wheel path cracking often appears as longitudinal cracks and usually indicates 

structural collapse in pavement. It is usually the result of strong traffic loads and 

insufficient drainage (Mulungye et al., 2007). Fig. 2 shows a pavement section with 

wheel path cracking. 
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Figure 2: Wheel Path Cracking (Ahmad & Khawaja, 2018) 

1.1.4 The Use of Machine Learning in Predicting Pavement Condition 

Historically, traditional approaches such as visual inspections, manual data collection, 

and empirical models have been used to forecast and evaluate specific types of 

pavement distresses such as cracking (Zhang et al., 2022). Even though these equations 

and models have helped shed light on the mechanisms of these distresses, they usually 

require a lot of input variables. Moreover, these parameters did not only require a lot 

of laborbut also may result in human error data. (Majidifard et al., 2020). 

On the other hand, machine learning models have been shown to be a promising 

alternative to model pavement distresses. Unlike conventional approaches which 

might not detect the complex, non-linear interactions between different variables that 

affect pavement deterioration, machine learning algorithms have been able to tackle 
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this issue. This is because of their fundamentally data-driven nature. This is 

specifically true when it comes to predicting fatigue cracking and longitudinal 

cracking due to them being influenced by different variables such as material 

characteristics, traffic loading, and environmental conditions (Nguyen et al., 2019). 

Furthermore, machine learning models can produce more accurate, timely, and 

comprehensive distress predictions due to their ability to integrate multidimensional 

data sets. These data sets include sensor network outputs, traffic monitoring systems, 

and meteorological data. This, in return, would result in optimized resource allocation 

for maintenance and rehabilitation which would ultimately increase pavement network 

service life (Tantalaki et al., 2019). 

1.1.5 Problem Statement 

When addressing the potential of modeling pavement deterioration and IRI, there are 

several challenges that are being faced. The first challenge is linked to the 

standardization and quality of the collected data. Due to the different data collection 

methods used by different entities around the world, inconsistent datasets are 

commonly produced. As a result, it becomes challenging to develop models that can 

be used on a global scale (Zimmerman et al., 2010). Moreover, models can be subjected 

to overfitting and reduced generalizability resulting from irregular data collection. 

This has a negative impact of the accuracy of the predicted results (Cano-Ortiz et al., 

2022). 
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Another challenge related to modeling pavement deterioration is related to 

computational complexity. As datasets increase, the need for large computing 

resources for the machine learning models also increases. This might result in 

scalability problems along with inefficiencies (Nguyen et al., 2019). Another aspect 

that results in demanding computational needs is that pavement conditions are 

affected by many factors such as environmental factors, traffic related loads, and 

maintenance history. These factors must be incorporated into the model to ensure 

higher accuracy (Niazi et al., 2017). As a result, incorporating real scenarios into these 

machine learning models requires a balance of both computational efficiency and 

robustness, which is sometimes difficult to acquire (Fang et al., 2020). 

To conclude, there are different challenges related to modeling pavement deterioration 

and IRI. These challenges can be categorized into issue related to computational 

complexity and data quality. However, this leaves room for potential research to be done 

in this area. With the involvement of different disciplines in this area, like computer 

science and civil engineering, advance prediction models can be developed to tackle these 

challenges. These challenges inspired the author to use different machine learning 

algorithms to model and predict various pavement performance indicators. Then, 

compare the accuracy and robustness of the various applied machine learning techniques 

to select the most promising one.  
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1.2 Research Objectives 

The main objectives of this research are: 

1. To investigate the machine learning applications, in terms of predicting 

pavement condition, for proper management of the pavement through a 

comprehensive review of the literature  

2. To specify the main factors/variables including environmental 

conditions, pavement age, maintenance history, pavement material 

characteristics, and traffic loading, that influence the pavement 

performance prediction. 

3. To construct and provide a systematic approach for extracting and 

organizing different variables from large datasets such as the LTPP in 

order to develop robust data-driven models. 

4. To select the most promising machine learning algorithm in terms of 

accuracy and robustness to model and predict pavement condition in 

terms of IRI and load related cracks.  

1.3 Research Framework 

To conduct this research, the methodology has been depicted in Figure 3 below. 
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Figure 3: Research Methodology Flowchart 

It is clear from Figure 3 that the research comprised three different phases. The first phase 

is data collection. The second phase is applying different ML algorithms, recommended 

on a comprehensive review of the current practices from literature, on the previously 

collected data. The third phase is assessing the performance of the different applied ML 

algorithms to select the most promising technique.  
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1.3.1 Data Collection 

The effectiveness of any machine learning model is highly dependent on the dataset used 

for developing the model. This is especially true when it comes to modeling pavement 

conditions/distresses. For this research, the Long-Term Pavement Performance (LTPP) 

database will be used as the main source of data. The LTPP, which was developed by 

FHWA, contains an immense collection of data regarding different aspects of pavement 

sections around the United States of America and some areas in Canada. These aspects 

include measurements of pavement performance indicators, traffic loads, environmental 

conditions and more. 

1.3.2 Sourcing from the LTPP Database 

The LTPP database is organized in the form of different tables with four main categories: 

Pavement Structure and Construction, Climate, Traffic, and Performance. For this study, 

the extracted tables used will provide information specific to pavement age, maintenance 

and rehabilitation history, environmental conditions, such as temperature and 

precipitation, traffic loading, IRI, cracking conditions, and pavement material 

characteristics. 

1.3.3 Aligning with Egyptian Conditions 

Even though the LTPP database offers data regarding the different factors affecting 

pavement conditions in the United States of America and Canada, this work aims to 
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develop a model tailored and applicable to conditions found in Egypt. As a result, the 

extracted data from the LTPP database will be of areas that reflect conditions similar to 

those found in Egypt, such as high temperatures and dry weather. It will be assumed that 

the traffic loading and pavement materiality is similar in pavement sections extracted 

from the LTPP database and those in Egypt. 

1.3.4 Ensuring Model's Adaptability 

The data collection process was a repetitive process, as during the data collection and 

model training, some data gaps appeared and features which are specific to Egyptian 

conditions were sometimes overlooked. As a result, this was corrected by revisiting the 

LTPP and updating the collected dataset. This iterative process improved the model 

significantly and made it produce more accurate results.  

1.3.5 Selection of Machine Learning Algorithms 

There are many machine learning algorithms that have been used to model pavement 

performance and pavement distresses. This research proposes using six different 

machine learning algorithms to model IRI and both fatigue and longitudinal cracking: 

Extreme Gradient Boosting (XGBoost), Random Forest, Ridge Regression, K-Nearest 

Neighbors (KNN), Decision Tree Regression, and Bayesian Regression. 

The reason for choosing several machine learning algorithms is to conduct a thorough 

study on the performance of these models and to cross-verify and validate their results. 
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As the models are developed, their results will be compared. The comparative analysis 

conducted will be done using several statistical tests such as the accuracy, mean square 

error and the mean absolute error. This will be done to determine the efficiency of each 

model and determine the model which produces the most accurate results related to 

pavement performance and cracking. 

1.3.6 Model Development and Training 

The development and training stage is one of most important stages in developing a 

reliable machine learning model. When developing the six mentioned machine learning 

models, this step will be conducted after the comprehensive data collection stage. 

The first step will be to train each model separately. This will be done by providing 

historical data of different pavement sections regarding IRI, current condition of both 

wheel path and fatigue cracking, environmental conditions, traffic loading, age, 

maintenance history, and different material characteristics. The models will then start to 

“learn” the patterns and relationships between different variables which will help in 

predicting the condition of IRI and pavement cracking. However, a certain percentage of 

the dataset will not be provided in the training stage and will be used to test the model 

after it has been trained. 

The final step will be to determine which of the six models has produced the most reliable 

results. This will be done by comparing the results of the testing stage by using statistical 

measurements. These measures include mean absolute errors, and R2. The main goal is 
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to focus on the best performing model, in order to ensure reliable results when modeling 

pavement IRI and load-related cracks.  
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Chapter 2 

Literature Review 

2.1 Current Prediction Models 

2.1.1 Background and Importance of Pavement Condition Modelling 

One of the most important aspects of managing transportation infrastructure is 

predicting pavement deterioration and distresses. Reliable forecasts allow for efficient 

planning of rehabilitation and maintenance strategies, lowering the overall lifecycle costs 

of pavement assets and improving the road user experience (Abu Samra et al., 2017). 

Planning and managing transportation infrastructure requires a thorough assessment of 

the evaluation and monitoring of pavement condition. Visual inspections and manual 

collection of data are commonly used with conventional techniques for pavement 

condition monitoring; however, those techniques are labor-extensive and sensitive to 

human errors (Majidifard et al., 2020). Pavement condition prediction models form a 

major part of any pavement management system (PMS) and are utilized by many 

transportation agencies worldwide (Haider et al., 2011). 

