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Abstract

The Taub-NUT spacetime remains to hold many mysteries more than half a centur/y
after its discovery. The metric’s controversy owes largely to the nut charge and the
existence of Misner strings. Traditionally the metric is treated in the euclidean signature,
this treatment hides the Misner strings. We treat the Taub-NUT spacetime with the
Misner strings visible, not enforcing the time periodicity condition. We examine the
phase structure belonging to three different horizon geometries. We deal with the
hyperbolic, flat and spherical cases. We consider the stable phases, the phase transitions
that exist between them, and find the preferable phases in all three spacetimes.
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Chapter 1

General Relativity - an Introduction

During this chapter we will be introducing general relativity quite briefly, with a fo-
cus on the Einstein field equations. In the present and following chapter we will largely
follow a mixture between the approaches presented in [1–3]. For readers interested in
more detailed discussions, they should prove to be valuable resources.

1.1 Minkowski Spacetime
We will first discuss, briefly, the Minkowski spacetime before moving on to the

Einstein field equations.

The shift from Newtonian mechanics to special relativity is a tale of trading in-
variances. Whereas Newtonian mechanics is invariant under Galilean transformations,
special relativity is invariant under Lorentz transformations. We will quickly examine
the difference in boosts within both.

Galilean invariance is inherently intuitive. Let there be relative linear motion be-
tween two objects. There exists a coordinate system in which said motion is purely in
the 𝑥 direction. Then we would have 𝑦 “ 𝑦

1 and 𝑧 “ 𝑧
1 .

One would think that with time up on a pedestal, there would be no entertaining of a
relationship between 𝑡 and 𝑡 1 ; time is absolute. However, 𝑡 “ 𝑡

1 if an only if both frames
have coinciding origins at 𝑡 “ 𝑡

1

“ 0 This is only a shift, though and does nothing to
affect the absoluteness of time. This would result in the following transformation laws

1



where 𝑢 is the relative velocity between both frames and 𝑠 is a constant.

𝑥
1

“ 𝑥 ´ 𝑢𝑡

𝑡
1

“ 𝑡 ` 𝑠
(1.1)

As stated above, the transformations would be quite different for special relativity.
The relationship in the two coordinates orthogonal to the direction of motion would be
the same, but the 𝑥 and 𝑡 coordinates would transform differently.

𝑥
1

“ 𝛾p𝑥 ´ 𝛽𝑐𝑡q

𝑐𝑡
1

“ 𝛾p𝑐𝑡 ´ 𝛽𝑥q
(1.2)

where

𝛽 “
𝑣

𝑐
, 𝛾 “

1
a

1 ´ 𝛽2 (1.3)

Let us first consider what the Minkowski metric represents. Speaking loosely, when
we discuss a metric space is a space on which a distance function can be assigned
between any two points. A differentiable manifold is a metric space that is everywhere
differentiable and continuous. Now, lets us consider the Minkowski metric

𝑑𝑠2
“ ´p𝑐𝑑𝑡q2

` 𝑑𝑥2
` 𝑑𝑦2

` 𝑑𝑧2 (1.4)

Under the assumption that the speed of light is invariant across inertial reference
frames, it is straightforward to prove that distance on the Minkowski metric is invari-
ant under Lorentz boosts. We will see later how other physical metrics revert to the
Minkowski metric in the limit of weak gravitational fields.

1.2 Einstein Field Equations
We consider energy momentum tensor of a perfect fluid in Minkowski spacetime.

Let the 4-velocity of the fluid be 𝑈𝜇, 𝜌 be the rest-frame density, and 𝑝 the associated
pressure. We can then write the tensorial equation for the energy-momentum tensor as

𝑇𝜇𝜈 “ p𝜌 ` 𝑝q𝑈𝜇𝑈𝜈 ` 𝑝𝜂𝜇𝜈 (1.5)

For a perfect fluid in an co-moving reference frame, the off diagonal elements of the
energy-momentum tensor 𝑇 𝜇𝜈 would be zero.[1] Since this equation is written in tenso-
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rial form, it should hold regardless of the metric in question. One way to produce general
relativity is to replace 𝜂𝜇𝜈 with 𝑔𝜇𝜈. This holds due to the minimal-coupling principle.[2]

We expect the energy-momentum of a perfect fluid to be a conserved quantity. In
flat coordinates, this means that the divergence vanishes. To write it in a covariant form,
we change the partial derivative into a covariant one.

B
𝜇𝑇𝜇𝜈 “ 0 ÝÑ ∇𝜇𝑇𝜇𝜈 “ 0 (1.6)

Having discussed a form for the energy-momentum tensor, we will opt for a La-
grangian derivation of the field equations. The action for a field takes the following
form

𝑆 “

ż

𝑑𝑛𝑥LpΦ𝑖,∇𝜇Φ𝑖
q (1.7)

Since we are operating in (possibly) curved space, the Lagrangian becomes a function
of the fields and their covariant derivatives. It’s also important to note that both 𝑑𝑛𝑥 and
L are both densities. While ´𝑔 is the determinant of the metric tesnor. This needs to
happen if we want their product to be a tensor. To write the Lagrangian density as a true
scalar we use the following

L “
?

´𝑔L̂ (1.8)

In the above equation, L̂ is truly a scalar. This allows us to express the action in terms
of a scalar field by writing

𝑆 “

ż

𝑑𝑛𝑥
?

´𝑔L̂pΦ𝑖,∇𝜇Φ𝑖
q (1.9)

We will consider the Einstein-Hilbert(𝐸𝐻) action. This action simply makes use of
the only independent scalar that can be constructed from the metric where no derivatives
of the metric that are higher than second order are involved. The 𝐸𝐻 action is then

𝑆𝐸𝐻 “

ż

𝑑𝑛𝑥
?

´𝑔 𝑅 (1.10)

We will now consider how this action varies under small variations of the metric
tensor. It is useful to write the Ricci scalar as a contraction of the Ricci tensor and the
inverse metric. The following relation between their variations becomes very useful.

3



𝑔𝜇𝜈𝑔𝜇𝜈 “ 𝛿
𝜇
𝜈

𝛿𝑔𝜇𝜈 “ ´𝑔𝜇𝜌𝑔𝜈𝜎𝛿𝑔
𝜌𝜎

(1.11)

This shows us the a stationary point with respect to the metric will also be a stationary
point with respect to its inverse. We can now make use of the inverse metric in calculating
the action variation, which is mathematically less involved. Then action variation the
becomes

𝛿𝑆𝐸𝐻 “

ż

𝑑𝑛𝑥𝛿p
?

´𝑔 𝑔𝜇𝜈𝑅𝜇𝜈 q

“ 𝛿𝑆1 ` 𝛿𝑆2 ` 𝛿𝑆3

(1.12)

Where
𝛿𝑆1 “

ż

𝑑𝑛𝑥𝛿
?

´𝑔𝑔𝜇𝜈𝑅𝜇𝜈

𝛿𝑆2 “

ż

𝑑𝑛𝑥
?

´𝑔𝛿𝑔𝜇𝜈𝑅𝜇𝜈

𝛿𝑆3 “

ż

𝑑𝑛𝑥
?

´𝑔𝑔𝜇𝜈𝛿𝑅𝜇𝜈

(1.13)

The last part of the action will partially vanish on the assumption that the variation
in the metric vanishes at infinity. However, the variation in the first derivative will not
be zero, this will be more useful later but is ignorable for now. Thus we only consider
𝛿𝑆1 and 𝛿𝑆2 to make up the total of our variation.

𝛿𝑆𝐸𝐻 “

ż

𝑑𝑛𝑥
?

´𝑔p𝑅𝜇𝜈 ´
1
2
𝑅𝑔𝜇𝜈 q𝛿𝑔𝜇𝜈 q (1.14)

Thus, the condition that the variation in the action vanishes for small variations in 𝛿𝑔𝜇𝜈

is

𝑅𝜇𝜈 ´
1
2
𝑅𝑔𝜇𝜈 “ 0 (1.15)

This is none other than the Einstein equation in Vacuum.

We will now discuss what adding matter will do to the action and how we can,
through that, define a stress-energy tensor. Taking 𝑆𝑚 to be the action term contributed
by matter we get

𝑆 “
1

16𝜋
𝑆𝐸𝐻 ` 𝑆𝑚 (1.16)

4



If we follow the same methodology, we would reach

1
16𝜋

´

𝑅𝜇𝜈 ´
1
2
𝑅𝑔𝜇𝜈

¯

“ 𝑇𝜇𝜈 (1.17)

We can then define the energy momentum tensor to be

𝑇𝜇𝜈 “
´2

?
´𝑔

𝛿𝑆𝑚

𝛿𝑔𝜇𝜈
(1.18)

As emphasised in [2], this results in a symmetric (0,2) tensor with the dimensions of
density that satisfies

∇𝜇𝑇𝜇𝜈 “ 0 (1.19)

Stressing that vacuum solutions are different from Minkowski spacetime is very impor-
tant.

One important topic to mention is that of geodesics. We will focus on timelike
geodesics. Timelike geodesics are the paths that a test particle undergoing no acceleration
would follow. An affinely parameterised geodesic takes the following form

𝑑2𝑥𝛼

𝑑𝜆2 ` Γ𝛼𝜇𝜈
𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
“ 0 (1.20)

Geodesics make us see how the path for an object differs under the effect of gravity.
If we were to be interested in the shape of orbits around the sun, we would be solving
the field equations in vacuum. We would then take the resulting metric and examine
geodesics that would correspond to orbits. The same is true for a solution of a spacetime
outside a black hole.

5



Chapter 2

Black Hole Solutions

2.1 Stationary Solutions
Let us consider a solution to the field equations which would describe a spacetime

where the observer would be sure that the gravitational or electromagnetic, fields will
not be varying with time; this solution is stationary.

In more technical terms, a spacetime is stationary if it admits a timelike Killing
vector 𝜉𝛼 “ B𝑡 . A Killing vector obeys the following equation, where the brackets imply
summation over the permutations

∇p𝜇𝜉𝜈q “ 0 (2.1)

A timelike killing vector obeys
𝑔𝜇𝜈𝜉

𝜇𝜉𝜈 ă 0 (2.2)

A spacelike Killing vector 𝜒𝜇 obeys

𝑔𝜇𝜈𝜒
𝜇𝜒𝜈 ą 0 (2.3)

A Killing vector represents a certain symmetry in the metric. For example, the
timelike killing vector represents a symmetry under time translation. We later use the
presence of Killing vectors to calculate conserved quantities. All the spacetimes we
will consider during this thesis will be stationary ones. For a timelike Killing vector the
conserved quantity is energy, while for a spacelike Killing vector the conserved quantity
is a momentum.
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2.2 Schwarzschild Solution
In order to derive the Schwarzschild metric we will start from assuming the existence

of a spherically symmetric solution. Let us consider the implications of solutions with
a spherical symmetry. The angular components of the metric must be equivalent to the
surface of 𝑆2. This would imply

𝑔𝜙𝜙 “ 𝑠𝑖𝑛2
p𝜃q𝑔𝜃𝜃 (2.4)

For a spherically symmetric metric, we can multiply the angular components of the
metric or any other component with an arbitrary function in 𝑟 without affecting the
spherical symmetry of the solution. The metric tensor would then take the form

»

—

—

—

–

´𝐴p𝑟q 0 0 0
0 𝐵p𝑟q 0 0
0 0 𝐶p𝑟q 0
0 0 0 𝐶p𝑟q𝑠𝑖𝑛2p𝜃q

fi

ffi

ffi

ffi

fl

(2.5)

We can now define a new radial coordinate such that

𝑟2
“ 𝐶p𝑟q (2.6)

For the functions 𝐴p𝑟q and 𝐵p𝑟q it is easy to relabel them in terms of 𝑟 so that they
become 𝐴p𝑟q, and 𝐵p𝑟q. This ensures that our metric components are all functions in
the new coordinate 𝑟. Having done this, we can now drop the bar and simply write 𝑟
since it is only a label as of now.

We now bring out the field equations. We are interested in the region outside the
spherically symmetric mass distribution. This would correspond to the vanishing of the
Ricci tensor.

𝑅𝜇𝜈 “ 0 (2.7)

This gives us a set of differential equations to solve. The solution to these differential
equations gives us 𝐵 and 𝐴.

𝐵 “

´

1 ´
𝐷

𝑟

¯´1

𝐴 “ 𝑐

´

1 ´
𝐷

𝑟

¯

(2.8)
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Under a re-scaling of the time coordinate 𝑡 ùñ 𝑡𝑐´1 we get the following metric where
𝐷 is a constant of integration.

»

—

—

—

–

´p1 ´ 𝐷
𝑟

q 0 0 0
0 p1 ´ 𝐷

𝑟
q´1 0 0

0 0 𝑟2 0
0 0 0 𝑟2𝑠𝑖𝑛2p𝜃q

fi

ffi

ffi

ffi

fl

(2.9)

To find 𝑑 we will need to examine the classical limit. By taking the classical limit
we mean that all velocities are negligible with respect to the speed of light, while the
gravitational field is both static and weak. We will do so by examining a geodesic in the
classical limit. The metric would be a slight perturbation to the Minkowski metric such
that

𝑔𝜇𝜈 “ 𝜂𝜇𝜈 ` ℎ𝜇𝜈 (2.10)

Let us consider an affinely parameterised geodesic

𝑑2𝑥𝛼

𝑑𝜆2 ` Γ𝛼𝜇𝜈
𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
“ 0 (2.11)

At low velocities we can see that the change along the geodesic of the spacial components
is relatively negligible

𝑑𝑥0

𝑑𝜆
"
𝑑𝑥𝑖

𝑑𝜆
(2.12)

We also write out the Christoffel’s symbol to highlight the simplification that occurs for
stationary spacetimes.

Γ𝛼00 “
1
2
𝑔𝛼𝜇pB0𝑔𝜇0 ` B0𝑔0𝜇 ´ B𝜇𝑔00q

“ ´
1
2
𝑔𝛼𝜇B𝜇𝑔00

“ ´
1
2
𝜂𝛼𝜇B𝜇ℎ00

(2.13)

We can then take note of the fact that the perturbation must be time independent, too.

B0ℎ00 “ 0 (2.14)

The geodesic equation for 𝛼 “ 0 then becomes:
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𝑑2𝑥0

𝑑𝜆2 “ 0 (2.15)

Let’s examine the case where 𝛼 “ 𝑖 is one of the spacelike coordinates.

𝑑2𝑥𝑖

𝑑𝜆2 “
1
2

B𝑖ℎ00

´

𝑑𝑥0

𝑑𝜆

¯2
(2.16)

𝑑2𝑥𝑖

𝑑𝑡2
“

1
2

B𝑖ℎ00 (2.17)

Let us recall the acceleration due to a Newtonian gravitational field where Φ is the
gravitational potential

𝑎 “ ´∇Φ

Φ “ ´
𝑚

𝑟

(2.18)

Comparing both equations we arrive at

ℎ00 “ ´2Φ
𝑔00 “ ´p1 ` 2Φq

“ ´

´

1 ´
2𝑚
𝑟

¯

(2.19)

Comparing this with our metric timelike components it is straightforward to see that

𝐷 “ ´2𝑚 (2.20)

We assumed several things during our derivation of the Schwarzschild spacetime.
Namely, we assumed that it is both isotropic and static. What would have happened
had we only assumed isotropy? What would a time-dependent spherically symmetric
solution look like? Birkhoff’s theorem[4] states that the Schwarzschild solution is the
only spherically symmetric vacuum solution and that there can be no time dependent
spherically symmetric vacuum solution.

For the case of the Schwarzschild metric, the event horizon is straight forward and
only one exists. Let us examine what happens as

𝑟 “ 2𝑚 (2.21)

The 𝑔𝑟𝑟 in the metric becomes divergent and the timelike component vanishes com-
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pletely. As it decreases beyond that point, the radial and time coordinates exchange signs.
The radial coordinate becomes timelike while the time coordinate becomes spacelike.

What is important to note is that there is a Killing horizon along the event horizon.
This is the case for the Schwarzchild metric. The Killing horizon occurs when 𝑔𝑡𝑡 “ 0.
The event horizon is situated at 𝑔𝑟𝑟 “ 0, and corresponds to an infinite red shift. Let us
first define what a Killing horizon is.

A Killing horizon is where a Killing vector field is null along some null hypersurface.
In the Schwarzschild case we can see

𝜉𝛼

���
𝑟“2𝑚

“ 0 (2.22)

One thing we have not discussed is the presence of curvature singularities. The
singularity in the metric is a coordinate one, and can be fixed by an appropriate coordinate
transformation. Some singularities, however, cannot be avoided. To find this, we rely
on curvature invariants. For example, the contraction of the Riemann tensor with itself
is one of them and gives.

𝑅𝜇𝜈𝛼𝛽𝑅
𝜇𝜈𝛼𝛽

“
48𝑚2

𝑟6 (2.23)

As we can see above, it diverges as 𝑟 approaches zero. Unlike the singularity in the
metric, this is a physical one, and cannot be avoided through a coordinate transformation.

2.3 Reissner-Nordström Solution
The Reissner-Nordström Solution is a static, charged exact solution to the Einstein

field equations. This solution differs from the Schwarzschild one because it is not
electrically neutral. Thus, we would need to consider the effect on the metric and on
the equations of motion. Whereas the energy-momentum tensor was null outside the
horizon in the Schwarzschild case, it will not be for the sner-Nordström one. This is
because of the presence of electromagnetic sources. When we have sources the solution
is not a vacuum one.

We will be using a heuristic argument that will extend the techniques used in solving
for the Schwarzschild spacetime. One important thing to note is that while we considered
Newtonian gravity to be the limiting case before, we will now consider the Schwarzschild
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metric to be the limiting case of our solution. When the charges die out, we recover the
Schwarzschild spacetime.

We will be considering the electromagnetic field strength tensor 𝐹𝜇𝜈 in our solution.
The tensor represents the electric and magnetic fields in the 3 spatial dimensions. The
tensor is antisymmetric, meaning

𝐹𝜇𝜈 “ ´𝐹𝜈𝜇 (2.24)

The only components that will survive are the ones associated with the radial mag-
netic and electric fields. This means that all the terms are identically zero except for
4 terms. Since the tensor is antisymmetric, this would leave us with two independent
components. The ones associated with the radial electric and magnetic field are

𝐹𝑡𝑟 “ 𝐸𝑟

𝐹𝜃𝜙 “ ´𝐵𝑟 𝑠𝑖𝑛p𝜃q
(2.25)

The 𝑠𝑖𝑛p𝜃q in the expression above has to do with the radial component of a the magnetic
field for spherical symmetry. It goes as 𝑠𝑖𝑛p𝜃q´1

Through solving the equations and taking the classical limits. We would expect the
fields to be as they are in flat spacetime. Building on this, we find

𝐸𝑟 “
𝑞

𝑟2

𝐵𝑟 “
𝑝

𝑟2

(2.26)

Where 𝑞 is the electric charge of the black hole and 𝑝 its magnetic charge.

We examine the energy-momentum tensor and see how it is affected by the field
strength tensor. As opposed to the Schwarzschild case, the energy momentum tensor
will not vanish everywhere. The energy-momentum tensor is

𝑇𝜇𝜈 “ 𝐹𝜇𝜌𝐹
𝜌
𝜈 ´

1
4
𝑔𝜇𝜈𝐹𝜌𝜎𝐹

𝜌𝜎 (2.27)

We solve for an extra terms, while maintaining the assumptions made about the
components of 𝐹𝜇𝜈 the solution to the metric becomes straightforward.

The line element for the sner-Nordström spacetime is
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𝑑𝑠2
“ ´ 𝑓 p𝑟q𝑑𝑡2 ` 𝑓 p𝑟q´1𝑑𝑟2

` 𝑟2
p𝑑𝜃2

` 𝑠𝑖𝑛2
p𝜃q𝑑𝜙2

q (2.28)

Where

𝑓 p𝑟q “ 1 ´
2𝑚
𝑟

`
𝑞2 ` 𝑝2

𝑟2 “
𝑟2 ´ 2𝑚𝑟 ` 𝑞2 ` 𝑝2

𝑟2 (2.29)

The event horizon occurs at
𝑔𝑟𝑟 “ 𝑓 p𝑟q “ 0 (2.30)

There is no longer an event horizon at 𝑟 “ 2𝑚 as was the case in the Schwarzschild
solution. The electromagnetic charges have shifted the event horizon. Looking at the
rightmost part of the above equality, we will see that there are two distinct horizons.
This is because of the 𝑟2 dependence in the numerator that coincided with the addition
of the electromagnetic terms to the metric. The horizons are situated at

𝑟˘ “ 𝑚 ˘

b

𝑚2 ´ p𝑞2 ` 𝑝2q (2.31)

As we will do later, it is always important to note that we should return to the limiting
case whenever our additional variables are set to zero. The equation above shows that
we only get one physical radius at 𝑟 “ 2𝑚.

Examining the event horizon radius, we would get three distinct possibilities depend-
ing on the relative values of 𝑚, 𝑞, and 𝑝. The square root will either exist, be zero, or be
imaginary. We will consider each case on its own. As was the case in the Schwarzschild
solution, there is a singularity that exists at 𝑟 “ 0 We can see that by a calculation of
𝑅𝜇𝜈𝛼𝛽𝑅

𝜇𝜈𝛼𝛽 as we did before. Before, our singularity was well behaved, hidden behind
the event horizon. Not all singularities afford us that courtesy.

The first case

𝑚2
ă 𝑞2

` 𝑝2 (2.32)

In this case, the radii will both be imaginary. This means that there will be no event
horizon at all. For all points in this spacetime, 𝑔𝑡𝑡 ‰ 0, which means that the time
coordinate always remains timelike, while the radial coordinate is always spacelike. The
singularity that exists at 𝑟 “ 0 then becomes a ”naked” singularity. Which means that
we do not have a horizon to hide the singularity behind.
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Penrose, in introducing the weak cosmic censorship hypothesis[5] rejected the ex-
istence of naked singularities. The hypothesis reasons that with a naked singularity,
causality may be broken. This takes away the predictivity of physics.

Due to the above reasons, there is hardly any interest in this solution, since it is
unphysical.

The second case

𝑚2
“ 𝑞2

` 𝑝2 (2.33)

In this case there is an event horizon, namely at 𝑟 “ 𝑚. It is called the extreme sner-
Nordström solution. Needless to say, the solution is highly unstable under perturbations,
any increase in mass or charge will change it into one of the other two cases.

Our primary case of interest, and the more physical case is the next one. It is a
solution where the horizon is stable under perturbations and where no naked singularity
exists.

The third case

𝑚2
ą 𝑞2

` 𝑝2 (2.34)

Here, there are two event horizons, 𝑟` and 𝑟´. However, the only event horizon that
can be ”seen” by an observer at infinity is the larger one. As with the Schwarzschild
case, the time coordinate becomes spacelike beyond the outer horizon while the radial
coordinate becomes timelike. Contrastingly, they switch back again after crossing the
second horizon.

The radius of interest to us will be the larger of the two. The sner-Nordström solution
is not the only case where there is more than one horizon for a the black hole. Sometimes
the equation is solvable in terms of 𝑟. Herein, whenever there is more than one radius,
we will refer to the largest one 𝑟` as the horizon radius 𝑟ℎ. In more complicated cases
there is no analytic solution for 𝑟 at all, and we will have to find some other way to
parameterise.
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2.4 GR with a Cosmological Constant Λ
A constant value multiplied by the metric, is the most trivial possible addition to

the Einstein field equations. This constant Λ is commonly known as the cosmological
constant. Einstein had once called it his life’s greatest blunder. This was due to his belief
in Mach’s principle that dictated that the universe must be static.[6] We show the field
equations with Λ included below

𝑅𝜇𝜈 ` 𝑔𝜇𝜈

´

Λ ´
1
2
𝑅

¯

“ 𝑇𝜇𝜈 (2.35)

It is only in the 90s, that there was a vast reignited interest in it. This came as a result
of observations that showed that the expansion of the universe is accelerating. This
accelerated expansion could be explained through a positive cosmological constant. A
spacetime with a positive constant is call a de Sitter spacetime, 𝑑𝑆 for short.

Another development in the 90s that brought great attention to the cosmological
constant [7] was the AdS-CFT correspondence. AdS is short for Anti de Sitter, it is
used to refer to spacetimes where the cosmological constant is negative. CFT stands
for conformal field theories, they are a class of quantum field theories that are invariant
under conformal transformations. Loosely, this means that the theory is invariant under
a change in scale.
The technicalities of the correspondence are beyond our scope in this thesis. However,
we will note the cause for the interest in it. The secret lies in the correspondence between
two very different field theories. To be more specific, the correspondence is an equiva-
lence between the boundary of 𝑑 ` 1-dimensional AdS spacetimes and conformal field
theories of dimension 𝑑. It is regarded by many as one of our best chances at uncovering
a theory of quantum gravity.

The sign of the scalar Λ represents whether the spacetime is positively or negatively
curved. It’s important to note that the cosmological constant is directly related to the
dimension of the spacetime itself. The 𝑙2 below is called the AdS radius. This is given
by the relation

Λ “ ´
p𝑑 ´ 2qp𝑑 ´ 1q

2𝑙2
(2.36)

A pure AdS spacetime will have a metric that takes the following form

𝑑𝑠2
“ ´ 𝑓 p𝑟q𝑑𝑡2 `

1
𝑓 p𝑟q

𝑑𝑟2
` 𝑟2

´

𝑑𝜃2
` 𝑠𝑖𝑛p𝜃q

2𝑑𝜙2
¯

(2.37)
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Where
𝑓 p𝑟q “ 1 `

𝑟2

𝑙2
(2.38)

We will go into more detail as to the effects of the cosmological constant when we
consider the Taub-NUT-AdS metric itself.

15



Chapter 3

Black Hole Thermodynamics

In this chapter we will be discussing classical thermodynamic systems and phase
transitions, focusing on the Van der Waals fluid phase transitions. It’s important to draw
an analogy between our phase transitions and those that occur in Van der Waals fluids.
Later in the chapter, we examine the first law, the Smarr’s relation and the Gibbs-Duhem
relation in each case.

3.1 Classical Thermodynamics
We will begin with a statement of a combination of the first and second laws of

thermodynamics. The first law is a statement about the conservation of energy while the
second is concerned with the reversibility of processes. However, we will be referring to
the the form below as the first law within this thesis. Arguably, the first noting of energy
conservation was by Leibniz in 1693[8] where he stated that the total energy for a point
particle in a gravitational field is conserved. The principle of energy conservation is at
the core of scientific thought and reasoning. Below, we present the first law.

𝑑𝑈 “ 𝑇𝑑𝑆 ´ 𝑃𝑑𝑉 `

𝑁
ÿ

𝑖“1
𝜇𝑖𝑑𝑁𝑖 (3.1)

In the equation above, 𝑑𝑈 is the change in the internal energy of the system. 𝑆 is
the entropy while 𝑇 is the temperature, the term represents the heat transfer between the
system and its surroundings. 𝑃 is the pressure and 𝑉 is the volume, this term represents
the amount of work done by the system on its surroundings. In the last term, 𝜇𝑖 is an
arbitrary chemical potential while𝑁 is the amount of charge associated with the potential.

16



As we can see in the first law, each parameter has a conjugate thermodynamic quan-
tity. One of these quantities would be an intensive parameter while the other would be
extensive. For example, temperature is an intensive parameter while entropy is extensive.
Let us consider two systems of identical gases at the same pressure and volume with an
infinitesimally thin diathermal wall between them. Let us further suppose that we know
a magician that can magically make the wall vanish completely.

What happens when it does? The temperature would stay the same, as well as the
pressure these are intensive parameters. What would happen to the volume? How would
the entropy change? They would increase with the scale of the system, they are extensive
parameters. This is what separates the extensive and intensive parameters. The extensive
parameters depend on the extent of the system whereas intensive ones depends on the
internal state of the system. It is trivial to note that the magnitudes of chemical potentials
are intensive while the amount of charges is extensive.

We will now consider the Gibbs-Duhem relation. The Gibbs-Duhem relation can be
derived from the first-order homogeneity of the first law. Perhaps we should bring back
our example but make the size of both systems arbitrary. Let us first consider one of
them, noting that after joining both systems, 𝑉 1 “ 𝜆 𝑉 . What then happens to the rest
of the system? 𝑆 would scale in the same manner as 𝑉 which would then result in 𝜆𝑑𝑈.
We can use this to apply the Euler homogeneous function theorem, leading to

𝑈p𝑆,𝑉, 𝑁q “ 𝑇𝑆 ´ 𝑃𝑉 `

𝑁
ÿ

𝑖“1
𝜇𝑖 𝑁𝑖 (3.2)

Let us now take the differential of the equation.

𝑑𝑈 “ 𝑇𝑑𝑆 ` 𝑆𝑑𝑇 ´ 𝑃𝑑𝑉 ´𝑉𝑑𝑃 `

𝑁
ÿ

𝑖“1
𝜇𝑖 𝑑𝑁𝑖 `

𝑁
ÿ

𝑖“1
𝑁𝑖 𝑑𝜇𝑖 (3.3)

Through subtracting the first law from the equation above we then get the Gibbs-Duhem
relation.

0 “ 𝑆𝑑𝑇 ´𝑉𝑑𝑃 `

𝑁
ÿ

𝑖“1
𝑁𝑖 𝑑𝜇𝑖 (3.4)

It is important to note that there are two different types of distinct thermodynamic sys-
tems. Ones that are described by a canonical ensemble, and others that require the grand
canonical ensemble. The key difference is that for the canonical ensemble, the number

17



of charges are fixed. For the grand canonical ensemble, however, it is the potentials that
are fixed. This allows for the number of charged particles to be exchanged in the case
of the grand canonical ensemble, while it is not allowed to change for canonical ensemble.