Traditional pavement condition prediction models, like the American Association of 

State Highway and Transportation Officials (AASHTO) Road Test model, are generally 



17 

 

based on empirical data (Hu et al., 2022). Although those models have been essential in 

improving pavement management strategies, they have got many drawbacks. The used 

models won't completely capture the complex relationships between many influencing 

aspects such as traffic loads, weather conditions, and pavement material characteristics, 

even though those elements tend to have a great impact on pavement overall 

performance. These models frequently require human involvement, and they generally 

have issues in dealing with large datasets and non-linear relationships (Rezapour et al., 

2022). 

Pavement deterioration modeling became developed over many years from simple 

methods to more complex models. These models may be divided into parametric and 

non-parametric models. While parametric models depend upon explanatory variables to 

forecast pavement deterioration, non-parametric techniques depend on machine learning 

and artificial intelligence. Models which might be parametric or non-parametric can be 

stochastic (based totally on probability) or deterministic, primarily based on mechanistic 

or mechanistic-empirical data (Haas et al., 2015). 

The Markov chain is one of the modern prediction models for pavement deterioration. 

On both the project and program levels, it allows the prediction of future conditions given 

the current condition without the requirement for substantial data sets (Swei et al., 2019). 

In order to predict the future deterioration of pavements using a probabilistic method, it 

is assumed that the existing condition of the pavement is capable of comprehensively 

capturing the influence of all-important elements that impact the pavement condition 
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(Rose et al., 2016). 

For their potential to simulate the variable nature of pavement deterioration over the 

years, stochastic models have obtained a lot of interest. Although Markov Chain models 

are regularly used to forecast pavement conditions, other stochastic models have also 

been useful. To realize the complicated interactions between the different elements which 

impact pavement overall performance, methods like Bayesian networks and Monte Carlo 

simulations have been utilized. For instance, Bayesian Networks use probabilistic 

graphical techniques to depict the conditional relationships amongst many variables, 

giving a comprehensive view of the variables affecting pavement distress. On the other 

hand, Monte Carlo simulations use random sampling techniques to forecast different 

results primarily based on the probability distributions of the input variables, offering an 

outline of probable pavement conditions (Mills et al., 2012). 

The complexity and dynamic nature of pavement deterioration are better captured 

through those novel stochastic models compared to conventional techniques. They 

enable the incorporation of a wider variety of variables, ranging from material 

characteristics to environmental conditions, generating more thorough and accurate 

forecasts (Swei et al., 2019). As a result of the increasing computational power and data 

availability, researchers and practitioners now have more access and capability to use 

these models. 

On the other hand, machine learning algorithms have shown promise in providing a 
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more reliable method for modeling pavement conditions when compared to traditional 

and stochastic models. Different machine learning algorithms such as Random Forests 

and Support Vector Machines (SVMs) have been able to deal with large, 

multidimensional datasets and are able to perform more accurately than the other 

techniques. The reason for that is because machine learning algorithms can capture 

complex, nonlinear relationships between variables, instead of stochastic models, which 

mostly depend on probabilistic results, or traditional models, which rely on linear 

assumptions (Nagalla et al., 2017; Zhang et al., 2023). To conclude, machine learning 

algorithms greatly surpass the capabilities of both traditional and stochastic models when 

modeling pavement deterioration. This offers a more robust, and adaptive framework for 

modeling pavement deterioration. 

2.1.2 Importance of Accurate Prediction Models 

Deterioration of pavement networks naturally has a substantial cost and safety impact. 

So, the development of accurate models for pavement deterioration is a very important 

area of research. As mentioned earlier, conventional techniques’ reliance on visual 

inspections and manual surveys add to the techniques’ limitations, and subjectivity to 

human error. This is also associated with variability in the data collection stage (Li et al., 

1997). Empirical techniques are also used to model pavement conditions and distresses. 

These models include the Mechanistic-Empirical Pavement Design Guide (Li et al., 2009). 

However, the geographic and climatic specificity of those models limits their 
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applicability to different locations such as Egypt. 

Premature pavement collapse from faulty prediction models can lead to increased repair 

costs and endanger road safety along with leading to inefficient resource allocation for 

maintenance. For instance, failing to account for significant factors like climate, current 

IRI, and pavement material characteristics may result in large wastes of funds (Hosseini 

& Smadi, 2021). Therefore, while considering the range of variables impacting pavement 

distress, starting from age and maintenance histories along with the effect of traffic loads, 

the need for strong, dependable prediction models is emphasized. 

Accordingly, due to their proven ability to manage complex, multidimensional data, 

machine learning offers a distinctive approach for developing prediction models with 

higher accuracy. 

2.1.3 Machine Learning Algorithms to Predict Pavement Condition 

The objective of conducting this literature review is to thoroughly study existing work 

done on developing accurate and reliable prediction models which aim to forecast 

pavement conditions. To be specific, the review focuses on studying both algorithms and 

methodologies which have shown potential in producing prediction models with high 

predictive accuracy. The focus will be on machine learning algorithms that have been 

developed to predict both IRI and the state of both fatigue and longitudinal cracks in 

pavement sections. 
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To thoroughly study the relevant information related to the topic firstly, the applications 

of machine learning algorithms in relation to monitoring the condition of different types 

of infrastructure was investigated. The evolution of algorithms used in infrastructure, 

and transitions into the specific machine learning algorithms, specifically used in 

monitoring and forecasting pavement conditions, was thoroughly reviewed. Also, the 

performance analysis and adaptability of these machine learning algorithms were 

presented. Secondly, the different ways to evaluate prediction models, by starting from 

the traditional accuracy, precision, and recall metrics, and then discussing more 

advanced metrics like the F1-Score and AUC-ROC were illustrated. Then, the relevance 

of these metrices in the context of infrastructure and pavement management was 

discussed. 

Thirdly, the localized conditions that affect pavement quality were addressed by 

discussing the impact of each condition. The main conditions considered were 

geographical factors relating to the location of the pavement sections, environmental 

factors like weather, precipitation, and icing. Lastly were the socio-economic variables 

which may indirectly influence pavement quality. This was done to tailor the produced 

prediction models to Egypt. Then, an overview of the commonly used data sources 

related to pavement networks, emphasizing on the LTPP database, was given.  

Finally, a comparative analysis of the different machine learning algorithms used in 

previous studies was provided. This was followed by outlining the challenges and 

limitations found in current literature in terms of using machine learning in pavement 
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prediction models. The literature review was concluded by a summary of the key 

findings in the literature, along with the research gaps.  

2.2 Machine Learning Algorithms in Infrastructure Condition 

Monitoring 

2.2.1 Evolution of Algorithms in the Infrastructure Management 

The use of machine learning algorithms to create prediction models has been considered 

to be a significant turning point in infrastructure management. However, that was not 

always the case. Before using these models, conventional models were commonly used 

(Zhu & Wang, 2021). Most of these rely on mechanistic-empirical methods, which 

consider different factors in generating forecasts such as environmental conditions, traffic 

loading effects and material characteristics (Chen et al., 2004). However, over time, those 

techniques showed a lack of adaptability to various conditions and a regular need for 

recalibration. These limitations showed that conventional models, in the long run, could 

not be relied on (Gardiner et al., 2008). 

However, over time, stochastic models started to gain popularity in infrastructure 

management and specifically in modeling pavement performance. These models were 

considered to be more reliable than conventional approaches. Stochastic models include 

Markov Chains and Bayesian networks. By using probabilistic factors, stochastic models 

showed potential with adapting to complex data and unforeseen conditions (Badr et al., 
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2021; El-Awady & Ponnambalam, 2021; Weber et al., 2012). Nevertheless, limitations 

started to appear related to scaling. This was mainly due to the increased complexity of 

datasets and variables considered when developing stochastic prediction models (Garí et 

al., 2021). 

As a result, researchers started to explore the application of machine learning algorithms 

in infrastructure management. This was especially doable as computational power 

advanced. Machine learning algorithms that are commonly used in developing models 

related to infrastructure management include neural networks, decision trees, KNN, and 

SVMs (Nagalla et al., 2017; Zhang et al., 2023). Machine learning algorithms greatly 

surpass the capabilities of both traditional and stochastic models when used in 

infrastructure management. This results from their ability to capture complex, non-linear 

relationships between variables along with their ability to adapt to large datasets 

(Nguyen et al., 2019). 

Further research in machine learning algorithms introduced more developed algorithms 

to develop more accurate models. These algorithms include ensemble models such as 

random forests and XGBoost. The idea of ensemble models is that they combine more 

than one base model. Other researchers introduced deep learning models, like 

convolutional neural networks, which incorporate image-based assessments. By doing 

so, this allows the addition of a new dimension to be considered in data interpretation 

(Nhat-Duc & Van-Duc, 2023). 
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To summarize, machine learning was not always used in infrastructure management. 

Computational models started with conventional techniques, which were later followed 

by stochastic models, and lastly transitioned to machine learning models. The main 

limitations of conventional techniques were their lack of adaptability and the constant 

need for recalibrating (Zhu & Wang, 2021; Chen et al., 2004; Gardiner et al., 2008). These 

limitations were tackled by stochastic models such as Markov Chain and Bayesian 

networks which did so by developing probabilistic forecasts. However, other limitations 

appeared related to stochastic models which were associated with data complexity and 

scaling (Badr et al., 2021; El-Awady & Ponnambalam, 2021; Weber et al., 2012; Garí et al., 

2021). These issues were resolved with the emergence of machine learning models which 

were able to capture complex relationships between different variables and handle large 

datasets (Nagalla et al., 2017; Zhang et al., 2023; Nguyen et al., 2019). However, machine 

learning algorithms are still improving with the development of ensemble and deep 

learning algorithms. These algorithms were proved to better interpret large datasets 

along with improved predictive capabilities (Nhat-Duc & Van-Duc, 2023). This evolution 

of computational models shows the importance of applying machine learning algorithms 

in infrastructure management. 

2.2.2 Machine Learning Algorithms Specifically Employed in Pavement 

Monitoring 

Over the years, IRI has been commonly used to assess pavement conditions and has been 
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vital in pavement monitoring and planning. Not only is IRI used to represent ride quality 

and pavement conditions, but since it is considered a function of pavement distresses, it 

is a very important aspect of pavement management (Elhadidy et al., 2021; Hossain et al., 

2019; OBrien et al., 2018). 

As a result, many researchers have thrived to develop computational models to better 

predict pavement IRI, given its importance in pavement management. Traditional 

regression models were previously used, such as Multiple Linear Regression (MLR), for 

modeling IRI. This was specifically done by Gharieb and Nishikawa (2021) in their work 

to predict IRI using data from the Laos Road Management System (RMS) by 

incorporating an MLR model. Other work was done by Pérez-Acebo et al. (2020) using 

the same technique, and they were able to achieve a coefficient of determination R2 of 

0.48 for flexible pavements in Spain. 

Moreover, advancements in research and machine learning algorithms introduced the 

usage of ANNs in modeling IRI. Research showed that the results of ANN models 

yielded more accurate results when compared to traditional regression models. This was 

shown by Abdelaziz et al. (2020) in their work in modeling pavement IRI with their ANN 

model yielding an R2 of 0.75 which was more than the 0.57 produced by the regression 

model. ANN was also compared to another technique called Group Method of Data 

Handling (GMDH) and the ANN model gave better results on the long term and short-

term predictions (Ziari et al. 2016). 
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Further advancements introduced other algorithms such as the Adaptive Network-Based 

Fuzzy Interference System (ANFIS) which has also been used in modeling IRI. Research 

done by Terzi (2013) showed promising results when using ANFIS to model pavement 

IRI. This algorithm was further optimized by introducing hybrid models which involved 

the integration of other algorithms with ANFIS. These integrated algorithms include 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Firefly Algorithm 

(FA). Nguyen et al. (2019) integrated these three algorithms with an ANFIS model and 

concluded that the PSO-ANFIS hybrid model performed better than the other hybrid 

models. 

The creation of hybrid machine learning models for modeling IRI paved the way for 

conducting comparative studies between the usage of single algorithm models and 

hybrid models. Mazari and Rodriguez (2016) conducted this comparison using a hybrid 

GA-ANN model, and comparing its results with an ANFIS model, an ANN model, and 

a GA model to forecast IRI in flexible pavement. Their results showed that the hybrid 

GA-ANN’s results were more accurate than the other three models. As a result, it can be 

concluded that the increased applications of machine learning algorithms have led to a 

significant advancement in using data-driven models for pavement condition assessment 

(Sholevar et al., 2022; Kheirati and Golroo, 2022). 

Moreover, Kumar & Sowmya (2021) highlighted the pros and cons of some of the major 

algorithms used in developing machine learning models as shown in table 1. 
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Table 1: Pros and Cons of Solo Models (Kumar & Sowmya, 2021) 

Algorithm Pros Cons 

Ridge 
Regression 

• Reducing variance in models, 
decreasing overfitting 

• Improved generalization 
performance 

• Computational 
intensity 

• Difficulty 
interpreting the 
model 

KNN • Simplicity in implementation 

• Offer multi-modal classification 

• Issues when 
categorizing 
unknown records 

Decision 
Trees 

• Can be used in either regression or 
classification problems 

• Ability to fill missing data with most 
likely values 

• Susceptible to 
sampling errors 

• Issues with over-
fitting 

Bayesian 
Regression 

• Prevents data from overfitting 

• Ability to deal with various datasets 

• Issues with 
prioritization 

• Can be 
computationally 
intensive 

In addition, work using ensemble machine learning models such as Random Forest and 

XGBoost has been instrumental due to their advantages. One of the advantages of an 

ensemble machine learning model such as XGBoost is its ability to create no assumptions 

related to data distribution. This is done by using several decision trees, and as a result, 

not be affected by multicollinearity (Montomoli et al., 2021). Moreover, Random Forest is 

considered a significant ensemble model due to its ability to also utilize more than one 

decision tree, and as a result, is also unaffected by multicollinearity (Fawagreh et al., 

2014). 

However, one of the major drawbacks of machine learning models is their black-box 

nature and the difficulty interpreting their results. This issue was tackled by models such 

as decision trees and random forests which provided better model transparency (Chi et 
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al., 2014; Gong et al., 2018; Piryonesi & El-Diraby, 2020; Piryonesi & El-Diraby, 2018). 

Another issue with using machine learning algorithms is the fear of overfitting when 

using a small training set while training the model. These issues leave room for more 

research and work to be done in developing machine learning models for assessing 

pavement conditions. 

2.3 Evaluation Metrics for Prediction Models 

2.3.1 Statistics and Error Metrics 

It is well-known that any machine learning prediction model is never completely accurate 

when it comes to predictive capabilities. This allowance is made to avoid overfitting 

when training and developing these models. As a result, it has become necessary to 

quantify the performance of machine learning models to properly evaluate and in most 

cases, compare the results of more than one model. In this section, several metrics for 

evaluating model performance will be discussed, along with the means of calculating 

these metrics. Finally, the section will be concluded by discussing the application of these 

different statistical measures in modeling pavement performance. 

To begin, as done by Plevris et al. (2022), assume p is an N×1 vector representing the 

predicted values of a certain model, and r to be another N×1 vector representing the true 

or observed values of a specific quantity that has been measured or calculated N times. 

N can represent the entire dataset of a subset like the training data or testing data. An 
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independent evaluation can be done by using another separate dataset. 

However, in certain situations where variables are categorical, different metrics are used 

to evaluate results such as precision, recall, confusion matrices, and accuracy. For datasets 

with positive values only, Plevris et al. (2022) compiled the following metrics and their 

means of calculation which can be used to evaluate the results of machine learning 

models. 

The Bias Error is defined as the difference between the predicted values and the true or 

observed values as shown in Eq. 1: 

𝑒𝑖 = 𝑝𝑖 − 𝑟𝑖 

( 1 ) 

Where is ei represent the bias error, the pi represents the predicted values, and the ri 

represents the observed values. 

The Mean Bias (MB) is calculated as the average of the individual bias errors and is 

illustrated in Eq. 2: 

𝑀𝐵 = 𝑒̅ =
1

𝑁
∑𝑒𝑖

𝑁

𝑖=1

=
1

𝑁
∑(𝑝𝑖 − 𝑟𝑖)

𝑁

𝑖=1

= 𝑝̅ − 𝑟̅ 

( 2 ) 

Where both 𝑝̅ and 𝑟̅ represent the averages of p and r, respectively. This can be shown in 
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equations 3 and 4: 

𝑝̅ =
1

𝑁
∑𝑝𝑖

𝑁

𝑖=1

 

( 3 ) 

𝑟̅ =
1

𝑁
∑𝑟𝑖

𝑁

𝑖=1

 

( 4 ) 

Next is the Mean Absolute Error (MAE), which is the average of the sum of errors, 

without considering the signs of each error. It is calculated by adding up the absolute 

values of the errors measured and then dividing the product by the number of 

observations. The MAE can be calculated using Eq. 5 as shown below: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑒𝑖|

𝑁

𝑖=1

=
1

𝑁
∑|𝑝𝑖 − 𝑟𝑖|

𝑁

𝑖=1

 

( 5 ) 

The Mean Squared Error (MSE) is also commonly used to evaluate the results of 

regression models. Similar to the MAE, the MSE does not consider the signs of the errors, 

but this is done by squaring the errors and adding them together. The product is then 

divided by the number of observations. This metric is calculated using Eq. 6: 
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𝑀𝑆𝐸 =
1

𝑁
∑(𝑝𝑖 − 𝑟𝑖)

2

𝑁

𝑖=1

 

( 6 ) 

However, one of the issues with using MSE is their sensitivity to outliers. Due to the 

squaring process, a single outlier could exponentially affect the resulting MSE. 