We will now introduce two different thermodynamic potentials and the physical
properties that are associated with each of them. The potentials are the Helmholtz and
Gibbs free energies, both deal with the stability of a thermodynamic system, but the
Helmholtz energy does not consider the change in charges while the Gibbs energy does.
The Helmholtz energy 𝐹 and the Gibbs energy 𝐺. As differentials, they are given by the
following equations

𝑑𝐹 “ ´𝑆𝑑𝑇 ´ 𝑃𝑑𝑉 `

𝑁
ÿ

𝑖“1
𝑁𝑖 𝑑𝜇𝑖

𝑑𝐺 “ ´𝑆𝑑𝑇 `𝑉𝑑𝑃 `

𝑁
ÿ

𝑖“1
𝜇𝑖 𝑑𝑁𝑖

(3.5)

The Helmholtz energy is related to the canonical ensemble by the following relation

𝑍𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 “ 𝑒´𝛽𝐹 (3.6)

Where

𝛽 “
1
𝑘𝑏𝑇

. (3.7)

Generally speaking, we can write

𝑍𝛼 “ 𝑒´𝛽Ω
“ 𝑒´𝐼 (3.8)

Where 𝐼 is the Lagrangian action and Ω is an arbitrary potential depending on the
type of system. This is important to note because some systems, like the one we will
consider in this thesis, are not entirely canonical nor grand canonical. They are mixed
systems where for some conjugate quantities the potential is fixed while the charge is
fixed for others.

3.2 Classical Phase Stability and Transitions
In this sub-chapter we will establish the properties of a physical phase. We pay

special attention to the first order phase transitions for Van der Waals fluids, and the
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critical behaviour they show. The main reason is that similar behaviour exists in black
hole thermodynamics when we allow the cosmological constant to vary. This analogy
was first discussed by Kubiznak and Mann.[9]

Let us first recall the ideal gas molar equation of state.

𝑃𝑣 “ 𝑅𝑇 (3.9)

The Van der Waals fluid equation can be reached by adding two assumptions to ideal
gas equation of state.[8] The first is that the molecules are not point particles but do take
up some of the volume of the container. The second one relies on interaction between
the particles and themselves. A particle nearing the wall of the container will experience
inter-molecular forces on one side only when they are colliding with the container wall.
This decreases the amount of force they exert on the container. By applying these
assumptions where 𝑎 and 𝑏 are empirical constants we arrive at the following equation
of state.

𝑃 “
𝑅𝑇

𝑣 ´ 𝑏
´
𝑎

𝑣2 (3.10)

We will first consider what we mean by a physical or metastable phase. We identify
them through considering two different properties. The first one we look at is the con-
dition for thermal stability, the heat capacity. The second is concerned with mechanical
stability and is the isothermal compressibility.

The heat capacity while keeping the pressure constant is the the amount of energy
needed to raise the temperature of a system by a certain amount. The heat capacity at
constant pressure for an arbitrary mechanical system is given by

𝐶𝑃 “ 𝑇

´

B𝑆

B𝑇

¯

𝑃
(3.11)

The compressibility has to do with the instantaneous volumetric response of a system
when pressure on it is varied. We can find it using the following equation.

𝜅 “
´1
𝑉

´

B𝑉

B𝑃

¯

𝑆
(3.12)

Now, let us consider phase transitions in general. A second order phase transition
occurs when there is a continuous phase. One case where this takes place is for super-
critical fluids; fluids at pressures and temperatures above the critical point. For a first
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order phase transition, there are two distinct phases and a discontinuity in the entropy.
An example of a first order phase transition is the transition between water and steam
where a latent heat is involved.

The separating point between a first order phase transition and a second order phase
transition is the critical point. On one side of the critical point a first order transition
takes place while on the other there is a second order one. To solve for the critical point,
we need to solve the following set of equations

B𝑃

B𝑣
“ 0 “

B2𝑃

B𝑣2 (3.13)

For a Van der Waals fluid this would be given by

´𝑅𝑇

p𝑣 ´ 𝑏q2 `
2𝑎
𝑣3 “ 0 “

2𝑅𝑇
p𝑣 ´ 𝑏q3 `

6𝑎
𝑣4 (3.14)

We can then solve for a critical volume 𝑣 and temperature 𝑇 , doing so for 𝑎 “ 3
and 𝑏 “ 5. Plotted below, is the variation of the pressure with the volume at various
isotherms surrounding the critical temperature.
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1.15 Tc
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Figure 3.1: The pressure versus the volume as the temperature varies around the critical point for Van der
Waals fluid with 𝑎 “ 3 and 𝑏 “ 5

As we can see in figure 3.1, the behaviour of the pressure versus the volume differs
around the critical temperature. Below the critical point the pressure is not one-to-one,
there is a region with positive slope. In that region, the compressibility is not positive,
and the curve does not represent a physical phase.
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This nonphysical region of the isotherm is then replaced by an isobar in accordance
with the Maxwell equal area law. The law states that we can use a horizontal line across
the positive slope region to find the physical pressure and temperature for the transition.
The horizontal line satisfies the equal area law if the areas bounded between it and the
curve above and below the line are equal. This signifies that the temperature and pressure
of both points are equal since they lie on the same isotherm and happen at a constant
pressure.

Figure 3.2: Van der Waals phase diagram[9]

The fluid undergoes a first order phase transition below the critical temperature. At
the critical temperature, and higher temperatures, the phase transition is second order
and there are no discontinuities in the entropy. It’s important to note that this is only an
example. As we will see, it is possible for more than one critical point to exist. In the
case of the Van der Waals fluid, this is entirely dependent on the values of 𝑎 and 𝑏. We
will have a similar dependence on a constant in our thermodynamic phase structure.
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In the phase diagram above, there is a first order transition across the line. For the
fluid to change its phase through crossing the line, there must be a latent heat involved.
This is not the case above the critical point and the transition is continuous. Across the
line there is a discontinuity in the entropy. In the region above the critical point, there is
none.

3.3 Black Holes from Mechanics to Thermodynamics
Initially, Black hole thermodynamics was not an established field. There were two

separate fields. One of thermodynamics, and one of black hole mechanics. Black hole
mechanics were a set of laws that all black holes adhered to. It is only after the identifi-
cation made by Bekenstein [10] of the entropy with a fourth of the area of the horizon,
that the fields truly met.

Bekenstein first appealed to a result that was found by Hawking [11] in 1971. Hawk-
ing had proved that the area of a black hole cannot decrease in any process. This drove
Bekenstein to propose a correspondence between the black hole surface area, and its
entropy.

He then proposed a generalised second law that states ”the common entropy in the
black-hole exterior plus the black-hole entropy never decreases.” [10] Even then, in the
paper, he made sure to state that the conjugate thermodynamic variable to entropy was
not a physical temperature.

It was Hawking who first suggested that the black hole temperature could be a phys-
ical phenomena. [12] Hawking suggested that the event horizon of a black hole could
emit particles. He also presented a correspondence between the physical temperature
and the surface gravity of the black hole.

In this thesis we will be working in a regime that has come to be known as extended
thermodynamics. This is different from classical black hole thermodynamics. The
difference is that we allow the cosmological constant to vary. While doing so, we define
a correspondence between it and the pressure. Before that black holes were seen as
systems that can do work either through their angular momentum 𝐽 or electromagnetic
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interactions only. As presented in [2] for the Kerr metric this took the form

𝑑𝑀 “
𝜅

8𝜋
𝑑𝑆 ` Ω𝐻𝑑𝐽 (3.15)

The analogue to the zeroth law, is the statement that surface gravity 𝜅 is constant
along the event horizon. This is the case at least in the situations where the killing and
event horizons coincide. [2]

How would we approach a problem that is more complex than the Kerr solution? Es-
pecially one where it is not as easy to set apart the different thermodynamic parameters.
As with any thermodynamic system we can calculate an action, a partition function, and
a corresponding chemical potential.

Gibbons and Hawking [13] considered the path integral method of quantizing gravity.
However, they found that the manifold the were integrating on had a conical singularity.
The trick they used was to complexify the metric and then calculate the action on a
contour that avoids the singularity. The partition function they used was

𝑍 “

ż

𝑑r𝑔s𝑑r𝜙s𝑒𝑖𝐼r𝑔,𝜙s (3.16)

The RHS is broken down as follows, 𝑑r𝑔s is a measure on the space of metrics, 𝑑r𝜙s

on the space of matter fields. The action 𝐼r𝑔, 𝜙s is dependent on both. The intricacies
of the path integral formulation itself are beyond the scope of this thesis, and we will be
treating it as such.

The action they considered was comprised of the Einstein-Hilbert (EH) action, and
a boundary term they introduced. The EH action is an integral of the Ricci scalar 𝑅 over
the bulk of the spacetime. The integral over the boundary has come to be known as the
Gibbons-Hawking (GH) boundary term.

The need for the boundary term arose from the nature of the Ricci scalar. The
path integral method requires that we deal with the metric, and its first derivatives only.
However, 𝑅 is also a function of the second derivatives of the metric. Through an
integration by parts, we can be relieved of this behaviour. This results in the Gibbons-
Hawking boundary term.
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Below, we can see the form for both action terms

𝐼𝐸𝐻 “
´1
16𝜋

ż

𝑀

𝑑4𝑥
a

|𝑔 |𝑅

𝐼𝐺𝐻 “
´1
8𝜋

ż

B𝑀

𝑑3𝑥
a

|ℎ | 𝐾
(3.17)

Above,
a

|ℎ | is the root of the determinant of the boundary metric. The boundary
metric depends on what kind of boundary we will be considering. For our purposes, the
boundary is taken to be an 𝑟-normal surface that we then evaluate in the limit where 𝑟
tends to infinity. 𝐾 represents the extrinsic curvature of the boundary.

To get the boundary metric from the spacetime metric we subtract from the metric
the normal vector in 𝑟. For a spacetime where 𝑔𝑟𝜇 “ 𝑔𝑟𝑟𝛿

𝑟
𝜇 this takes the form

𝑛̂𝑟 “ r0,
?
𝑔𝑟𝑟 , 0, 0s

ℎ𝜇𝜈 “ 𝑔𝜇𝜈 ´ 𝑛̂𝑟 𝑛̂𝑟
(3.18)

To get the extrinsic curvature one may use

𝐾 “ ℎ𝜇𝜈∇𝜈𝑛̂𝜇 (3.19)

The action above, as it is, diverges. There is more than one method to deal with
this problem. We will discuss both. However, we only focus on the method we will use
during this thesis.

The first method is to use background subtraction. This works through taking the
action of the black hole metric and then subtracting from it the background spacetime.
The second way, which we will adopt, is the counterterm method. This term relies on
terms inherent to the boundary to cancel the divergences.

The background method is tricky and could have several pitfalls. First of all, we
need to make a decision on what the background is. For the case of Taub-NUT-AdS for
example, this would lead to some ambiguity that we could do without. We also need to
consider that some information about the behaviour at the boundary could be lost dur-
ing the subtraction procedure. This isn’t the best prospect within the context of AdS-CFT.

The counterterm method, in contrast, does not rely on the matching of a boundary.
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Since it is only on the boundary, there are no worries about the equations of motion
being affected. It also leaves gives us the luxury of not losing information about the
boundary. In addition to all of that, the method is systematic. Its limitations mainly lie
in its constriction to AdS spacetimes. The counter terms for a general AdS spacetime
were first presented in [14], for AdS4 we get

𝐼𝐶𝑇 “
´1
4𝜋𝑙

ż

B𝑀

𝑑3𝑥
a

|ℎ |
´

1 ´
𝑙2

4
𝑅

¯

(3.20)

The action counterterm for Taub-NUT-AdS4 differs slightly and was calculated in [15]

𝐼𝐶𝑇 “
1

4𝜋𝑙

ż

B𝑀

𝑑3𝑥
a

|ℎ |
´

1 `
𝑙2

4
𝑅

¯

(3.21)

In our work, we will not be using the Einstein-Hilbert action for the bulk. This is due
to some additions that we must make on the account of having a nonzero cosmological
constant, as well as electromagnetic charges. The action we will use will be the Einstein-
Hilbert-Maxwell one, and it takes the following form

𝐼𝐸𝐻𝑀 “
´1
16𝜋

ż

𝑀

𝑑4𝑥
a

|𝑔 |
´

𝑅 `
6
𝑙2

´ 𝐹2
¯

(3.22)

This brings us to the total action we will consider

𝐼 “ 𝐼EHM ` 𝐼 GH ` 𝐼CT (3.23)

3.4 Phase Transitions
In this sub-chapter we will be sampling some of the black hole phase transitions

from the literature. We begin with considering one of the first phase transitions that
were discovered in black hole thermodynamics. This will be the Hawking-Page phase
transition.

The Hawking page phase transition occurs in Schwarzchild-AdS black holes. We
will calculate the action using the counter term method. We will then look at the type
of phase transition that occurs. The action is given by

𝐼 “ 𝐼EH ` 𝐼 GH ` 𝐼CT (3.24)

We drop the 𝑀 from the Einstein-Hilbert-Maxwell term as the solution is uncharged.
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This means 𝐹2 will be zero. Upon evaluating the action we find it to be

𝐼 “
𝛽

2

´

𝑚 ´
𝑟3
ℎ

𝑙2

˘

(3.25)

This result is exactly the result we would get if we were to follow a background subtraction
method. In this case we would have subtracted a pure AdS background from the action.
𝛽 above is the reciprocal of the temperature where the black hole temperature is equal to

𝑇 “
3𝑟2
ℎ

` 𝑙2

4𝑟ℎ𝜋𝑙2
(3.26)

We can calculate the entropy directly from the action by using the following relation

𝑆 “ 𝛽B𝛽𝐼 ´ 𝐼 (3.27)

This is a quarter of the horizon surface areas as expected

𝑆 “ 𝜋𝑟2
ℎ (3.28)

We can define a heat capacity for the black hole. This helps us quickly identify the
stable from the unstable phases. Generally speaking, for an arbitrary parameter 𝑗 kept
constant, we can calculate a heat capacity 𝑐

𝑗
through

𝑐
𝑗

“ 𝑇

´

B𝑆

B𝑇

¯

𝑗

(3.29)

The 𝑗 around the bracket indicates that we are taking the derivative whilst keeping
the parameter 𝑗 constant. One observation that will helps us is that the entropy is a
monotonic function in 𝑟. This allows us to use the chain rule to write

𝑐
𝑗

“ 𝑇

´

B𝑆

B𝑟ℎ

¯

𝑗

´

B𝑟ℎ

B𝑇

¯

𝑗

(3.30)

This means that we only need to consider regions where the value of the partial derivative
of 𝑟 with respect to 𝑇 is positive. Better yet, the reciprocal 𝑇

𝑟ℎ
always shares the same

sign. This allows us to tell which radii have a positive heat capacity by examining the
slope of the 𝑇 vs 𝑟ℎ graph.

For a Hawking-Page transition we do not think of the pressure as a dynamic variable.
It is a constant. Thus, it is useful to plot the variation of 𝑇 with respect to 𝑟ℎ in an 𝑙
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independent form. It shows up here as a constant scaling factor that does not change the
behaviour of the graph. This can be reached by plotting 𝑇 ¨ 𝑙 versus 𝑟ℎ{𝑙.
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Figure 3.3: Hawking-Page phase transition

The graph above sets a minimum temperature for the existence of a black hole. Be-
low the minimum 𝑇 , no black hole solution can exist. Above it two radii exist for each
temperature, but only one is stable.