The Root Mean Squared Error (RMSE) is another measure for assessing machine learning 

model performance. It is calculated by square rooting of the MSE. It can be calculated 

using Eq. 7: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑝𝑖 − 𝑟𝑖)2
𝑁

𝑖=1

 

( 7 ) 

The Centered Mean Square Difference (CMSD) can be calculated using Eq. 8: 

𝐶𝑀𝑆𝐷 =
1

𝑁
∑[(𝑝𝑖 − 𝑝̅) − (𝑟𝑖 − 𝑟̅)]2
𝑁

𝑖=1

 

( 8 ) 

The square root of the CMSD, known as the Centered Root Mean Square Difference 

(CRMSD) can be used to evaluate model performance and is calculated by Eq. 9: 
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𝐶𝑅𝑀𝑆𝐷 = √𝐶𝑀𝑆𝐷 = √
1

𝑁
∑[(𝑝𝑖 − 𝑝̅) − (𝑟𝑖 − 𝑟̅)]2
𝑁

𝑖=1

 

( 9 ) 

Finally, the Mean Normalized Bias (MNB), which is expressed as a percentage, is 

calculated as the average of the normalized bias errors. This is given by Eq. 10: 

𝑀𝑁𝐵 =
1

𝑁
∑

(𝑝𝑖 − 𝑟𝑖)

𝑟𝑖

𝑁

𝑖=1

 

( 10 ) 

Table 1 summarizes the errors mentioned with their units, ranges, and their values in case 

of a perfect match. 

Table 2: Metrics for Evaluating Model Performance (Plevris et al., 2022) 

ID Metric Abbreviation Units Range Perfect 
match value 

1 Mean bias MB Units of x, p [-∞,+∞] 0 
2 Mean Absolute 

Error 

MAE Units of x, p [0, +∞] 0 

3 Mean Square Error MSE Units of x, p [0, +∞] 0 
4 Root Mean Square 

Error 

RMSE Units of x, p [0, +∞] 0 

5 Centered Root 
Mean Square 
Difference 

CRMSD Units of x, p [0, +∞] 0 

6 Mean Normalized 
Bias 

MNB Unitless [-1, +∞] 0 
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2.3.2 Accuracy, Precision and Recall 

When assessing the results of prediction models, researchers have commonly used 

accuracy, precision and recall as different metrics for assessing their results in different 

fields (Alakus & Turkoglu, 2020; Jishan et al., 2015; Mehdiyev et al., 2016; Zimmermann 

et al., 2009). 

According to Tatbul et al. (2018), precision and recall can be defined using Eq. 11 and Eq. 

12, respectively: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃) 

( 11 ) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑁) 

( 12 ) 

Where TP, FP, and FN represent true positives, false positives, and false negatives, 

respectively. Moreover, accuracy of prediction models can be displayed using Eq. 13 as 

illustrated by Ampomah et al. (2020): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) ÷ (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃) 

( 13 ) 

Where TN represents true negatives. 
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To clarify, precision is used to identify the percentage of true positives in the results 

compared to the sum of all the positives in the data. Recall, however, quantifies the 

proportion of true negatives that have been correctly identified. Both these metrics are 

considered complimentary and in some cases are integrated for a more comprehensive 

evaluation. One type of integrated metric of evaluation is the Fβ-Score, where the β 

represents the relative weight of recall versus precision. These metrics can be used to 

evaluate the abnormalities found in machine learning models (Tatbul et al., 2018). 

Moreover, accuracy, which is another metric for evaluating machine learning models, 

represents the percentage of correct predictions developed by the model when compared 

to the actual results (Ampomah et al., 2020). 

2.3.3 Advanced Metrics: F1-Score, AUC-ROC 

Over the years, more advanced means of evaluating machine learning models were 

developed and widely used in different industries. These metrics include the F1-Scoe and 

the area under receiver operating characteristics curve (AUC-ROC) (AlSaad et al., 2022; 

Ampomah et al., 2020; Kumar et al., 2021; Mancini et al., 2020). 

The AUC-ROC represents the ability of a model to differentiate between positive and 

negative outputs. Ideally, if the model can completely make this differentiation, it would 

yield an AUC-ROC value of 1. Otherwise, if the model cannot make this differentiation 

whatsoever, it would yield an AUC-ROC value of 0.5. The main benefit of using the AUC-

ROC is its capability of evaluating a model in terms of its ability to identify the rate of 
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both true and negative positives (AlSaad et al., 2022; Ampomah et al., 2020). 

Moreover, the F1-Score is one of the most used metrics of evaluation when dealing with 

categorical variables. It is considered the average of precision and recall, while 

considering false positive and false negative rates. As mentioned earlier, precision is 

measured as the percentage of true positives compared to the total positives. Ideally, the 

F1-Score would be 1, whereas the least favorable value of the F1-Score would be 0. By 

considering both recall and precision, the F1-Score includes the importance of both 

metrics in a single number (AlSaad et al., 2022; Ampomah et al., 2020). 

According to Ampomah et al. (2020) the F1-Score can be calculated using Eq. 14: 

𝑓1_𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

( 14 ) 

2.3.4 Relevance of Metrics in Pavement Context 

Machine learning models are used in many areas in the field of pavement management. 

Even though modeling pavement performance is one of those fields, others include 

modeling stiffness of different high-modulus asphalt concretes, pavement temperature 

prediction, crack severity classification, and pavement roughness (Baldo et al., 2022; 

Bashar & Torres-Machi, 2022; Liu et al., 2022; Milad et al., 2021). 

However, different metrics have been used in different studies. But the result is always 
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an evaluation of the machine learning model’s performance. For example, in their work, 

Torres-Machi (2022), used MAE, RMSE, and R2 to evaluate the performance of their 

model for estimating pavement roughness. Moreover, Liu et al. (2022) assessed their 

results using accuracy and F1-Score in modeling asphalt pavement crack severity. Milad 

et al. (2021) used deep learning to model pavement temperature. To evaluate their results, 

they used R2, MAE, MSE, and mean absolute percentage error. Additionally, Ali et al. 

(2022) used RMSE, R2, MAE to evaluate their model which was used to predict the 

pavement condition index of pavement sections using Fuzzy Logic. 

However, research was done on the evaluation metric R2 to determine the reliability of 

the metric. Accordingly, Anscombe’s quarter was developed as shown in Fig. 4. 

 

Figure 4: Anscombe’s Quartet (Dayal, 2015) 
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To illustrate, the four graphs shown in Figure 4 have equal R2, even though the predictive 

accuracy of each graph is completely different than the others. As a result, it is arguable 

that R2 can sometimes be a misleading evaluation metric (Bu &amp; Clemente, 2022; 

Dayal, 2015; Matejka &amp; Fitzmaurice, 2017). 

To summarize, even though there are several machine learning algorithms applied in 

different areas of pavement management, every machine learning model requires any 

means of model performance evaluation. Different studies in pavement management 

have shown the usage of different metrics like MAE, MSE, RMSE, R2, accuracy, and F1-

Score to evaluate model performance. These models include models for pavement 

performance, stiffness measurement, pavement temperature prediction, and 

classification of crack severity. When modeling pavement roughness and pavement 

conditions, the metrics which were commonly used to evaluate the machine learning 

models are MAE, MSE, RMSE, and R2. On the other hand, when it comes to evaluating 

other factors such as pavement crack severity, the F1-Score was used. That is due to its 

ability to handle categorical data. In order to evaluate the performance of any machine 

learning model, the choice of evaluation metric is a vital step. Moreover, the usage of 

these evaluation metrics in a crucial way of comparing the performance of different 

models and allowing the advancement in developing newer models. 

2.4 Factors that Affect Pavement Performance 

Traditionally, researchers have focused on very specific factors that affect pavement 
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performance. These factors include pavement material characteristics and the different 

impacts of traffic loads (Saad et al., 2005). However, it has been increasingly recognized 

that other factors, such as environmental conditions, soil properties, and age, have a 

significant impact on pavement conditions (Gupta et al., 2013; Stoner et al., 2019). 

Furthermore, Fortney et al. (2022) addressed the different factors that affect pavement 

quality for airport management systems. In their work, they highlighted that current 

airport pavement management systems do not account for localized conditions such as 

climate and traffic conditions when assessing pavement performance. To tackle this issue, 

they propose a bias-reduced statistical model which incorporates the mentioned localized 

conditions in order to model pavement deterioration in airports. After validating their 

model on various climate zones and airport traffic conditions, the authors noted that the 

effect of environmental conditions had a higher impact on airport pavement deterioration 

compared to traffic loads. Lastly, they recommend incorporating these local factors into 

current airport pavement management systems for more accurate and sustainable 

pavement management. 

Additionally, Saha et al. (2012) focused on the impact of climatic factors on the 

performance of flexible pavement in Canada, as assessed using the mechanistic-empirical 

pavement design guide. The study employs 206 Canadian climatic files for analysis, 

comparing specific metrics like the freezing index and frost depth against data from 

Canadian databases. One key finding is that various performance indicators, such as the 

total pavement rutting and IRI, are sensitive to climatic changes. In essence, the study 



39 

 

aids in the adaptation of the mechanistic-empirical pavement design guide within the 

Canadian context by highlighting the role of climate in pavement degradation. 

One of the factors studied that affect pavement performance is design factors. Zeiada et 

al. (2020) conducted a study on the effect of design factors on pavement performance in 

regions with warm climates. Their work involved the usage of ANNs and a forward 

sequential features selection algorithm. To develop their model, the variables considered 

were mainly focused on capturing the effect of environmental and structural conditions 

on the pavement sections. The environmental factors include initial IRI, relative 

humidity, average wind velocity, albedo, and average emissivity. Moreover, the 

structural factors were comprised of traffic volume and pavement structural capacity. 

Their results showed that the seven studied variables have a significant impact on 

pavement deterioration in warm regions. While comparing the results of the two models, 

the ANN model outperformed the forward sequential features selection model. The 

results were also compared to a regression model in terms of accuracy, and the ANN 

again outperformed. These results indicate that as opposed to what was considered 

previously in the literature, which was just the traffic and materiality of the pavement, 

environmental conditions have a significant impact on pavement performance. 

As has been demonstrated, when modeling pavement performance the main factors 

considered when developing computational models have shifted from simple materiality 

and traffic conditions to incorporating additional factors such as environmental 

conditions. Recent studies have shown that environmental conditions such as 
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precipitation, climate conditions, humidity, albedo, wind velocity, and emissivity have a 

significant impact of pavement deterioration (Gupta et al., 2013; Stoner et al., 2019; 

Fortney et al., 2022; Saha et al., 2012; Zeiada et al., 2020). As mentioned previously, 

machine learning algorithms have been able to capture the complex relationships 

between these environmental conditions and pavement performance. This would help in 

developing more robust and accurate prediction models. To conclude, these variables 

have been found to be essential in developing any machine learning model for modeling 

pavement performance, and their complex relationships should be further studied to 

further refine research in this area. 

2.5 Overview of Data Sources for Pavement Monitoring 

One of the main factors that influence the success and accuracy of machine learning 

models is the quality of the data provided to the model. As mentioned earlier, pavement 

conditions are influenced by both environmental factors and others related to materiality 

and traffic loads. One of the methods used for data collection is visual inspections and 

testing done on-site (Ragnoli et al., 2018). However, with the increased number of roads, 

this method would not be very efficient. With advanced technologies, other techniques 

like digital cameras, line scan cameras, laser imaging, and terrestrial laser scanners were 

used in detecting distresses in pavement (Ragnoli et al., 2018). This collected data would 

be later stored in different data sources in order to be utilized in improving Pavement 

Management Systems (PMS). This subsection discusses the different data sources used in 
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pavement management, while emphasizing the use of the LTPP given that it is the main 

data source for this research. 

According to Pierce et al. (2013), different transportation agencies around the world 

regularly collect and store data related to pavement networks in order to be used in 

pavement monitoring. Each of these agencies collect their own type of data, and at set 

internals which are also unique to each entity. 

The first entity is the British Colombia Ministry of Transportation and Infrastructure 

(MoTI). They collect data on surface distresses, rut depths, and IRI. The frequency of 

collecting data varies between 2 to 4 years depending on the location and use of the 

studied roads. Secondly is Colorado’s Department of Transportation (DOT), which 

collects data on cracking, rut depths, and IRI on an annual basis. This is followed by 

Idaho’s DOT and Indiana’s DOT which both separately collect data on surface distresses, 

rut depths, and IRI once a year. Next is Florida’s DOT and Kentucky Transportation 

which both collect data on surface distresses, faulting, rut depth, and IRI on an annual 

basis. Moreover, Iowa’s DOT collects data on cracking, rut depth, faulting, D-cracking, 

joints spalling, and IRI once every 2 years. Other highway agencies also collect data 

regarding pavement distresses. These agencies include Louisiana’s Department of 

Transportation and Development (DOTD), LTPP, Maryland State Highway 

Administration, Nebraska’s Department of Roads, New Mexico’s DOT, North Carolina’s 

DOT, Oklahoma’s DOT, Oregon’s DOT, Pennsylvania’s DOT, Viriginia’s DOT, and 

Washington’s DOT. 
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Table 2 illustrate the different entities in the United States of America that collect data 

regarding pavement distresses and includes the type of data collected along with the 

frequency of collecting this data. 

Table 3: Data Collection Agencies and Frequency of Data Collection (Pierce et al., 2013) 

Highway Agency Collected Data Frequency of Data 
Collection 

British Colombia 
MoTI 

Surface distress, rut depth, and IRI Once every 2 to 4 years 
depending on the type 
of road 

Colorado DOT Cracking, rut depth, and IRI Yearly 

Florida DOT Surface distress, faulting, rut depth, 
and IRI 

Yearly 

Idaho DOT Surface distress, rut depth, and IRI Yearly 

Indiana DOT Surface distress, rut depth, and IRI Yearly 

Iowa DOT Cracking, rut depth, faulting, D- 
cracking, joints spalling, and IRI 

Every 2 years 

Kentucky 
Transportation 
Cabinet 

Surface distress, faulting, rut depth, 
and IRI 

Yearly 

Louisiana DOTD Cracking, patching, faulting, rut 
depth, and IRI 

Yearly 

LTPP Surface distress, faulting, rut depth, 
and longitudinal profile 

Every 2 years 

Maryland State 
Highway 
Administration 

Cracking, rut depth, and IRI Yearly 

Nebraska 
Department of 
Roads 

Surface distress, faulting, rut depth, 
and IRI 

Yearly 

New Mexico DOT Surface distress and faulting Yearly 

North Carolina 
DOT 

Surface distress, faulting, rut depth, 
and IRI 

Yearly 

Oklahoma DOT Surface distress, faulting, rut depth, 
and IRI 

Once every 1 to 2 years 
depending on type of 
system 

Oregon DOT Surface distress, faulting, rut depth, 
and IRI Surface distress, faulting, rut depth, 
and IRI 

Yearly 

Pennsylvania DOT Surface distress, faulting, rut depth, 
and IRI 

Yearly 

Virginia DOT Surface distress, rut depth, and IRI Yearly 
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Washington DOT Surface distress, faulting, rut depth, 
and IRI 

Yearly 

 

However, in the area of pavement management and modeling pavement conditions, the 

LTPP database has been commonly utilized in the literate as a robust data source. The 

LTPP has been used in not only modeling pavement deterioration, but also in pavement 

design, detecting flushing of thin-sprayed seal pavements, and developing models for 

prioritizing PMS’s on a network level (Ekramnia & Nasimifar, 2022; García-Segura et al., 

2020; Hall et al., 2011; Kodippily et al., 2012; Mamlouk & Zapata, 2010; Radwan et al., 

2020). This is why the LTPP was the source of data used for this research. 

The LTPP database, which is run by the FHWA, contains data on over 2500 pavement 

sections across USA and Canada. Data includes location of sections, environmental 

conditions such as precipitation, temperature, humidity, and wind, pavement layer 

characteristics, including materials, thicknesses, and test results. It also includes historical 

data on maintenance and rehabilitation of different pavement sections. Moreover, the 

LTPP database includes traffic information such as average annual daily traffic, average 

annual daily truck traffic, traffic loading conditions, vehicle classifications and other.  

2.6 Comparative Analysis of Machine Learning Algorithms in 

Previous Studies 

As mentioned earlier, over the past years, machine learning algorithms have become an 
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instrumental tool in modeling pavement performance. These algorithms include ANNs, 

decision trees, KNNs, MLR, ANFIS, PFO, FA, and random forests. In this section, 

research done on modeling pavement performance will be analyzed. The models will be 

compared in terms of machine learning algorithm used, variables considered, pavement 

performance index produced, number of data points used for training the model, data 

source used, and the evaluation metrics used for each model. 

Elhadidy et al. (2021) utilized a regression model as a machine learning algorithm to 

study the relationship between the Pavement Condition Index (PCI) and IRI of different 

pavement sections. To do so, the variables considered for the study were the IRI, and 

distress related data like the area of fatigue cracking, edge cracking, block cracking, 

longitudinal cracking, transverse cracking, patching, potholes, shoving, bleeding, rutting, 

and reveling. A total of 12,744 data points was considered. The data source for this 

research was the LTPP database, and the evaluation metric used to evaluate the 

performance of the model was the R2. 

Hossain et al. (2019) worked on modeling IRI for flexible pavement using an ANN model. 

The variables considered for their research were annual average temperature, freezing 

index, maximum and minimum humidity, precipitation, average annual daily traffic 

(AADT), and average annual daily truck traffic (AADTT). These variables were chosen 

to capture the effect of both traffic and climate conditions. The ANN model was 

represented using a 7-9-9-1 model, as shown in Fig. 5, where the input layer for the ANN 

model consists of the 7 variables mentioned. This was followed by 2 hidden layers with 
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9 neurons each, giving the output layer which is the predicted IRI. To conduct their 

research, the data source was the LTPP, where they collected a total number of 200 data 

points. Finally, in order to evaluate their results, they used the RMSE as the main metric 

for evaluating the results of the model. 