Before the minimum point in the graph, the black hole exhibits a negative heat
capacity. This shows us that it is not a stable phase. After the minima, however, the tem-
perature rises with the radius, indicating a stable phase. To calculate the minimum point
we only need to take the first derivative in𝑇 and set it equal to zero. This results in a radius

𝑟
ℎ,𝑚𝑖𝑛

“
𝑙

?
3

(3.31)

The Helmholtz free energy 𝐹 can be calculated through dividing the action with 𝛽. We
can use the free energy to find the point where the black hole becomes the favorable to
the background. This gives us

𝑟𝑐 “ 𝑙 (3.32)

This means that for radii that are greater than 𝑙 the black hole will be preferable to
the AdS background. This means that between 𝑟

𝑚𝑖𝑛
and 𝑟𝑐 there is a region where the

background is preferable even though the phase is stable. For radii below 𝑟
𝑚𝑖𝑛

the black
hole is unstable.
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The analysis we have done thus far, is that of ”normal” phase space. We will examine
the thermodynamics of the sner-Nordström-AdS solution while allowing the cosmolog-
ical constant to vary. This will be analysis that is carried out in extended phase space.
We will discuss conditions on stability that relate to both the heat capacity and the com-
pressibility. As was the case with the heat capacity, negative compressibility implies an
unstable phase.

The action we consider here will take into account 𝐹2 since we have an electric
charge. For a spherically symmetric solution, the existence of a magnetic charge will not
affect the behaviour. Thus, we will only consider and electric charge, 𝑞. The one-form
𝐴𝜇 then becomes

𝐴𝜇 “

«

´𝑞

𝑟
` 𝜙, 0, 0, 0

ff

(3.33)

while
𝑓 p𝑟q “

p𝑟2 ´ 2𝑚𝑟 ` 𝑞2q𝑙2 ` 𝑟4

𝑟2𝑙2
(3.34)

Upon calculating the action, we find

𝐼 “

𝛽

´

𝑙2p𝑚𝑟ℎ ´ 𝑞2q ´ 𝑟4
ℎ

¯

2𝑟ℎ𝑙2
(3.35)

The mass and temperature take the following forms

𝑚 “
p𝑟2
ℎ

` 𝑞2q𝑙2 ` 𝑟4
ℎ

2𝑟ℎ𝑙2

𝑇 “
3𝑟2
ℎ

` 𝑙2p1 ´ 𝜙2q

4𝑟ℎ𝜋𝑙2

(3.36)

To examine any of the thermodynamic relations we need to write them in terms of
parameters that we know are fixed for the action integral. Recall that 𝐴𝑡 is the scalar po-
tential, thus by fixing it we choose to fix the electric potential instead of the charge. This
makes us work in the grand canonical ensemble. It would be the canonical ensemble if we
fix the charges instead of the potential. We substitute each 𝑞 and each 𝑙 in accordance with

𝑃 “
3𝜋
8𝑙2

𝜙 “
𝑞

𝑟ℎ

(3.37)
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The temperature becomes

𝑇 “
8𝜋𝑟2

ℎ
𝑃 ` 1 ´ 𝜙2

4𝑟ℎ𝜋
(3.38)

We can rearrange it to reach an equation for the pressure.

𝑃 “
𝑇

2𝑟ℎ
`
𝜙2 ´ 1
8𝑟2
ℎ
𝜋

(3.39)

As 𝑟 approaches zero, there are three possibilities. Either 𝜙2 ą 1,𝜙2 ă 1, or 𝜙2 “ 1. For
𝜙2 “ 1 we get completely linear behaviour in T, and a gradient that is positive everywhere.
The gradient is also everywhere positive for the case for the case where 𝜙2 ą 1. We can
see Hawking-Page-like behaviour whenever 𝜙2 ă 1, but none otherwise. Taking 𝑃 as a
thermodynamic parameter we can plot the 𝑇 vs 𝑟 graph at a constant pressure.
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Figure 3.4: As the electric potential changes, the behaviour of the black hole
changes as well.
Plotted for P=0.4

Now let us turn our attention towards the pressure. We first need to recall the definition
for compressibility. The compressibility 𝜅 is used to measure the instantaneous change
in volume relative to a change in pressure. It is expressed as

𝜅 “
´1
𝑉

p
B𝑃

B𝑉
q (3.40)
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A negative compressibility corresponds to a system that is not stable as was the case
with the heat capacity. Just as we were able to tell if a particular range of radii was stable
or unstable through examining the slope of the temperature with respect to 𝑟ℎ, we are
also able to do so for the pressure. The difference is that for a positive compressibility,
we the slope should be negative.

As 𝑟ℎ tend towards infinity, it approaches zero from the positive side. This means
that for a solution to be stable everywhere, we would need it to approach positive infinity.
As such, when 𝜙2 ă 1 we get an unstable phase at low radii. There is little difference
between the graphs for 𝜙2 “ 1 and 𝜙2 ą 1 as both follow very similar behaviour.

While there is minimum temperature where a black hole can exist, for the pressure
it is the complete opposite. As shown in figure 3.4, for a black hole where 𝜙2 ă 1 the
pressure approaches negative infinity for small values of 𝑟ℎ. Firstly, this places a limit
for the minimum stable black hole radius that could exist. It also places a limit on the
pressures where a black hole can exist. Beyond a certain pressure, no black holes can
exist, not even unstable ones.
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Figure 3.5: The change in pressure with respect to the radius at constant temperature at different electric
potential values.
Plotted for T=1
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The last thing we will consider is the grand canonical potential, we need to make sure
that our thermodynamics are consistent function. This would entail several relations.
Some of these are between the thermodynamic variables and themselves, while others
are related to the grand potential. We expect it to take the form

𝑑Ω “ ´𝑆𝑑𝑇 `𝑉𝑑𝑃 ´ 𝑞𝑑Φ (3.41)

By taking the partial derivatives we can show that these correspond to the right
quantities, namely

´

˜

BΩ

B𝑇

¸

𝑃,Φ

“ 𝑆 “ 𝜋𝑟2
ℎ

˜

BΩ

B𝑃

¸

𝑇,Φ

“ 𝑉 “
4𝜋𝑟3

ℎ

3

´

˜

BΩ

BΦ

¸

𝑇,𝑃

“ 𝑞 “ 𝜙𝑟ℎ

(3.42)

One of the very important differentiating aspects between thermodynamics in general
and black hole thermodynamics is the dependence on length. In a regular classical sys-
tem, an ideal gas for example, the energy and mass are volume-dependent quantities. For
a black hole the mass scales as a length. This leads us to our next test for our formulation.

An important relation to consider is the Smarr formula.[16] The Smarr formula tradi-
tionally relates the dimensionality of the constituents of the mass to each other. Without
allowing the cosmological constant to vary, it would have been the first law, as the mass
would represent the internal energy. However, in the extended phase space the mass
represents the enthalpy of the spacetime.

Let us consider our case. We know that the mass is associated with the enthalpy for
extended phase spaces. To reach the mass from the grand potential, we apply a legendre
transform

𝑀 “ Ω ` 𝑇𝑆 ` 𝑞𝜙 (3.43)

It is comforting that the above relation holds, however, it is not what we are trying to
prove. What we are interested in is how the differential for 𝑀 would behave. After the
transform we should get
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𝑑𝑀 “ 𝑇𝑑𝑆 `𝑉𝑑𝑃 ` 𝜙𝑑𝑞 (3.44)

The Smarr relation is then reached by considering the dimension of each of the quantities.
It is an application of Euler’s theorem on quasi homogeneous functions. The mass goes
as 𝐿, the entropy as 𝐿2, 𝑃 as 𝐿´2, and 𝑞 as 𝐿. We would then get the following
relationship.

𝑀 “ 2𝑇𝑆 ´ 2𝑉𝑃 ` 𝑞𝜙 (3.45)

It is easy to check that the above relationship holds.
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Chapter 4

Taub-NUT Spacetimes

In this chapter we will be introducing the Taub-NUT metric in the most simple
case possible. We will then explore its richness and how it varies when we consider a
non-zero cosmological constant, as well as a charged case. Mainly we will examine how
the charges and the horizon change for each spacetime.

It’s important to note that for calculations for charges in this chapter and after, metrics
that do not have a spherical boundary will pick up some coefficient when integrating over
the non-𝑟 coordinates. This term will be set to unity since it is dependent on the shape
of the non-𝑟 related boundary and can always be normalised by dividing by its area. The
motivation behind this is to compare between the family of spacetimes, differentiated by
the metric the value of 𝑘 .

We will first go over the spherical Taub-NUT metric in its most prevalent form in the
literature. Afterwards, we will introduce a 𝑘 parameter dependent solution. The value
of 𝑘 will describe the horizon geometry, and the asymptotic behaviour of the metric. We
will look at the flat, hyperbolic, and spherical spacetimes.

4.1 Spherical Metric
The metric was first discovered in 1951[17] and is a vacuum axisymmetric exact

solution to Einstein’s field equations. However, it was expressed in coordinates that only
described the time-dependent portion of the spacetime. Newman, Unti, and Tamburino,
extended the solution in 1963 to the metric we know of today.[18] Their initials represent
the NUT portion in the name of the solution.[19] In this chapter we will be discussing
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the metric as it exists within the literature.

The defining property of the metric is the nut parameter 𝑛. It is the reason that the
metric is not asymptotically flat. It is interesting to note that it was one of the parameters
found by Roy Kerr in his attempt to find a rotating, and axisymmetric solution. However,
he dismissed it as a parameter that was not physical.[20] This was because the boundary
metric does not match that of Minkowski spacetime due to the persistence of the nut
parameter in the boundary metric.

The spacetime is quite rich and has been the cause for much debate. We will begin by
considering the metric with it angular components corresponding to that of a 2-sphere.
In this case, upon taking the limit lim𝑛Ñ0 we revert to the Schwarzschild metric. We
will be progressively considering more complications to the spacetime. The metric in
this form is expressed as

𝑑𝑠2
“ ´ 𝑓 p𝑟q

´

𝑑𝑡 ´ 2𝑛 𝑐𝑜𝑠 𝜃𝑑𝜙
¯2

`
1
𝑓 p𝑟q

𝑑𝑟2
` p𝑟2

` 𝑛2
q

´

𝑑𝜃2
` 𝑠𝑖𝑛2𝜃𝑑𝜙2

¯

(4.1)

With
𝑓 p𝑟q “

𝑟2 ´ 2𝑚𝑟 ´ 𝑛2

𝑟2 ` 𝑛2 (4.2)

For the sake of quick analysis, let us revert to the Cartesian coordinate system. Along
the 𝑧 axis, the components of the 𝑑𝑡𝑑𝜙 portion and the 𝑑𝜙2 do not vanish at the axes
which causes the main problem here as the 𝜙 coordinate is degenerate along the axis.
This corresponds to the 𝜃 “ 0 and the 𝜃 “ 𝜋 lines.

Since 𝜙 is degenerate along the 𝑧 axis then any coefficient for 𝑑𝜙 should vanish
there. As the 𝑧 axis above and below are seperated by the black hole itself the singular
behaviour occurs along 2 distinct ”strings”. We cannot regularise the behaviour along
both sides of the 𝑧 axis at the same time.

Calling them strings aims to show that they are analogous to the Dirac string. Dirac
had tried to find a cause for the quantisation of the electric charge. This lead to him
hypothesising the existence of a magnetic monopole. If it existed, electrical charge must
be quantized.

This magnetic charge, however, results in the existence of a Dirac ”string” along the
𝑧 axis in one of the hemispheres around the magnetic charge. This comes from choosing
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the vector potential to be defined along the northern or southern hemisphere surrounding
the charge. Whenever we choose the vector potential along one, the other will exist. The
solution to this is a phase condition that makes the string invisible. What Misner tried
to do for the strings in the Taub-NUT spacetime was analogous.

Misner was the first person to note that we could cover the whole spacetime outside
the horizon.[21] The way to do this was to take two different patches each with its own
time coordinate. We would shift the time coordinate for both of them. With the time for
the positive 𝑧 axis denoted 𝑡`, and the negative one 𝑡´. Misner proposed the following
transformation for the patches. [22]

𝑡 “ 𝑡` ` 2𝑛𝜙
𝑡 “ 𝑡´ ´ 2𝑛𝜙

(4.3)

To keep our spacetime compact, both patches need to equate to each other at the
equator. To do this, we simply set both times on the left hand side equal to each other.
This results in

𝑡´ “ 𝑡` ` 4𝑛𝜙 (4.4)

This introduces a serious problem for our time coordinate. Let us consider the conse-
quences of the equation above. The 𝜙 coordinate, being an angular one, is periodic with
period 2𝜋. This results in a periodicity of the time coordinate. If we take a 2𝜋 path along 𝜙
we would be back to the same point in time. This then results in a periodicity of 8𝜋𝑛 for 𝑡.

The adoption of the above patches would completely hide the strings. This is how
they came to be known as Misner strings. As highlighted above this periodicity condition
will introduce closed timelike curves everywhere. This would be a serious problem from
a physical and causal sense.

Due to concerns emanating from the Misner strings, the metric was usually quoted
in the euclidean form.[23–29] This treatment fully embraces the time periodisation
condition. With the euclidean Wick rotation, the terms including a squared nut charge
also change their signs. We, then, have to limit ourselves to the portion where 𝑟` ą 𝑛 as
the angular portion of the metric will flip its sign for this range of 𝑟`. The Wick rotation
takes the following form
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𝑡 Ñ 𝑖𝜏

𝑛 Ñ 𝑖𝑛̄
(4.5)

For the euclidean case, the solutions are usually segregated into two distinct solu-
tions. One for 𝑟ℎ “ 𝑛, which is the lower limit for 𝑟ℎ. These are called nut solutions.
Solutions where 𝑟ℎ ą 𝑛 are called bolt ones.[29–31] The nuts are commonly used as
reference spacetimes for subtraction from the bolt solutions. In the Lorentzian case, we
do not have any problem with 𝑟ℎ ă 𝑛.

The problem that is introduced with the hiding of the Misner strings is that a big
reason to disregard them was the possibility of closed time loops and causality violation
along the 𝑧 axis. It was recently proven [32] that the strings are transparent to geodesics
passing through them.

Furthermore, they proved that for a family of parameter-dependent solutions no
closed timelike or null geodesics are able to violate causality. Thus, the ”strings” them-
selves don’t necessarily violate causality while hiding them does.

One aspect of the time coordinate periodicity is how it affects the thermodynamics
of the solution. The periodicity constraint restrains the temperature. This decreases our
degrees of freedom, and limits the phase structure.

It’s important to note that in some treatments, including ours, the nut parameter 𝑛 is
taken to represent a gravito-magnetic charge that is analogous to the magnetic charge.
This is justified through the calculation of the electric and magnetic charges using Komar
integrals. A similar correspondence between the mass and the nut charge exists.

The mass of a stationary spacetime can be calculated through the use of forms.
Forms and Komar integrals are tackled in appendix A. The mass can be calculated by
integrating over the hodge dual of the exterior derivative of the one-form generated by
the timelike killing vector 𝜉.

´
1

4𝜋

ż

𝑆2
8

‹𝑑𝜉 “ 𝑚 (4.6)

The reason the nut parameter is interpreted as a gravitomagnetic mass is that we can
find the nut charge of a spacetime through integrating over the 2-form 𝑑𝜉. Which is the
hodge dual to the form that was used in the mass calculation.
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1
4𝜋

ż

𝑆2
8

𝑑𝜉 “ ´𝑛 (4.7)

Let us consider the event horizon. We will do so by looking at 𝑓 p𝑟q “ 0. This
will show that we have two separate horizons, a larger and a smaller one. Outside the
larger radial horizon 𝑟` the 𝑟 coordinate is spacelike, between 𝑟`, and the smaller 𝑟´ it
is timelike. For 𝑟 ă 𝑟´ it reverts to being spacelike.

𝑟˘ “ 𝑚 ˘

a

𝑚2 ` 𝑛2 (4.8)

4.2 A More General Solution
A more general metric for the Taub-NUT spacetime can be reached by solving the

field equations. The solution depends on the parameter 𝑘 and it defines the shape of the
horizon. We assumed the following

𝑑𝑠2
“ ´ 𝑓 p𝑟q

´

𝑑𝑡 ` 2𝑛𝑔p𝑥q𝑑𝜙

¯2
`

1
𝑓 p𝑟q

𝑑𝑟2
` p𝑟2

` 𝑛2
q

´

𝑑𝑥2

1 ´ 𝑘𝑥2 ` 𝑥2𝑑𝜙2
¯

(4.9)

Our solution will be that of a vacuum one. The field equations take the form

𝑅𝜇𝜈 ´
1
2
𝑅𝑔𝜇𝜈 “ 𝑇𝜇𝜈

“ 0
(4.10)

Upon solving the equations we find the form for 𝑔p𝑥q and 𝑓 p𝑟q.

𝑔p𝑥q “
´2𝑛

?
1 ´ 𝑘𝑥2 ` 𝑐

2𝑘𝑛

𝑓 p𝑟q “
𝑘p𝑟2 ´ 𝑛2q ´ 2𝑚𝑟

𝑟2 ` 𝑛2

(4.11)

There are three particular values of 𝑘 that give distinct horizon geometries. We will
show that each of these corresponds to a particular horizon geometry. We will consider
the values 𝑘 “ ´1, 0, 1. The effect on 𝑓 p𝑟q is obvious as the value of 𝑘 will dictate the
role of the 𝑟2 ´ 𝑛2 term.

The addition of 𝑘-dependence to the metric allows us to examine the difference
between the horizons in all three geometries. Below we can see the dependence of the
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horizon radii on 𝑘 . It is important to note that without a cosmological constant we are
not interested in the flat case. This is because the 𝑟 coordinate is timelike everywhere.

𝑟˘ “ 𝑚 ˘

a

𝑚2 ` 𝑘2𝑛2 (4.12)

For the 𝑘 “ 1 and the 𝑘 “ ´1 cases, the horizon does not differ in its position in
terms of the radial coordinate 𝑟.

Let us consider the effect on 𝑔p𝑥q. In the cases where 𝑘 “ 1 and 𝑘 “ ´1 we only
need to take 𝑥 through a coordinate transformation. In the case where 𝑘 “ 1 we will
take 𝑥 “ 𝑠𝑖𝑛p𝜃q and 𝑥 “ 𝑠𝑖𝑛ℎp𝜃q for the value of 𝑘 “ ´1. We then get the following
forms for 𝑔p𝑥q

𝑔 k=-1 “ 2𝑛p𝑐𝑜𝑠ℎp𝜃q ` 𝑐q

𝑔 k=1 “ ´2𝑛p𝑐𝑜𝑠p𝜃q ` 𝑐q
(4.13)

For 𝑘 “ ´1 and 𝑘 “ 1 we will show the necessary coordinate transformations

𝑥 Ñ 𝑐𝑜𝑠p𝜃q

𝑘 Ñ 1
a

1 ´ 𝑘𝑥2 “

b

1 ´ 𝑐𝑜𝑠2p𝜃q
b

1 ´ 𝑐𝑜𝑠2p𝜃q “ 𝑠𝑖𝑛p𝜃q

𝑑𝑥 “ ´𝑠𝑖𝑛p𝜃q𝑑𝜃

(4.14)

While for the case of 𝑘 “ ´1

𝑥 Ñ 𝑐𝑜𝑠𝐻p𝜃q

𝑘 Ñ 1
a

1 ´ 𝑘𝑥2 “

b

1 ` 𝑐𝑜𝑠ℎ2p𝜃q
b

1 ` 𝑐𝑜𝑠ℎ2p𝜃q “ 𝑠𝑖𝑛ℎp𝜃q

𝑑𝑥 “ 𝑠𝑖𝑛ℎp𝜃q𝑑𝜃

(4.15)

We arrive at the metrics[19]
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𝑑𝑠2
k=-1 “ ´ 𝑓 p𝑟q

´

𝑑𝑡 ` 2𝑛p𝑐𝑜𝑠ℎp𝜃q ` 𝑐q𝑑𝜙

¯2
`

1
𝑓 p𝑟q

𝑑𝑟2
` p𝑟2

` 𝑛2
q

´

𝑑𝜃2
` 𝑠𝑖𝑛ℎ2

p𝜃q𝑑𝜙2
¯

𝑑𝑠2
k=1 “ ´ 𝑓 p𝑟q

´

𝑑𝑡 ´ 2𝑛p𝑐𝑜𝑠p𝜃q ` 𝑐q𝑑𝜙

¯2
`

1
𝑓 p𝑟q

𝑑𝑟2
` p𝑟2

` 𝑛2
q

´

𝑑𝜃2
` 𝑠𝑖𝑛2

p𝜃q𝑑𝜙2
¯

(4.16)
It is important to note that a careful choice of constants could make the behaviour

regular along the line where 𝜙 is degenerate for the case of 𝑘 “ ´1. However, this is
not possible for 𝑘 “ 1. We inevitably need two patches if we want to hide the misner
strings as we said above.

4.3 Dyonic Taub-NUT
For the dyonic case we will be examining the effect of adding electric and magnetic

charges to our formulation of the metric. The addition of the electromagnetic charges
will affect our solution through changing the field equations and hence imposing some
additional restrictions on our solution.

The form of 𝑔p𝑥q does not change but there are different restrictions on the value 𝑐
could take. The value of 𝑓 p𝑟q, however, changes explicitly. We can express it as

𝑓 p𝑟q “
𝑘p𝑟2 ´ 𝑛2q ´ 2𝑚𝑟 ` 𝑞2 ` 𝑝2

𝑟2 ` 𝑛2 (4.17)

The horizon radius then changes to

𝑟˘ “ 𝑚 ˘

b

𝑚2 ` 𝑘2𝑛2 ´ 𝑘p𝑞2 ` 𝑝2q (4.18)

This then introduces relative values for our parameters where 𝑟 does not exist.
Whenever the square root is not real, there is no root for 𝑓 p𝑟q. Similar to the sner-
Nordström case, there will be an extremal solution that occurs when

𝑚2
` 𝑘2𝑛2

“ 𝑘p𝑞2
` 𝑝2

q (4.19)

It’s important to note, the case when 𝑘 “ 0 here, results in an event horizon. How-
ever, it cannot be given by the above equation since it assumes a quadratic nature and is
not defined when the leading coefficient is zero. This horizon, however, isn’t generally
considered as such since the spacetime as a whole has a timelike 𝑟 coordinate everywhere
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in the limit of dying electromagnetic charges. However, we will include the 𝑘 “ 0 case
as the analysis would hold for the 𝐴𝑑𝑆 case where we consider it.

We will now consider the effects of the electromagnetic charges on the metric and
their relation to each other. We solve for the one-form 𝐴. Along with the restrictions on
the metric we get some restrictions on 𝐴 that are forced by the thermodynamics.

𝐴𝑡 “
p𝑛𝑝 ` 𝑛2𝑉 ´ 𝑞𝑟 ` 𝑟2𝑉q

p𝑟2 ` 𝑛2q

𝐴𝜙 “
𝑝

?
1 ´ 𝑘𝑥2 ` 𝑑 ¨ 𝑘

𝑘
`

p𝑛𝑝 ´ 𝑞𝑟q
`

´2𝑛
?

1´𝑘𝑥2

𝑘
` 𝑐

˘

p𝑟2 ` 𝑛2q

(4.20)

These restrictions have to do with fixing the boundary conditions for the path integral
used in finding the temperature. The 𝐴𝑡 component must vanish at the horizon. The 𝐴𝜙
component needs to vanish along the line where 𝜙 is degenerate. This results in different
restrictions on the constants for each value of 𝑘 .

Calculating the contraction of the one-form 𝐴 with itself 𝐴𝜇𝐴𝜇, allows us to see the
solution within one equation. The restriction imposed by the 𝐴𝑡 portion will be the same
for all spacetimes, while the restriction imposed by the 𝐴𝜙 component will differ.

The shared restriction couples the value of the electric charge at infinity to the
magnetic charge 𝑝, nut charge 𝑛, and the electric potential 𝑉 . The relationship is given
by

𝑞 “
𝑝𝑛 `𝑉p𝑟2 ` 𝑛2q

𝑟
(4.21)

For the 𝐴𝜙 to not be singular for the case of 𝑘 “ 0, we will need to assign a particular
value to 𝑑 such that the fraction does not tend to infinity in the limit where 𝑘 approaches
zero. As such, for 𝑘 “ 0 it will need to take the following form

𝑑 “
´𝑝

𝑘
` 𝑑1 (4.22)
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For each value of 𝑘 , 𝐴𝜙 takes the explicit form

r𝐴𝜙s k=1 “ 𝑝 ¨ 𝑐𝑜𝑠 𝜃 ` 𝑑 `
p𝑛𝑝 ´ 𝑞𝑟q

`

´ 2𝑛 ¨ 𝑐𝑜𝑠 𝜃 ` 𝑐
˘

p𝑟2 ` 𝑛2q

r𝐴𝜙s k=0 “ ´𝑝 ¨
𝑥2

2
` 𝑑1

`
p𝑛𝑝 ´ 𝑞𝑟q

`

𝑛𝑥2 ` 𝑐1
˘

p𝑟2 ` 𝑛2q

r𝐴𝜙s k=-1 “ 𝑝 ¨ 𝑐𝑜𝑠ℎ 𝜃 ` 𝑑 `
p𝑛𝑝 ´ 𝑞𝑟q

`

2𝑛 ¨ 𝑐𝑜𝑠ℎ 𝜃 ` 𝑐
˘

p𝑟2 ` 𝑛2q

(4.23)

It is very important to note that the constant represented by 𝑐 is the very same one
that shows up in 𝑔p𝑥q. Thus, our choice of constants could affect the metric. This
relationship between 𝑐 and 𝑑 then dictates the amount of patches we need to use to cover
the spacetime. The restrictions imposed results in

𝑐 k=1 “
𝑑 k=1 ˘ p𝑝 ` 2𝑛𝑉q

𝑉

𝑐
1

k=0 “
𝑑

1

k=0

𝑉

𝑐 k=-1 “
𝑑 k=-1 ´ p𝑝 ` 2𝑛𝑉q

𝑉

(4.24)

As is seen above, two patches are necessary to describe the spherical horizon. This
is represented in the ˘ sign in the relation. The sign is positive for the case where 𝜃 “ 0
and is negative when 𝜃 “ 𝜋. This will lead us to use two patches, particularly in the
calculation of charges.

In contrast, the cases where 𝑘 “ 0 and 𝑘 “ ´1 only require a careful choice of
constants. Since the assumptions used to solve the field equations only assumed that 𝐴𝜙
is a function in 𝑟 and 𝑥, any other parameter would not violate the field equation.

Our choice should let the solution revert to the sner-Nordström case when 𝑛 goes to
zero. Another subtlety, that is equally important, is to make sure that our choice is sound
dimensionally. The choice of constants should have the same dimension as the rest of
the equations they are part of.

Let us recall the analogy we drew between the electromagnetic charges, the mass
and the nut charge. This owes to how we calculate the electric and magnetic charges.
Let us take the one-form 𝐴𝜇 presented above, operating on it with the exterior derivative
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we get
𝑑𝐴 “ 𝐹 (4.25)

Taking the hodge dual of the two-form 𝐹

‹𝐹 “ 𝐻 (4.26)

To calculate the electric charge within the spacetime we use

1
4𝜋

ż

𝑆2
8

‹𝐹 “ 𝑞 (4.27)

While
´1
4𝜋

ż

𝑆2
8

𝐹 “ 𝑝 (4.28)

This is exactly what happened for the gravitomagnetic case above. Integrating one
two-form over the sphere at infinity gives us one of the charges while integrating the
other gives us its dual charge.

4.4 Taub-NUT-AdS
In this sub-chapter, we will discuss the addition of a cosmological constant Λ to our

spacetime and changes that follow from that. We will examine how the horizons differ
for each geometry. For the AdS case, the field equations from the uncharged case are
supplemented with a cosmological constant.

𝑇𝜇𝜈 “ 𝑅𝜇𝜈 ` 𝑔𝜇𝜈

´

Λ ´
1
2
𝑅

¯

(4.29)

This metric is solved by adding a cosmological constant to the field equations and
solving them. The solution is longer a vacuum one and it gets a contribution from the
cosmological constant in the function 𝑓 p𝑟q.

The metric takes the same form as it did above, the only portion of the metric that
will change is 𝑓 p𝑟q. We present 𝑓 p𝑟q below

𝑓 p𝑟q “
p𝑟2 ´ 𝑛2q ´ 2𝑚𝑟 ´ Λp1

3𝑟
4 ` 2𝑛2𝑟2 ´ 𝑛4q

p𝑟2 ` 𝑛2q
(4.30)
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Taking
Λ “

´3
𝑙2

(4.31)

We get

𝑓 p𝑟q “
𝑙2p´2𝑚𝑟 ` 𝑘p𝑟2 ´ 𝑛2qq ` 𝑟4 ` 6𝑛2𝑟2 ´ 3𝑛4

𝑙2p𝑟2 ` 𝑛2q
(4.32)

Quartic polynomials, are the highest degree of polynomials we can regularly solve.
However, they do not make for concise or comprehensible solutions by any means.

It is convention that when we work with a polynomial of a high degree where an
analytic solution doesn’t exist that we solve for the mass 𝑚 that corresponds to the
horizon at 𝑓 p𝑟q “ 0. Following this method, the mass would be equal to

𝑚 “
𝑙2

`

𝑘 ¨ p𝑟2
ℎ

´ 𝑛2q
˘

` 𝑟4
ℎ

` 6𝑛2𝑟2
ℎ

´ 3𝑛4

2𝑟ℎ𝑙2
(4.33)

As there is only one horizon we are considering, henceforth we will be denoting
all horizon radii with 𝑟ℎ as done above. There was no implicit assumption on 𝑘 in our
solution this time, thus the above form holds for all values of 𝑘 . It can be seen from the
equations above, we have event horizons for the three values 𝑘 can take.

The existence of the cosmological constant does not affect the constant in 𝑔p𝑥q.
Seeing as it does not interfere with any of the 𝑑𝜙 components of the metric, this is
expected. Thus, it does not enforce any conditions that could alter the number of patches
needed to fully describe a spacetime outside the horizon.

4.5 Dyonic Taub-NUT-AdS
We end this chapter with a combination of the properties of the electromagnetic

Taub-NUT spacetime and the Taub-NUT-AdS spacetime. As we saw above, neither
particularly changed the properties of the other, so the transition will be fairly smooth.

The metric will now retain both the electromagnetic and cosmological constant
contributions. The field equations are now quite different from the vacuum solution.
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The coupled equations can be represented by

𝑇𝜇𝜈 “ 𝐹𝜇𝜌𝐹
𝜌
𝜈 ´

1
4
𝑔𝜇𝜈𝐹𝜌𝜎𝐹

𝜌𝜎

𝑇𝜇𝜈 “ 𝑅𝜇𝜈 ` 𝑔𝜇𝜈

´

Λ ´
1
2
𝑅

¯

(4.34)

The forms for 𝐴𝜇 are not different from the ones above. We end up seeing the same
relations between both the constants in the metric and in 𝐴𝜙. The coupling between 𝑞
and 𝑝 through 𝑛 retains its form.