 

Figure 5: 7-9-9-1 ANN Model (Hossain et al., 2019) 

Other researchers were focused on developing different machine learning models and 

conducting a comparative analysis to identify the better performing algorithm. Kaloop et 
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al. (2023) did this by developing four separate prediction models for modeling IRI. The 

algorithms used for this research were Gaussian Process Regression (GPR) model, 

Locally Weighted Polynomials (LWP), a PSO-ANFIS model, and a PSO-ANN model. To 

develop their models, the variables considered were the pavement age, initial IRI, 

alligator, longitudinal, and transverse cracks, standard deviation of rutting, and subgrade 

plasticity index. These variables were chosen to capture both structural and material 

characteristics that affect pavement sections and performance. The data source for their 

work was the LTPP where they collected data on 126 different flexible pavement sections, 

with a total of 925 data points. To evaluate and compare the results of the different 

machine learning models, they used the R2 as the main metric for evaluation. 

Furthermore, Ali et al. (2022) used the fuzzy logic algorithm to model PCI of several 

pavement sections. To do so, several variables were analyzed and used to develop the 

machine learning model. These variables included rutting, fatigue cracking, block 

cracking, longitudinal cracking, transverse cracking, potholes, patching, bleeding, and 

raveling. These variables were used to cover a range of factors that contribute to 

pavement distress. The main source of data for this work was the LTPP. Ali et al. prepared 

two separate datasets of 120 and 150 different sections making a total number of 270. To 

assess the output of the model, they used the R2 metric along with the RMSE and MAE. 

Another research done which incorporated the use of several machine learning 

algorithms to model pavement performance was done by Damirchilo et al. (2021). 

Damirchilo et al. (2021) developed three machine learning models to predict IRI. The 
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models were constructed using XGBoost, Support Vector Regression (SVR), and Random 

Forest. Out of the three algorithms, XGBoost was found to develop the most accurate 

results. Their research involved the use of age, days above 32o C, freezing index, freeze 

thaw, hydraulic conductivity, ESALs, pavement thickness, and precipitation as input 

variables for each of the three machine learning models. Data was collected from the 

LTPP database on 12,637 data points. Finally, the results were compared between the 

results of the different models using the MAE and R2. 

Furthermore, Sharma & Kumar (2022) also developed more than one machine learning 

model in order to compare the performance of different algorithms. In their work, they 

constructed three models: a Logistic Regression model, a Naive Bayes model, and a KNN 

model. Their results showed that the Logistic Regression model yielded the most accurate 

results in predicting PCI out of the three models. The variables considered were alligator 

cracking, bleeding, block cracking, edge cracking, longitudinal cracking, transverse 

cracking, patching, pothole, shoving and raveling. Data was collected from the LTPP 

database with a total of over 10,000 data points. To assess the results and compare the 

three models, the authors used accuracy, precision, recall, and F1-Score as the metrics for 

model assessment. 

Other research done in modeling pavement conditions is done by Hosseini et al. (2020), 

where their work was focused on modeling PCI of pavement sections. The researchers 

employed two modeling techniques. The first was a Long Short-Term Memory (LSTM) 

model, and the second model was a regression model. In their work, they considered the 
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following variables: rutting, transverse cracking, longitudinal cracking, alligator 

cracking, wheel-path cracking, patching, age, traffic levels, and IRI. The data was 

collected on asphalt concrete (AC), Portland cement concrete (PCC), and composite 

(COM) pavements with a total of 31,045, all collected from the LTPP database. In order 

to evaluate their results, and compare between the LSTM and regression model, Hosseini 

et al. (2020) used the R2 and mean error (ME) as evaluation metrics. 

To conclude, existing research done in modeling pavement performance is wide and 

varied. Research was done on using both machine learning and traditional approaches to 

model pavement performance. Different data sources have been used in the literature, 

but the most comprehensive and commonly used data source was found to be the LTPP. 

Different performance indicators are used to evaluate pavement performance, but the 

two most studied indicators are the IRI and PCI of pavement sections. Even though the 

number of data points used in previous research varies greatly, starting from hundreds 

to thousands of data points, the more data points used, the more robust and inclusive the 

model becomes. 

A wide array of machine learning algorithms has been applied in the literature, including 

regression models, ANN, GPR, LWP, PSO, PSO-ANFIS, PSO-ANN, Fuzzy Logic, 

XGBoost, SVR, Random Forests, Naive Bayes, KNN, and LSTM. Moreover, to evaluate 

these models, different evaluation metrics have been used, such as the R2, RMSE, MAE, 

ME, accuracy, precision, recall, and F1-Score. 
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Furthermore, some research is not only focused on developing one machine learning 

model, but also performing a comparative analysis between two or more machine 

learning models. These analyses were done by also incorporating statistical indicators to 

assess the results of the different models. 

Given the diversity and complexity of this research, table 3 was constructed to summarize 

the previous work done in this area. The table contains a summary of the machine 

learning model used, performance indicators modeled, variables considered, sources of 

data collection for the research and the total number of data points considered in the 

research. The purpose of this table is to serve as an overview of the significant and recent 

work done in the area of modeling pavement performance using machine learning 

algorithms. 

Table 4: Previous Pavement Performance Models 

Model Model 
Used 

Performan
ce Index 

Variables Data 
Source 

Number 
of data 
points 

Evaluatio
n Metrics 

Elhadidy 
et al. 
(2021) 

Regression 
Model 

PCI IRI, Cracks, 
patching, 
potholes, shoving, 
bleeding, rutting, 
reveling 

LTPP 12,744 R2 

Hossain et 
al. (2019) 

ANN IRI Temperature, 
freezing index, 
maximum and 
minimum 
humidity, 
precipitation, 
AADT, AADTT 

LTPP 200 RMSE 

Kaloop et 
al. (2023) 

GPR, LWP, 
PSO-
ANFIS, 
PSO-ANN 

IRI Age, initial IRI, 
alligator, 
longitudinal, and 
transverse cracks, 

LTPP 925 R2 
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standard 
deviation of 
rutting, subgrade 
plasticity index 

Ali et al. 
(2022) 

Fuzzy 
Logic 

PCI Rutting, cracks, 
potholes, 
patching, 
bleeding, raveling  

LTPP 270 R2, RMSE, 
MAE 

Damirchil
o et al. 
(2021) 

XGBoost, 
SVR, 
Random 
Forests 

IRI Age, days above 
32o C, freezing 
index, freeze 
thaw, hydraulic 
conductivity, 
ESALs, pavement 
thickness, 
precipitation 

LTPP 12,637 MAE, R2 

Sharma & 
Kumar 
(2022) 

Regression 
Model, 
Naive 
Bayes, 
KNN 

PCI Alligator 
cracking, 
bleeding, block 
cracking, edge 
cracking, 
longitudinal 
cracking, 
transverse 
cracking, 
patching, pothole, 
shoving raveling 

LTPP >10,000 Accuracy, 
precision, 
recall, F1-
Score 

Hosseini 
et al. 
(2020) 

LSTM, 
Regression 
Model 

PCI rutting, transverse 
cracking, 
longitudinal 
cracking, alligator 
cracking, wheel-
path cracking, 
patching, age, 
traffic levels, IRI 

LTPP 31,045 R2, ME 
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2.7 Summary and Gaps in Existing Literature 

2.7.1 Summary of Key Findings 

The previous sections showed a comprehensive review of the current research done in 

modeling pavement performance, with a specific emphasis on models that incorporate 

machine learning algorithms. That is because even though there are other approaches, 

such as deterministic and stochastic approaches, the literature showed that machine 

learning models tend to provide better results in terms of model accuracy and the ability 

to adapt with the variability of pavement. 

As a result, the application of machine learning in pavement condition modeling has 

evolved greatly. Machine learning algorithms commonly include XGBoost, random 

forests, regression models, naive bayes, ANN, among other algorithms. Machine learning 

models have shown promise compared to traditional and stochastic models previously 

developed. 

Moreover, when evaluating machine learning models, previous researchers have used a 

variety metrics such as RMSE, MAE, ME, MSE, R2, accuracy, precision, recall and other 

advanced metrics such as F1-Score and AUC-ROC to evaluate model performance. These 

metrics have shown that they can be a reliable tool to assess the performance of a single 

machine learning model or compare the results of different models in modeling 

pavement performance. 
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In terms of factors to be considered when developing pavement performance models, it 

was found that pavement age, environmental conditions, state of different cracks, 

maintenance history, the effect of traffic loading and material properties have a 

significant impact on pavement performance. For collecting data regarding these 

variables, the LTPP database is one of the most commonly used sources of data. 

2.7.2 Research Gaps 

After studying the literature, a few research gaps were found that require additional 

work around modeling pavement performance, especially when it comes to utilizing 

machine learning models in this area: 

• Comprehensive Variable Analysis: In most of the research done, only a 

specific set of variables are considered when modeling model performance. 