The main difference is the contributions from both the electromagnetic charges and
cosmological constant that are added to 𝑓 p𝑟q. This then changes the mass at which
𝑓 p𝑟q “ 0, and hence 𝑟ℎ itself. 𝑓 p𝑟q takes the form

𝑓 p𝑟q “
𝑙2p𝑝2 ` 𝑞2 ´ 2𝑚𝑟 ` 𝑘p𝑟2 ´ 𝑛2qq ` 𝑟4 ` 6𝑛2𝑟2 ´ 3𝑛4

𝑙2p𝑟2 ` 𝑛2q
(4.35)

Resulting in an asymptotic mass

𝑚 “
𝑙2

`

𝑝2 ` 𝑞2 ` 𝑘 ¨ p𝑟2
ℎ

´ 𝑛2q
˘

` 𝑟4
ℎ

` 6𝑛2𝑟2
ℎ

´ 3𝑛4

2𝑟ℎ𝑙2
(4.36)

Just to make sure that the addition of the cosmological constant has not affected the
electromagnetic charges we calculate the charges to find

1
4𝜋

ż

BΣ

‹𝐹 “ 𝑞

´1
4𝜋

ż

BΣ

𝐹 “ 𝑝

(4.37)

Let us then make sure that our analogy holds for 𝑛 as a gravitomagnetic mass. As
we did for the initial Taub-NUT solution, we integrate the two-forms 𝑑𝜉 and ‹𝑑𝜉 over
the boundary at infinity.

´1
4𝜋

ż

BΣ

‹𝑑𝜉 “ 8

1
4𝜋

ż

BΣ

𝑑𝜉 “ ´8

(4.38)

They both diverge! This happens due to the factor that goes as 𝑟2 that comes with the
cosmological constant. To solve this we use the method introduced in [33] to tackle the
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problem. This method was used in the spherical case, albeit in a different formulation
to ours in [34, 35] It was also used in [36] for the spherical case.

This is a result of adding the cosmological constant. Without it, 𝑓 p𝑟q goes as 𝑟2

𝑟2

for large 𝑟. However when we add a cosmological constant, we find that 𝑓 p𝑟q starts
behaving as 𝑟4

𝑟2 which causes the divergence.

The solution to this is the use of another conserved two-form to cancel the diver-
gences. We do so by considering the two form 𝜔. It is related to the timelike killing
vector 𝜉 through

𝑑𝜔 “ ‹ 𝜉

p𝑑𝜔q
𝜇𝜈𝜌

“𝜖
𝜆𝜇𝜈𝜌

𝑔𝛿𝜆𝜉
𝛿

(4.39)

The mass and gravitomagnetic charges can then be calculated, we do it for the spherical
case here

´1
4𝜋

ż

𝑆2
8

𝑑𝜉 ` 2Λ ‹ 𝜔 “ 𝑚

1
4𝜋

ż

𝑆2
8

𝑑𝜉 ´ 2Λ ‹ 𝜔 “ ´𝑛

˜

1 `
4𝑛2

𝑙2

¸ (4.40)

The hodge dual of the mass is no longer just the nut parameter 𝑛. We can define a
new charge 𝑁 that represents the gravitomagnetic charge above. For now it is interesting
to note that this charge will differ across the three spacetimes. This will be discussed at
more length in chapter 5.
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Chapter 5

Taub-NUT AdS Thermodynamics

In chapter 4 we gave our attention to the Taub-NUT solution and especially to a fam-
ily of solutions that were parameterised through a dependence on 𝑘 . This dependence
changes the shape of the horizon. In this chapter we will see the effects of this parameter
on the thermodynamics.

We will first go through the dependence on 𝑘 , highlight the differences in the metrics
and some of the issues with dealing with the flat metric. We will also investigate how
the constants in the metric and in 𝐴𝜙 come into play.

5.1 A Deeper Look
In this sub-chapter we will recall what we found about the 𝑘-dependence of the

metric. Some of the results we presented in chapter 4 will be explained and derived in
more detail. We will delve deeper into the details of how these set the spacetimes apart.
Below, we see the most generic form of the 𝑘-dependent metric.

𝑑𝑠2
“ ´ 𝑓 p𝑟q

´

𝑑𝑡 ` 2𝑛𝑔p𝑥q𝑑𝜙

¯2
`

1
𝑓 p𝑟q

𝑑𝑟2
` p𝑟2

` 𝑛2
q

´

𝑑𝑥2

1 ´ 𝑘𝑥2 ` 𝑥2𝑑𝜙2
¯

(5.1)
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Under the transformations over 𝑥 and defining the value for 𝑘 we have shown that we
reach

𝑑𝑠2
k=-1 “ ´ 𝑓 p𝑟q

´

𝑑𝑡 ` 2𝑛p𝑐𝑜𝑠ℎp𝜃q ` 𝑐q𝑑𝜙

¯2
`

1
𝑓 p𝑟q

𝑑𝑟2
` p𝑟2

` 𝑛2
q

´

𝑑𝜃2
` 𝑠𝑖𝑛ℎ2

p𝜃q𝑑𝜙2
¯

𝑑𝑠2
k=0 “ ´ 𝑓 p𝑟q

´

𝑑𝑡 ` 2𝑛p𝑥2
` 𝑐q𝑑𝜙

¯2
`

1
𝑓 p𝑟q

𝑑𝑟2
` p𝑟2

` 𝑛2
q

´

𝑑𝑥2
` 𝑥2𝑑𝜙2

¯

𝑑𝑠2
k=1 “ ´ 𝑓 p𝑟q

´

𝑑𝑡 ´ 2𝑛p𝑐𝑜𝑠p𝜃q ` 𝑐q𝑑𝜙

¯2
`

1
𝑓 p𝑟q

𝑑𝑟2
` p𝑟2

` 𝑛2
q

´

𝑑𝜃2
` 𝑠𝑖𝑛2

p𝜃q𝑑𝜙2
¯

(5.2)
Where

𝑓 p𝑟q “
𝑙2p𝑝2 ` 𝑞2 ´ 2𝑚𝑟 ` 𝑘p𝑟2 ´ 𝑛2qq ` 𝑟4 ` 6𝑛2𝑟2 ´ 3𝑛4

𝑙2p𝑟2 ` 𝑛2q
(5.3)

A universal constraint on all of the solutions is the one imposed by requiring that
𝐴𝜇𝐴

𝜇 vanishes at the horizon. This results in the relation

𝑞 “
𝑝𝑛 ` Φ𝑒p𝑟

2
ℎ

` 𝑛2q

𝑟ℎ
(5.4)

It is interesting that the above coupling does not depend on the value of 𝑘 . As we
argued above, a careful choice of constants in the relation between 𝐴𝜙 and the generic
𝑔p𝑥q could result in a spacetime where the whole region outside the black hole horizon
can be described using one patch. This holds in the flat and hyperbolic cases but does not
hold for the spherical metric where only one of the strings is hideable at a time. Thus, at
least two patches are needed to fully cover the spacetime. Let us recall the relationship
between the constants

𝑐 k=1 “
𝑑 k=1 ˘ p𝑝 ` 2𝑛Φ𝑒q

Φ𝑒

𝑐 k=0 “
𝑑 k=0

Φ𝑒

𝑐 k=-1 “
𝑑 k=-1 ´ p𝑝 ` 2𝑛Φ𝑒q

Φ𝑒

(5.5)

5.2 Electromagnetic Charges and Potentials
As stated above, we start by fixing the one-form 𝐴 at the boundaries. This will reflect

in our thermodynamics later on as we will be fixing the electric potential and magnetic
charge at the boundaries.
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We will start from 𝐴, then operate on it with the exterior derivative to get 𝑑𝐴. We
then calculate the hodge dual of 𝑑𝐴. Taking the hodge dual of 𝑑𝐴 to be 𝑑𝐵, we then
calculate the one-form 𝐵. We use these four forms to calculate the electromagnetic
charges and potentials. Writing 𝐴 in form notation

𝐴 k=1 “
𝑛𝑝 ´ 𝑞𝑟 ` Φ𝑒p𝑟

2 ` 𝑛2q

𝑟2 ` 𝑛2 𝑑𝑡 `

˜

𝑝 ¨ 𝑐𝑜𝑠 𝜃 ` 𝑑 `
p𝑛𝑝 ´ 𝑞𝑟q

`

´ 2𝑛 ¨ 𝑐𝑜𝑠𝜃 ` 𝑐
˘

p𝑟2 ` 𝑛2q

¸

𝑑𝜙

𝐴 k=0 “
𝑛𝑝 ´ 𝑞𝑟 ` Φ𝑒p𝑟

2 ` 𝑛2q

𝑟2 ` 𝑛2 𝑑𝑡 `

˜

𝑝 ¨
´𝑥2

2
` 𝑑1

`
p𝑛𝑝 ´ 𝑞𝑟q

`

𝑛𝑥2 ` 𝑐1
˘

p𝑟2 ` 𝑛2q

¸

𝑑𝜙

𝐴 k=-1 “
𝑛𝑝 ´ 𝑞𝑟 ` Φ𝑒p𝑟

2 ` 𝑛2q

𝑟2 ` 𝑛2 𝑑𝑡 `

˜

𝑝 ¨ 𝑐𝑜𝑠ℎ𝜃 ` 𝑑 `
p𝑛𝑝 ´ 𝑞𝑟q

`

2𝑛 ¨ 𝑐𝑜𝑠ℎ 𝜃 ` 𝑐
˘

p𝑟2 ` 𝑛2q

¸

𝑑𝜙

(5.6)
We then compute 𝑑𝐴 using the method explained in appendix 𝐴.

𝑑𝐴𝑘“´1 “
2p𝑛2𝑞 ` 2𝑛𝑝𝑟 ´ 𝑞𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝑡 ^ 𝑑𝑟

2p2𝑛𝑐𝑜𝑠ℎ𝜃 ` 𝑐1qp𝑛2𝑞 ` 2𝑛𝑝𝑟 ´ 𝑞𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝑟 ^ 𝑑𝜙

2p2𝑛𝑐𝑜𝑠ℎ𝜃 ` 𝑐1qp𝑛2𝑝 ´ 2𝑛𝑞𝑟 ´ 𝑝𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝜃 ^ 𝑑𝜙

𝑑𝐴𝑘“0 “
2p𝑛2𝑞 ` 2𝑛𝑝𝑟 ´ 𝑞𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝑡 ^ 𝑑𝑟

p2𝑛𝑥2 ` 𝑐1qp𝑛2𝑞 ` 2𝑛𝑝𝑟 ´ 𝑞𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝑟 ^ 𝑑𝜙

2𝑥p𝑛2𝑝 ´ 2𝑛𝑞𝑟 ´ 𝑝𝑟2q

p𝑛2 ` 𝑟2q
𝑑𝜃 ^ 𝑑𝜙

𝑑𝐴𝑘“1 “
2p𝑛2𝑞 ` 2𝑛𝑝𝑟 ´ 𝑞𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝑡 ^ 𝑑𝑟

2p2𝑛𝑐𝑜𝑠𝜃 ` 𝑐1qp𝑛2𝑞 ` 2𝑛𝑝𝑟 ´ 𝑞𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝑟 ^ 𝑑𝜙

2𝑐𝑜𝑠𝜃p𝑛2𝑝 ´ 2𝑛𝑞𝑟 ´ 𝑝𝑟2q

p𝑛2 ` 𝑟2q
𝑑𝜃 ^ 𝑑𝜙

(5.7)
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We then get the hodge duals ‹𝑑𝐴

‹𝑑𝐴𝑘“´1 “2
𝑛2𝑝 ´ 2𝑛𝑞𝑟 ´ 𝑝𝑟2

p𝑛2 ` 𝑟2q2 𝑑𝑡 ^ 𝑑𝑟

´2p2𝑛𝑐𝑜𝑠ℎ𝜃 ` 𝑐1qp𝑛2𝑝 ´ 2𝑛𝑞𝑟 ´ 𝑝𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝑟 ^ 𝑑𝜙

´2𝑠𝑖𝑛ℎ𝜃p𝑛2𝑞 ` 2𝑛𝑝𝑟 ´ 𝑞𝑟2q

p𝑛2 ` 𝑟2q
𝑑𝜃 ^ 𝑑𝜙

‹𝑑𝐴𝑘“0 “2
𝑛2𝑝 ´ 2𝑛𝑞𝑟 ´ 𝑝𝑟2

p𝑛2 ` 𝑟2q2 𝑑𝑡 ^ 𝑑𝑟

´2p𝑛𝑥2 ` 𝑐1qp𝑛2𝑝 ` 2𝑛𝑞𝑟 ´ 𝑝𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝑟 ^ 𝑑𝜙

2𝑥p𝑞𝑟2 ´ 𝑛2𝑞 ´ 2𝑛𝑝𝑟q
p𝑛2 ` 𝑟2q

𝑑𝜃 ^ 𝑑𝜙

(5.8)

‹𝑑𝐴𝑘“1 “2
𝑛2𝑝 ´ 2𝑛𝑞𝑟 ´ 𝑝𝑟2

p𝑛2 ` 𝑟2q2 𝑑𝑡 ^ 𝑑𝑟

2p2𝑛𝑐𝑜𝑠𝜃 ` 𝑐1qp𝑛2𝑝 ´ 2𝑛𝑞𝑟 ´ 𝑝𝑟2q

p𝑛2 ` 𝑟2q2 𝑑𝑟 ^ 𝑑𝜙

´2𝑠𝑖𝑛𝜃p𝑛2𝑞 ` 2𝑛𝑝𝑟 ´ 𝑞𝑟2q

p𝑛2 ` 𝑟2q
𝑑𝜃 ^ 𝑑𝜙

(5.9)

Let us rename the two-form ‹𝑑𝐴 to 𝑑𝐵. We then need to solve the following tensor
equation to get 𝐵.

`

𝑑𝐵
˘

𝜇𝜈
“

`

B𝜇𝐵𝜈 ´ B𝜈𝐵𝜇
˘

(5.10)

This then results in a one form 𝐵

𝐵 k=1 “ 2
´𝑛𝑝 ´ 𝑞𝑟 ` 𝑐𝑚1p𝑟2 ` 𝑛2q

𝑟2 ` 𝑛2 𝑑𝑡 ` 2

˜

𝑝𝑐𝑜𝑠 𝜃 ` 𝑐𝑚1 `
p𝑛𝑞 ` 𝑝𝑟q

`

´ 2𝑛 ¨ 𝑐𝑜𝑠𝜃 ` 𝑐
˘

p𝑟2 ` 𝑛2q

¸

𝑑𝜙

𝐵 k=0 “
´𝑛𝑝 ´ 𝑞𝑟 ` 𝑐𝑚1p𝑟2 ` 𝑛2q

𝑟2 ` 𝑛2 𝑑𝑡 `

˜

𝑝
´𝑥2

2
` 𝑐𝑚2 `

p𝑛𝑞 ` 𝑝𝑟q
`

𝑛𝑥2 ` 𝑐1
˘

p𝑟2 ` 𝑛2q

¸

𝑑𝜙

𝐵 k=-1 “
´𝑛𝑝 ´ 𝑞𝑟 ` 𝑐𝑚1p𝑟2 ` 𝑛2q

𝑟2 ` 𝑛2 𝑑𝑡 `

˜

𝑝𝑐𝑜𝑠ℎ𝜃 ` 𝑐𝑚2 `
p𝑛𝑞 ` 𝑝𝑟q

`

2𝑛 ¨ 𝑐𝑜𝑠ℎ 𝜃 ` 𝑐
˘

p𝑟2 ` 𝑛2q

¸

𝑑𝜙

(5.11)
We are now in a position where we can calculate the charges at a constant-𝑟 surface.
Over each boundary there will be a term that has to do with the area of the space we are
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integrating over. We will be setting this factor to unity as it carries little significance in
terms of comparing between the properties of the three spacetimes.

𝑞p𝑟q “

ż

BΣ

𝑑𝐵 “
𝑞2p𝑟2 ´ 𝑛2 ´ 2𝑛𝑝𝑟q

𝑛2 ` 𝑟2

𝑝p𝑟q “

ż

BΣ

𝑑𝐴 “
𝑝2p𝑟2 ´ 𝑛2 ` 2𝑛𝑞𝑟q

𝑛2 ` 𝑟2

(5.12)

The change of each charge as 𝑟 change indicates that there is some charge distribution
between the horizon and the boundary at arbitrarily large 𝑟. This was explained for the
spherical case [37] by the existence of the charges along the misner strings, however
there are no strings for the flat horizon in particular. This hints that the main culprit is
the nut charge. There is a coupling between the charges that shows when we compare
the charges at infinity with the charges on the horizon.

𝑞ℎ “
Φ𝑒p𝑟

2
ℎ

´ 𝑛2q ´ 𝑛𝑝

𝑟ℎ

𝑝ℎ “ p𝑝 ` 2𝑛Φ𝑒q

(5.13)

The picture will become a bit clearer in a moment, but we will need to calculate the
electromagnetic potentials first. To calculate the potential we contract the corresponding
one-form with the timelike killing vector and check the potential difference between
both boundaries. It is important to note that we cannot define 𝐵 uniquely. However,
since we are only interested in the difference between the horizon and infinity this is not
a problem. This gives us

𝜉𝜇𝐴𝜇

���
𝑟Ñ8

´ 𝜉𝜇𝐴𝜇

���
𝑟“𝑟ℎ

“ Φ𝑒

𝜉𝜇𝐵𝜇

���
𝑟Ñ8

´ 𝜉𝜇𝐵𝜇

���
𝑟“𝑟ℎ

“ Φ𝑚 “
𝑝 ` 𝑛𝑉

𝑟ℎ

(5.14)

It is easy to verify that the charges at the horizon and at infinity are related by

𝑞ℎ “ 𝑞 ´ 2𝑛Φ𝑚

𝑝ℎ “ 𝑝 ` 2𝑛Φ𝑒

(5.15)
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5.3 Gravito-Magnetic Charges
We will be calculating the mass and the nut charge. Starting from the killing vector𝜉𝜇,

we will write it explicitly as a one-form 𝜉 before taking its exterior derivative. After
finding 𝑑𝜉 we will then find its hodge dual. We then find 𝜔 such that the integrals for
the mass and nut charge are finite.

𝜉𝑘“´1 “ ´ 𝑓 p𝑟q𝑑𝑡 ´ 𝑓 p𝑟qp2𝑛𝑐𝑜𝑠ℎ𝜃 ` 𝑐q𝑑𝜙

𝜉𝑘“0 “ ´ 𝑓 p𝑟q𝑑𝑡 ´ 𝑓 p𝑟qp2𝑛𝑥2
` 𝑐q𝑑𝜙

𝜉𝑘“1 “ ´ 𝑓 p𝑟q𝑑𝑡 ` 𝑓 p𝑟qp2𝑛𝑐𝑜𝑠𝜃 ` 𝑐q𝑑𝜙

(5.16)

Applying the exterior derivative gives us

𝑑𝜉𝑘“´1 “ 2 𝑓 1
p𝑟qp𝑑𝑡 ^ 𝑑𝑟q ´ 2 𝑓 1

p𝑟qp2𝑛𝑐𝑜𝑠ℎ𝜃 ` 𝑐qp𝑑𝑟 ^ 𝑑𝜙q ´ 4𝑛 𝑓 p𝑟q𝑠𝑖𝑛ℎ𝜃p𝑑𝜃 ^ 𝑑𝜙q

𝑑𝜉𝑘“0 “ 2 𝑓 1
p𝑟qp𝑑𝑡 ^ 𝑑𝑟q ´ 2 𝑓 1

p𝑟qp2𝑛𝑥2
` 𝑐1

qp𝑑𝑟 ^ 𝑑𝜙q ´ 4𝑛 𝑓 p𝑟q𝑥p𝑑𝑥 ^ 𝑑𝜙q

𝑑𝜉𝑘“1 “ 2 𝑓 1
p𝑟qp𝑑𝑡 ^ 𝑑𝑟q ` 2 𝑓 1

p𝑟qp2𝑛𝑐𝑜𝑠𝜃 ` 𝑐qp𝑑𝑟 ^ 𝑑𝜙q ´ 4𝑛 𝑓 p𝑟q𝑠𝑖𝑛𝜃p𝑑𝜃 ^ 𝑑𝜙q

(5.17)
Taking the hodge dual

‹𝑑𝜉𝑘“´1 “
´4𝑛 𝑓 p𝑟q
𝑟2 ` 𝑛2 p𝑑𝑡 ^ 𝑑𝑟q `

4 𝑓 p𝑟qp𝑛𝑐𝑜𝑠ℎ𝜃 ` 𝑐1q𝑛

𝑛2 ` 𝑟2 qp𝑑𝑟 ^ 𝑑𝜙q

´ 2𝑛 𝑓 1
p𝑟q𝑠𝑖𝑛ℎ𝜃p𝑛2

` 𝑟2
qp𝑑𝜃 ^ 𝑑𝜙q

‹𝑑𝜉𝑘“0 “
´4𝑛 𝑓 p𝑟q
𝑟2 ` 𝑛2 p𝑑𝑡 ^ 𝑑𝑟q `

4 𝑓 p𝑟qp𝑛𝑥2 ` 𝑐1q𝑛

𝑛2 ` 𝑟2 p𝑑𝑟 ^ 𝑑𝜙q

´ 2𝑛 𝑓 1
p𝑟q𝑥p𝑛2

` 𝑟2
qp𝑑𝑥 ^ 𝑑𝜙q

‹𝑑𝜉𝑘“1 “
´4𝑛 𝑓 p𝑟q
𝑟2 ` 𝑛2 p𝑑𝑡 ^ 𝑑𝑟q ´

4 𝑓 p𝑟qp𝑛𝑐𝑜𝑠𝜃 ` 𝑐1q𝑛

𝑛2 ` 𝑟2 qp𝑑𝑟 ^ 𝑑𝜙q

´ 2𝑛 𝑓 1
p𝑟q𝑠𝑖𝑛𝜃p𝑛2

` 𝑟2
qp𝑑𝜃 ^ 𝑑𝜙q

(5.18)

We now want to find 𝜔 so that the integrals for the mass and the nut charge do not
diverge. We first calculate 𝑑𝜔 through

𝑑𝜔 “ ‹ 𝜉

p𝑑𝜔q
𝜇𝜈𝜌

“𝜖
𝜆𝜇𝜈𝜌

𝑔𝛿𝜆𝜉
𝛿

(5.19)

To calculate 𝜔 we need to solve the differential equations that result from

p𝑑𝜔q
𝜇𝜈𝜌

“ 3∇r𝜇𝜔𝜈𝜌s (5.20)
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Though, 𝜔 is not uniquely defined, we use this to make sure that our form for it
cancels the divergences for both the mass and the nut charge. The two-form for each
value of 𝑘 take the form

𝜔𝑘“´1 “
2𝑛
3

p𝑑𝑡 ^ 𝑑𝑟q ´
4𝑛2

3
𝑐𝑜𝑠ℎ𝜃p𝑑𝑟 ^ 𝑑𝜙q `

2𝑟
3

p𝑟2
` 𝑛2

qp𝑑𝜃 ^ 𝑑𝜙q

𝜔𝑘“0 “
2𝑛
3

p𝑑𝑡 ^ 𝑑𝑟q ´
2𝑥2𝑛2

3
p𝑑𝑟 ^ 𝑑𝑥q `

2𝑥𝑟
3

p𝑟2
` 𝑛2

qp𝑑𝑥 ^ 𝑑𝜙q

𝜔𝑘“1 “
2𝑛
3

p𝑑𝑡 ^ 𝑑𝑟q `
4𝑛2

3
𝑐𝑜𝑠𝜃p𝑑𝑟 ^ 𝑑𝜙q `

2𝑟
3

p𝑟2
` 𝑛2

qp𝑑𝜃 ^ 𝑑𝜙q

(5.21)

The last form we need to consider before calculating the mass and the nut charge is
the dual to 𝜔. All that remains is to operate on 𝜔 with the hodge operator.

‹𝜔𝑘“´1 “
2𝑟
3

p𝑑𝑡 ^ 𝑑𝑟q ´
2𝑐 𝑓 p𝑟q𝑛
3𝑠𝑖𝑛ℎ𝜃

p𝑑𝑡 ^ 𝑑𝜙q ´
2𝑟p2𝑛𝑐𝑜𝑠ℎ𝜃 ` 𝑐q

3
p𝑑𝑟 ^ 𝑑𝜙q

´

2𝑛
´

p𝑛2 ` 𝑟2q𝑐𝑜𝑠ℎ2𝜃 ´ 2𝑐𝑛 𝑓 p𝑟q𝑐𝑜𝑠ℎ𝜃 ´ 𝑓 p𝑟q𝑐2 ´ 𝑛2 ´ 𝑟2
¯

3𝑠𝑖𝑛ℎ𝜃
p𝑑𝜃 ^ 𝑑𝜙q

‹𝜔𝑘“0 “
2𝑟
3

p𝑑𝑡 ^ 𝑑𝑟q ´
2𝑐 𝑓 p𝑟q𝑛

3𝑥
p𝑑𝑡 ^ 𝑑𝜙q ´

2𝑟p2𝑛𝑥2 ` 𝑐1q

3
p𝑑𝑟 ^ 𝑑𝜙q

`

2𝑛
´

𝑐1p𝑛𝑥2 ` 𝑐1q 𝑓 p𝑟q ´ p𝑛2 ` 𝑟2q𝑥2
¯

3𝑥
p𝑑𝑥 ^ 𝑑𝜙q

‹𝜔𝑘“1 “
2𝑟
3

p𝑑𝑡 ^ 𝑑𝑟q `
2𝑐 𝑓 p𝑟q𝑛

3𝑠𝑖𝑛𝜃
p𝑑𝑡 ^ 𝑑𝜙q `

𝑟p4𝑛𝑐𝑜𝑠𝜃 ` 𝑐q

3
p𝑑𝑟 ^ 𝑑𝜙q

`

2𝑛
´

p𝑛2 ` 𝑟2q𝑐𝑜𝑠2𝜃 ` 𝑐2𝑛 𝑓 p𝑟q𝑐𝑜𝑠𝜃 ` 𝑓 p𝑟q𝑐2 ´ 𝑛2 ´ 𝑟2
¯

3𝑠𝑖𝑛𝜃
p𝑑𝜃 ^ 𝑑𝜙q

(5.22)
All that remains now is to carry out the integral of the 2-forms over the boundary.

It is important to note that one of the conditions for convergence is the vanishing of 𝑐.
This is the first time we find a physical charge that depends on 𝑐. The mass for all three
spacetimes is the same. but the gravitomagnetic charge differs.

´1
4𝜋

ż

B𝑀

‹𝑑𝜉 ` 2Λ𝜔 “ 𝑚 (5.23)
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The gravitomagnetic charge 𝑁 takes the following form

𝑁𝑘“´1 “
1

4𝜋

ż

B𝑀

𝑑𝜉 ´ 2Λ ‹ 𝜔 “ 𝑛

˜

1 ´
4𝑛2

𝑙2

¸

𝑁𝑘“0 “
1

4𝜋

ż

B𝑀

𝑑𝜉 ´ 2Λ ‹ 𝜔 “ ´
𝑛3

𝑙2

𝑁𝑘“1 “
1

4𝜋

ż

B𝑀

𝑑𝜉 ´ 2Λ ‹ 𝜔 “ ´𝑛

˜

1 `
4𝑛2

𝑙2

¸

(5.24)

One important quantity that we have not discussed, yet, is the angular momentum.
As with the conserved quantities above, we calculate it through a two-form on the bound-
ary. To get that two-form we first take the exterior derivative of the killing vector 𝜒𝜇 “ B𝜙.

As was noted in [38, 39]the angular momentum depends on the value of the con-
stant 𝑐. Above we noted that the condition for the non-divergence of the nut charge
𝑁 depends on the vanishing of this constant. This is also the case for the angular mo-
mentum. It was noted that if we subtract an𝑚 “ 0 solution we get a finite value of 3𝑐𝑚𝑛.

We will not be treating the angular momentum as one of our thermodynamic param-
eters and hence will choose 𝑐 such that, first of all 𝑁 does not diverge, and the angular
momentum vanishes. There is one remaining problem, though.

The flat spacetime has a non-vanishing angular momentum. Even if we set 𝑐 “ 0.
In fact, if we calculate its angular momentum through the use of the killing vector 𝜒𝜇

we find

𝐽𝑘“0 “ ´
1

8𝜋

ż

B𝑀

‹𝑑𝜒 “ 8 (5.25)

The case is even worse than that found in the spherical and hyperbolic cases where a
simple setting of 𝑐 to zero removes divergence. The main problem lies in the term that
needs to vanish for the divergence to be cancelled. Let us first consider an integral over
the boundary of constant 𝑟 where we integrate over the disc. For a region where 𝑥 goes
from zero to 𝐿, the area is that of a disc, 𝜋𝐿2. To cancel the divergence, the term that
needs to vanish takes the form

𝐿2
p𝐿2

` 2𝑐q (5.26)

Not only does it not vanish for arbitrary values of 𝑐, there are no values of 𝑐 for which
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it does. The reason here is that we cannot set 𝑐 a priori to be the same value as 𝐿2, since
it is not precisely defined be a certain finite value. However, it is still possible to rid us
of this divergence.

We rely on a similar trick to the one we did to cancel the divergence of the mass.
Making use of the fact that 𝜉𝜇 is a killing vector, we find

𝑑𝜓 “ ‹ 𝜒

p𝑑𝜓q
𝜇𝜈𝜌

“𝜖
𝜆𝜇𝜈𝜌

𝑔𝛿𝜆𝜒
𝛿

(5.27)

This can then be used to calculate a non-divergent angular momentum that does
depend on the value of 𝑐. It is important to maintain that this does not mean to say that
this angular momentum is not divergent. However, one can either choose to subtract an
𝑚 “ 0 background to find a non-divergent value or simply set 𝑐 “ 0 as we will do in our
case. Thus, for 𝑐 “ 0

𝐽𝑘“0 “
1

8𝜋

ż

B𝑀

‹𝑑𝜒 ` 𝜓 “ 0 (5.28)

5.4 Action Calculation
The action, as we mentioned in chapter 3, is constituted of three different integrals.

The Einstein-Hilbert-Maxwell term which is concerned with the bulk. The first boundary
term, the Gibbons-Hawking one, treats the fact that the Ricci scalar 𝑅 is a function is
the second order derivatives of the metric. This is a problem because the path integral
formalism used to calculate the temperature requires the variation to be on first derivatives
at most. The last term is the counterterm, which is used to normalise the action as it
diverges without its presence.