Researchers focus on specific types of variables like environmental conditions, 

traffic loading, or material properties separately. Minimal research is done that 

focuses on the combination of the preceding types of variables and analyzing 

the most significant ones. 

• Multi Objective Modeling: Previous models showed a main focus on 

modeling pavement performance indicators or the state of specific distresses 

like rutting or certain types of cracks. However, there was a lack of models that 

combined the modeling of performance indicators like IRI and PCI and the 
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state of distresses such as fatigue cracking and longitudinal cracking. 

• Machine Learning Algorithm Comparison: Even though there has been 

research done on comparing the results of different machine learning 

algorithms, most of the literature showed a focus on developing a single 

machine learning model for pavement performance. There is a relative scarcity 

on conducting a comparative analysis on different machine learning 

algorithms in modeling pavement performance. 

• Localized Context: The literature showed that environmental and geographic 

conditions have a significant impact on pavement deterioration. However, 

most studies utilize data from the LTPP database without any specific research 

done on the environmental conditions similar to those in Egypt. 
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Chapter 3 

Methodology 

3.1 Introduction to the Methodology 

This section of the research highlights the approach used to tackle the research gaps 

found in the literature. It is known that pavement conditions have a direct impact on user 

costs, road safety, and the economic well-being of society, with pavement deterioration 

negatively affecting these aspects. This, coupled with the fact that the IRI is a widely used 

indicator of pavement conditions and ride quality, makes it necessary to accurately model 

pavement IRI. 

Aside from IRI, a major aspect of pavement deterioration is the creating of cracks in 

pavement. Load-induced cracks, to be specific, are an area of concern. Even though 

modeling IRI can provide insight into the overall pavement condition of a given road, it 

might not fully provide an overview of the conditions of specific distresses in pavement 

which should be accounted for in planning for maintenance and rehabilitation. As 

mentioned in the literature, two of the most significant load-induced cracks in pavement 

are fatigue and longitudinal cracks. As a result, it is vital to model these distresses as well 

to help in developing maintenance and rehabilitation plans. 

To address these matters, this section provides the approach taken to employ several 
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machine learning techniques to model both pavement IRI and the mentioned distresses. 

This is due to machine learning’s capabilities in dealing with large datasets and capturing 

complex relationships between the different factors that affect pavement performance 

and lead to the formation of cracks in pavement sections. 

This has been done by developing six machine learning models, all with the same 

objective. By conducting a comparative analysis between the results of these models, the 

purpose is to identify the model that produces the most accurate results out of the six. 

The comparative analysis will be done by using statistical evaluation metrics which are 

commonly used in the literature. 

3.2 Data Collection 

One of the most important aspects of any machine learning model is the quality of the 

dataset used to train and develop the model. For this research, the LTPP was the main 

source of data due to it containing comprehensive data on several factors affecting 

pavement performance. The database, which is run by the FHWA, contains information 

on varying traffic and climate conditions, over more than 50 years, which makes it an 

essential tool for this study. 

3.2.1 The Long-Term Pavement Performance Database 

The LTPP database contains data about varying factors that have an impact on pavement 

performance. One of the major contents of the LTPP database is the different IRI 
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measurements over time. These different measurements provide an overview of the 

condition of different road sections over the years by providing the IRI at different points 

in time. Other important variables found in the database are related to environmental 

conditions, traffic loads, road section characteristics, and maintenance history. Figure 6 

shows a screenshot of the LTPP InfoPave homepage. 

 

Figure 6. LTPP InfoPave Homepage 

3.2.2 Selection Criteria 

For this research and in order to align with the conditions similar to those found in Egypt, 

there were two main selection criteria used: 
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 Climate Region 

The climate regions in the LTPP database are divided into four distinct categories:  

1) Dry, Freeze 

2) Dry, No-Freeze 

3) Wet, Freeze 

4) Wet, No-Freeze 

Since the main purpose was to choose regions where the climate conditions are similar to 

those found in Egypt, the climate region considered was the Dry, No-Freeze region. 

Accordingly, data was collected from the following states at times of the year with dry, 

no-freeze weather conditions: 

1) Arizona 

2) California 

3) Colorado 

4) Hawaii 

5) Idaho 

6) Nevada 
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7) New Mexico 

8) Oregon 

9) Texas 

10) Utah 

11) Washington 

 Pavement Type 

There are four different pavement surface types found in the LTPP database which 

include: 

1) Asphalt Concrete Pavement 

2) Continuously Reinforced Concrete Pavement 

3) Jointed Plain Concrete Pavement 

4) Jointed Reinforced Concrete Pavement 

Since deterioration is influenced by the pavement surface type, this study will focus on 

only one type of pavement which is the Asphalt Concrete Pavement. The resulting 

dataset comprised of 221 different pavement sections with a total of 8537 different 

datapoints resulting from measurements starting from the year 1989 till 2021. 
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3.2.3 Factors Considered 

As discussed in the literature, different factors affect pavement performance and 

influence different distresses in pavement. In order to have a comprehensive overview of 

the different factors that affect these two, twelve factors were considered. Table 5 

summarizes these factors by mentioning the unit of measurement and the factor’s source 

from the LTPP database. 

Table 5: Factors Considered for Model Development 

Factor Considered Unit of Measurement Source from the LTPP database 

Pavement Age Years PROJECT_HIST_AGE_EXP 

Time from last maintenance Years EXPERIMENT_SECTION 

Precipitation Mm MERRA_PRECIP_YEAR 

Average Monthly 
Temperature 

Degree Celsius MERRA_TEMP_YEAR 

Equivalent Single Axle 
Loads 

ESALs TRF_TREND 

Asphalt concrete layer 
thickness 

inches TST_L05B 

Average asphalt content % TST_AC04 

Bulk specific gravity N/A TST_AC02 

Granular base thickness inches TST_L05B 

Current IRI m/km MON_HSS_PROFILE_SECTION 

Percentage of fatigue 
cracking 

% MON_DIS_AC_CRACK_INDEX 

Percentage of longitudinal 
cracking 

% MON_DIS_AC_CRACK_INDEX 

In order to visually display the frequency of each variable across the 8537 datapoints, the 

following graphs were prepared as shown in Fig. 7. 
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Figure 7: Frequency of used Variables 

Moreover, table 6 shows statistical data regarding the dataset, highlighting the minimum, 

maximum, average, and standard deviation of each variable. 

Table 6: Dataset Statistics 

Factor Considered Min Max Average St. Dev. 

Pavement Age 1.4 57.9 23.9 12.0 

Time from last maintenance 0.0 32.9 7.2 6.1 

Precipitation 11.48 876.49 252.81 138.29 

Average Monthly Temperature 9.30 25.30 18.20 3.28 

Equivalent Single Axle Loads (1000) 0.00 3263.26 535.55 511.73 

Asphalt concrete layer thickness 2.00 86.70 28.39 17.73 

Average asphalt content 1.80 7.06 4.91 0.69 

Bulk specific gravity 1.56 2.52 2.31 0.09 
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Granular base thickness 0.00 120.00 21.90 26.23 

Current IRI 0.32 5.28 1.16 0.59 

Percentage of fatigue cracking 0.00 55.00 10.78 15.46 

Percentage of longitudinal cracking 0.00 34.00 6.54 9.46 

 

3.3 Selection of Machine Learning Algorithms and Model 

Development 

For this research, a set of machine learning algorithms were chosen to model both 

pavement IRI and percentages of fatigue and longitudinal cracks in pavement. This set 

included 4 solo machine learning models and 2 ensemble models. 

The 4 solo machine learning algorithms chosen we Ridge Regression, KNN, Decision Tree 

Regression, and Bayesian Regression. Moreover, the ensemble models developed were 

done using XGBoost and Random Forests. 

3.3.1 Model Development and Training 

Data was first normalized so that each variable has a range between -1 to 1. This was 

followed by splitting the data into into 80% for training and 20% for testing the model. 

Each model is cross validated by splitting the dataset into 10 subsets. Next, 2 of the 

subsets would be used for testing while the other 8 subsets would be used for training. 

The training and testing process is repeated using different combinations for training and 

testing sets. By doing so, a more comprehensive assessment is done on the predictive 
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capabilities of each model. Finally, the average performance is then calculated in order to 

assess each model’s performance. Moreover, a heatmap was developed to test for any 

collinearity within the variables used. In this process, the correlation between each of the 

variables used in the models is calculated. If two variables show to be codependent, or 

colinear, one would be removed from the model in order to produce more accurate 

results. 

3.3.2 Evaluation Metrics 

For evaluating the results of the models, two evaluation metrics have been used. The 

metrics are the MAE and R2. MAE is used to illustrate the average error of the model 

represented using the unit of each output variable. R2 is used to show the goodness of fit 

of each model. These metrics were chosen as most researchers choose either an error 

metric to evaluate the closeness of the forecasted values to the actual values, along with 

the R2 to represent and compare between the goodness of fit between different models.  
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Chapter 4 

Results and Discussion 

4.1 Model Performance and Results 

In order to study the correlation between different variables of each model, a heatmap 

was developed to indicate any possible collinearity, this can be shown in figure 8. 

 

Figure 8: Heatmap to Detect Collinearity 

As shown, it was found that the fatigue cracking % and longitudinal cracking % showed 
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high collinearity. As a result, the models were developed by including both variables 

when modeling IRI, then another iteration was done with removing one of the two 

variables. 

After running the 6 models the results were recorded as shown in figures 9, 10 and 11. 

Where figure 9 shows the results of the 6 IRI models after removing longitudinal cracking 

%. Either wheel path or fatigue cracking had to be removed from the input variables due 

to the collinearity between both variables. Longitudinal cracking was removed because 

during an initial run which incorporated both these variables, fatigue cracking showed 

to have a higher influence on the predicted IRI than longitudinal cracking. Figure 10 

shows the results of fatigue cracking % models. And lastly, figure 11 shows the results of 

the longitudinal cracking models. 
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Figure 9: Results of Modified IRI Model (After removing longitudinal cracking %) 
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Figure 10: Results of Fatigue Cracking Model 
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Figure 11: Results of Longitudinal Cracking Model 

The MSE for each of the 6 models can be visually displayed using boxplots for modeling 

each of the three output variables. Figure 12 shows the MSE boxplot for modeling IRI 

after removing the longitudinal cracking %. Since the fatigue cracking and longitudinal 

cracking are displayed in percentages, a box plot was made for the negative MAE for 
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each of the two outputs. Figures 13 & 14 show the MAE boxplots for modeling fatigue 

cracking and longitudinal cracking, respectively. 

 

Figure 12: IRI Models' Boxplots (LongitudinalCracking removed) 

 

Figure 13: Fatigue Cracking Models' Boxplots 
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Figure 14: Longitudinal Cracking Models' Boxplots 

Following the calculated MAE and R2 for each model, the results of the models were 

plotted against the actual values for each of the three output variables. Figures 15 and 16 

show the plots for the results of the IRI models, while figure 17 shows the results of the 

fatigue cracking models, and finally, figure 18 shows the results of the longitudinal 

cracking models. 
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Figure 15: Actual vs. Modeled IRI (All Variables) 



71 

 

 

Figure 16: Actual vs. Modeled IRI (Longitudinal Cracking removed) 
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Figure 17: Actual vs. Modeled Fatigue Cracking % 
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Figure 18: Actual vs. Modeled Longitudinal Cracking % 

Out of the 10 variables considered for each of the three output variables, each input 

variable showed to have a different influence on the results of each model. To analyze the 

contribution of each variable to the results of each model, the following graphs were 

plotted for the three machine learning models that showed the least MAE. In this case, 
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the graphs were plotted for the models which utilized the XGBoost, Random Forest, and 

decision tree algorithms. Figures 19 through 22 show the variable contribution for each 

model where the x-axis represents each of the variables used and the y-axis represent the 

variable contribution. The total sum of variable contribution for each model is equal to 1. 

 

Figure 19: Variable Contribution for IRI Models (All Variables) 
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Figure 20: Variable Contribution for IRI Models (Longitudinal Cracking removed) 
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Figure 21: Variable Contribution for Fatigue Cracking Models 
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Figure 22: Variable Contribution for Longitudinal Cracking Models 
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4.2 Analysis and Discussion on the Results 

The first step in the analysis process was to determine if any collinearity was present 

within the variables in the models. As was shown in the developed heatmap, longitudinal 

cracking and fatigue cracking showed high collinearity. As a result, when modeling IRI, 

the process was done first with considering all the variables and then with removing the 

longitudinal cracking %. The reason longitudinal cracking % was removed was because 

fatigue cracking % showed a higher influence on pavement IRI when both variables were 

considered in the model. 

As a result of removing the longitudinal cracking % from the IRI model, the developed 

models gave better results compared to the original model which included all 11 

variables. Moreover, it was shown that the ensemble models performed better than the 

models which utilized solo machines learning algorithms. To be more specific, the models 

which utilized XGBoost showed the least MAE and R2 when modeling IRI, fatigue 

cracking % and longitudinal cracking %. This illustrates the superior performance of 

XGBoost when compared to other machine learning algorithms. When modeling IRI, the 

Random Forest models were the second-best performing models followed by Decision 

Trees, Ridge Regression, Bayesian Regression, then KNN. In the IRI model, the XGBoost 

algorithm resulted in a MAE of 0.02 and R2 of 0.997 for training and a MAE of 0.17 and 

R2 of 0.729 for testing. 
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Moreover, in terms of variable contribution, the variables which showed the highest 

influence on IRI in the initial XGBoost model were fatigue cracking %, followed by 

longitudinal cracking % then granular base layer thickness. However, in the Random 

Forest and Decision Tree IRI models, the highest contributing variables were found to be 

fatigue cracking %, then AC layer thickness, followed by pavement age. 

After removing the longitudinal cracking %, the top three contributing variables for the 

XGBoost IRI model were found to be the fatigue cracking %, followed by the granular 

base layer thickness, then the AC layer thickness. However, for the Random Forest and 

Decision Tree models, the highest contributing variables stayed the same. 

As for the fatigue cracking % models and longitudinal cracking % models, the results 

were almost the same for both output variables. This can be explained by the collinearity 

found in the initial developed heatmap. Accordingly, it was found that for both output 

variables, the XGBoost developed the least MAE of 0.58% and R2 of 0.997 for the testing 

set, and a MAE of 4.92% and R2 of 0.672 for the testing set for fatigue cracking %. 

Moreover, for the wheel path model, the XGBoost algorithm produced a MAE of 0.33% 

and R2 of 0.997 for the training set and MAE of 2.96% and R2 of 0.682 for the testing set. 

This was followed by the Decision Tree models, then the Random Forest models, then 

KNN, Ridge Regression, then Bayesian Regression. 

As for variable contribution, both fatigue cracking % and wheel cracking % were 

observed to be influenced by the same variables. For the XGBoost models, the top three 
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contributing variables were granular base thickness, IRI and bulk specific gravity. As for 

both the Random Forest and Decision Tree models, the top three contributing variables 

were found to be IRI, AC layer thickness, and bulk specific gravity. 

It is worth noting that the main evaluation metric considered in all the models was the 

MAE. This is due to the studies done (Bu &amp; Clemente, 2022; Dayal, 2015; Matejka 

&amp; Fitzmaurice, 2017) which indicate that R2 can be a misleading evaluation metric. 

However, by analyzing the results of the fatigue cracking and longitudinal cracking 

models, it can be deduced that the results could be improved. This can be done by 

investigating other variables that directly influence these distresses. As a result, it can be 

concluded that the variables that affect IRI do not in all cases have a direct effect on either 

fatigue cracking or longitudinal cracking. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

To conclude, this research introduces a framework for modeling pavement IRI along 

with fatigue cracking % and longitudinal cracking %. To do so, twelve different 

variables were studied and considered during model development. Data was 

collected from the LTPP database for areas with environmental conditions similar to 

those found in Egypt. The study was conducted on AC pavement sections. Each of the 

three models was developed using six different machine learning algorithms. The 

machine learning algorithms were divided into ensemble algorithms and solo 

algorithms. The ensemble algorithms used were XGBoost and Random Forest, while 

the solo models used were decision trees, Bayesian Regression, KNN, and ridge 

Regression. A test of collinearity was done between the different variables of each 

model and the results were compared using MAE and R2. 

The results showed that the XGBoost models yielded superior results when compared 

to the other five algorithms for the three output variables with a MAE of 0.17 and an 

R2 of 0.729 for modeling IRI, MAE of 4.92% and R2 of 0.672 for modeling fatigue 

cracking, and a MAE of 2.96% and R2 of 0.682 for modeling longitudinal cracking. This 
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was followed by the Random Forest models which produced results with a MAE of 

0.27 and R2 of 0.712 for modeling IRI, MAE of 5.18% and R2 of 0.668 for modeling 

fatigue cracking, and MAE of 3.12% and R2 of 0.673 for modeling longitudinal 

cracking. This indicated the superior performance of ensemble models when 

compared to solo models for modeling pavement performance. 
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5.2 Suggestions for Future Work 

This work provides a framework for modeling pavement performance through modeling 

IRI, fatigue cracking and longitudinal cracking. The main focus was on regions with 

environmental conditions similar to those in Egypt, with dry and non-freezing 

conditions. Similar work could be done by exploring other regions with different 

environmental conditions. 

Exploring further variables could allow for better results along with testing other 

ensemble machine learning algorithms in order to potentially develop more accurate and 

robust models. This can include other types of distresses other than pavement cracks 

Further investigation can be done by collecting actual data from different pavement 

sections around Egypt and use it to test the developed models and measure the accuracy 

of the results. 

Lastly, the developed models could be integrated with maintenance and rehabilitation 

strategies for better planning and allocation of relevant funds and maintenance 

resources in pavement networks in Egypt.  
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