𝐼 “ 𝐼EH ` 𝐼 GH ` 𝐼CT (5.29)

Leading to
𝐼 “

𝛽

2𝑙2𝑟ℎ
pp𝑛𝑉 ` 𝑝q

2
` 𝑚𝑟ℎ ´𝑉2𝑟2

ℎq𝑙
2

´ 3𝑛2𝑟2
ℎ ´ 𝑟4

ℎq (5.30)

It is very important to note the type of ensemble we are in. Since we fix 𝐴𝜇 this
entails that we will be fixing the magnetic charge at the horizon along with the electric
potential. The electric charge can be fixed at the boundary by adding the following term
to the action
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𝐼𝑄 “
´1
4𝜋

ż

B𝑀

𝑑3𝑥
?

´ℎ 𝑛𝑎𝐹
𝑎𝑏𝐴𝑏 (5.31)

However, we will not be changing our ensemble from the mixed to the canonical one.
This owes to the substitutions needed when we make the choice on the fixed parameters.
Since we will be fixing the electric potential Φ𝑒, we will substitute for the terms that
contain the electric charge 𝑞. This is to ensure that the action is written in terms of the
thermodynamic variables that are fixed.

Working in the Canonical ensemble introduces terms that make finding an analytical
solution for the critical points become much harder. The spherical case, treated through
the canonical ensemble, was done recently,[40] but the solution for the critical points
was only done perturbatively. It is important to note that their treatment differs from
ours in many ways.

The integrals over the non-𝑟 boundaries introduce a scaling term to the action and
the charges. As we have stated previously, we have chosen to set the weights to unity
so that we can compare all the spacetimes depending on the parameter 𝑘 . The values
would not change the behaviour at all, which is our main interest.

The above expression for the action is subtly deceiving. There is no explicit depen-
dence on 𝑘 in the expression. However, there is a dependence which can be highlighted
by examining the mass 𝑚, and periodicity 𝛽. We can see that below

𝛽 “
4𝜋𝑟ℎ𝑙2p𝑟2

ℎ
` 𝑛2q

3p𝑟2
ℎ

` 𝑛2q2 ´ 𝑙2p𝑝2 ` 𝑞2 ´ 𝑘 ¨ p𝑟2
ℎ

` 𝑛2qq
(5.32)

𝑚 “
𝑙2

`

𝑝2 ` 𝑞2 ` 𝑘 ¨ p𝑟2
ℎ

´ 𝑛2q
˘

` 𝑟4
ℎ

` 6𝑛2𝑟2
ℎ

´ 3𝑛4

2𝑟ℎ𝑙2
(5.33)

As we stated above, it’s important to be working in terms of our thermodynamic pa-
rameters. We will be changing several of the variables, 𝑙, 𝑞, and 𝑝. We will substitute
𝑙 because we will be varying the pressure. For the charges, it is dependent on the
construction of the thermodynamic system itself. As we discussed above, it depends on

55



what parameters we have fixed. The substitutions take the following form:

𝑙 “

c

3
8𝜋𝑃

𝑞 “
𝑛p𝑝ℎ ´ 2𝑛Φ𝑒q ` Φ𝑒p𝑟

2
ℎ

` 𝑛2q

𝑟ℎ

𝑝 “ 𝑝ℎ ´ 2𝑛Φ𝑒

(5.34)

After making the appropriate substitutions we arrive at

𝛽 “
4𝜋𝑟3

´𝑝2
ℎ

` 𝑘𝑟2 ` 2𝑛𝑝ℎ𝑉 ` p𝑛2 ` 𝑟2qp8𝑃𝜋𝑟2 ´𝑉2q
(5.35)

𝑚 “
𝑎

1

6𝑟
6
ℎ

` 𝑎
1

4 ¨ 𝑟4
ℎ

` 𝑎
1

2 ¨ 𝑟2
ℎ

` 𝑎
1

0

6𝑟3
ℎ

(5.36)

Where the coefficients 𝑎𝑖 are

𝑎
1

6 “ 8𝜋𝑃

𝑎
1

4 “
`

48𝑛2𝜋𝑃 ` 3pΦ2
𝑒 ` 𝑘q

˘

𝑎
1

2 “ 3
`

p𝑝ℎ ´ 𝑛Φ𝑒q
2

` 𝑛2
pΦ2

𝑒 ´ 𝑘q
˘

´ 24𝑛4𝜋𝑃

𝑎
1

0 “ 3𝑛2
p𝑝ℎ ´ 𝑛Φ𝑒q

2

(5.37)

One interesting feature of Taub-NUT-AdS is the possibility for an event horizon at
positive 𝑟ℎ with negative spacetime mass. This happens mainly due to the ´3𝑛4 term as
it makes a larger contribution for small 𝑟ℎ. Other negative contributions may also exist,
depending on the relative values of Φ𝑒 and 𝑘 . This will not be the last time their relative
values dictate something about the behaviour of our system.

5.5 K-Dependent Thermodynamics
In this sub-chapter we explore the different thermodynamic systems for the three

spacetimes. This will include checking whether it satisfies the Gibbs-Duhem relation,
the first law, and the Smarr relation. In checking the thermodynamic potential we will
take the appropriate derivatives with respect to our parameters and check them against
the charges we calculated. Checking the first law will be done similarly. The Smarr, and
Gibbs-Duhem relations are particular quantitative relationships between the parameters
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that need to be satisfied.

We begin by directly calculating the entropy of our spacetime. For the Taub-NUT-
AdS spacetime, there is more than one way to approach this. Some treatments [41] treat
the misner strings as having their own temperature and entropy. This is not the case in
our treatment. The main avenues where other approaches differ from ours are the misner
charge and potentials themselves.[42–44]The entropy in our formulation is the fourth of
the surface area of the horizon, this follows along the treatments found here.[36, 37, 45]
We calculate our entropy from the action directly through the equation presented below.

𝑆 “ B𝛽𝐼 ´ 𝐼 (5.38)

Which evaluates to
𝑆 “ 𝜋p𝑟2

ℎ ` 𝑛2
q (5.39)

The entropy turned out to be the same value we expected. We will now start checking
the other thermodynamic properties. We start with the chemical potential associated
with our partition function. As we stated in chapter 3, each partition function has an
associated chemical potential. That would be the Helmholtz energy for the canonical
ensemble or the grand canonical potential for the grand canonical ensemble. In our case
we refer to it as Ω. We expect it to be a function in the parameters that are fixed, namely
𝑇 , 𝑛, Φ𝑒, 𝑝ℎ, and 𝑃. The potential function can reached by dividing the action 𝐼 by 𝛽.
This owes to the following relation

𝑍𝑚𝑖𝑥𝑒𝑑 “ 𝑒´𝛽Ω
“ 𝑒´𝐼 (5.40)

Expressing the relation between the potential and thermodynamic parameters differ-
entially, we find

𝑑Ω “ ´𝑆𝑑𝑇 ` Φ𝑚𝑑𝑝ℎ ` Φ𝑛𝑑𝑛 ´ 𝑞𝑑Φ𝑒 `𝑉𝑑𝑃 (5.41)

If we were interested in knowing the thermodynamic volume, for example, we would
take the partial derivative of Ω with respect to 𝑃 with all the other parameters held
constant.

𝑉 “

´

BΩ

B𝑃

¯

𝑇,𝑝ℎ,𝑛,Φ𝑒

(5.42)

Which turns out to be
𝑉 “

4
3

p𝑟3
ℎ ` 3𝑟ℎ𝑛2

q (5.43)
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This formulae for the volume is a hint that we are moving in the right track. Whenever
we have a quantity that makes us different from the limiting case, we want to see that
we reduce to the limiting case when the charge dies. If the nut charge dies, we get
the Schwarzschild volume. For a general Taub-Nut spacetime, as 𝑛 dies we get the
corresponding spherically symmetric metric, be it a Schwarzchild or sner-Nordström
black hole.

We now vary the potential function with respect to the fixed parameters to find their
conjugate quantities

´

BΩ

BΦ𝑒

¯

𝑇,𝑝ℎ,𝑁,𝑃
“ ´𝑞

´

BΩ

B𝑝ℎ

¯

𝑇,𝑃,𝑛,Φ𝑒

“ Φ𝑚

´

BΩ

B𝑇

¯

𝑝ℎ,𝑃,𝑛,Φ𝑒

“ ´𝑆

(5.44)

Relying on 𝑛 being fixed on boundary, we then calculate its conjugate thermodynamic
potential

´

BΩ

B𝑛

¯

𝑇,𝑃,Φ𝑒,𝑝ℎ
“ Φ𝑛 (5.45)

Φ𝑛 “

`Φ2
𝑒

2 ´ 4𝜋𝑃𝑟2
ℎ

˘

𝑛3 ´ 𝑝ℎ𝑉𝑛
2 `

`

3Φ2
𝑒 ´ p𝑘 ` 𝑟2

ℎ
´ 4𝜋𝑃𝑟2

ℎ
q𝑟2
ℎ

` 𝑝2
ℎ

˘

𝑛
2 ´ 𝑝ℎΦ𝑒𝑟

2
ℎ

𝑟3
ℎ

(5.46)
We then move on to the first law. We define the total energy of the spacetime as

𝑈 “ B𝛽𝐼 ` 𝑞Φ𝑒 (5.47)

This results in

𝑈 “
4𝜋𝑃𝑟4 ` 3

2
`

8𝜋𝑃𝑛2 ` 𝑘 ` Φ2
𝑒

˘

𝑟ℎ ` 3
2p𝑝2

ℎ
´ 𝑛2Φ2

𝑒q

3 𝑟ℎ
(5.48)

It is easy to show that we could have reached this from Ω through the use of legendre
transformations. Below, we express the relation between differentials

𝑑𝑈 “ 𝑇𝑑𝑆 ` Φ𝑚𝑑𝑝ℎ ´ 𝑛𝑑Φ𝑛 ` Φ𝑒𝑑𝑞 `𝑉𝑑𝑃 (5.49)

We want to show as we did above that the relations hold when taking the partial derivative
of the internal energy.
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´

B𝑈

B𝑆

¯

𝑞,𝑝ℎ,Φ𝑛,𝑃
“ 𝑇,

´

B𝑈

B𝑝ℎ

¯

𝑆,𝑞,Φ𝑛,𝑃
“ Φ𝑚

´

B𝑈

BΦ𝑛

¯

𝑞,𝑝ℎ,𝑆,𝑃
“ ´𝑁,

´

B𝑈

B𝑞

¯

𝑆,𝑝ℎ,Φ𝑛,𝑃
“ Φ𝑒

(5.50)

´

B𝑈

B𝑃

¯

𝑆,𝑝ℎ,Φ𝑛,𝑞
“ 𝑉

We will now construct our Smarr relation. Let us consider each of our parameters.
We know that𝑈 varies as 𝐿, the entropy corresponds to an area and thus has 𝐿-dimension
2. Both 𝑞 and 𝑝 have dimension 1. The pressure has a dimension of ´2 while Φ𝑛, being
a potential, is dimensionless. This should result in the following Smarr relation

1 ¨𝑈 “ 2 ¨ p𝑇𝑆 ´𝑉𝑃q ` 1 ¨ p𝑞Φ𝑒 ` 𝑝ℎΦ𝑚q ` 0 ¨ 𝑛Φ𝑛 (5.51)

It is important to note that the internal energy above is related to the mass 𝑀 through
the following relation

𝑈 “ 𝑀 ´ 2𝑛Φ𝑛 (5.52)

inserting that into the Smarr formula leads to

𝑀 “ 2p𝑇𝑆 ` 𝑛Φ𝑛 ´𝑉𝑃q ` 𝑞Φ𝑒 ` 𝑝ℎΦ𝑚 (5.53)

The last thermodynamic relation we wish to satisfy is the Gibbs-Duhem relation. It
serves to describe the interactions between the different chemical potentials within a
system. In our case it takes the form

𝐼

𝛽
“ 𝑀 ´ 𝑛Φ𝑛 ´ 𝑇𝑆 ´ 𝑞Φ𝑒 (5.54)

It is straightforward to show that the relation holds.
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Chapter 6

Dyonic Taub-NUT Phase Structure

We will approach studying the phase transitions in these black holes as follows. We
will first find out the phases we are able to consider for phase diagrams. The criteria
will be that the black hole is thermally and mechanically stable. We will go over each
of them briefly before examining the expressions for the temperature and the pressure.
Subsequently, we take each of them and examine their behaviour as 𝑘 varies.

To assess the thermal stability of the system we will be considering the isobaric heat
capacity. Whenever it is positive we will have a thermally stable system, and unstable
otherwise. The isothermal compressibility will be used in determining whether a system
is mechanically stable or not.

After this general discussion we will provide examples for the transitions and critical
behaviour for each different value of 𝑘 . For each one we will talk about the kind of phase
transitions that can occur and the phase structure.

6.1 Thermal Stability
The heat capacity is traditionally the amount of heat required to increase the tem-

perature of a system. For a negative heat capacity taking away heat from the system
would increase its temperature. To examine this, let us first recall the expression for the
temperature

𝑇 “
8𝜋𝑃𝑟4

ℎ
` p8𝜋𝑃𝑛2 ´ Φ2

𝑒 ` 𝑘q𝑟2
ℎ

´ p𝑝ℎ ´ 𝑛Φ𝑒q
2

4𝜋𝑟3
ℎ

(6.1)

We will generally discuss the behaviour of the temperature as a function in 𝑟ℎ. How
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it acts at small and large values of 𝑟ℎ and how that reflects on the phase structure. We
appeal to information about the number of roots of the first derivative and the behaviour
of 𝑇 at the boundaries. We can use this to fully describe the possible phases. We will
then calculate the critical points that exist and the conditions for their existence.

We will separate the cases while describing the behaviour of the temperature with
respect to 𝑟ℎ. There is a distinct case when 𝑝ℎ “ 𝑛Φ𝑒. In this case the constant term in
the numerator vanishing, this affects the behaviour of 𝑇 in the limit where 𝑟ℎ approaches
zero. Whenever 𝑝ℎ ‰ 𝑛Φ𝑒 the constant term p𝑝ℎ ´ 𝑛Φ𝑒q

2 is always positive-definite,
and the temperature approaches negative infinity. If this does not happen, the sign of
the temperature in the limit of small 𝑟ℎ will depend on the 𝑟2

ℎ
coefficient. This will

significantly change the behaviour of the temperature with respect to the horizon radius.

We will begin with the more general case in mind. The core of the analysis will
pivot on the number of roots of the first derivative. We know that the leading term for an
AdS spacetime, where 𝑃 ą 0, is always positive. This governs the asymptotic behaviour
for 𝑇 as a function in 𝑟ℎ and means that it will be a strictly increasing function as 𝑟ℎ
becomes large. This is of value due to the nature of our entropy. In the previous chapter
we calculated the entropy of our spacetime to be

𝑆 “ 𝜋p𝑟2
ℎ ` 𝑛2

q (6.2)

Thus, it is always the case for positive 𝑟ℎ that
˜

B𝑆

B𝑟ℎ

¸

ą 0 (6.3)

The specific heat 𝑐
𝑃

for constant pressure can be expressed as

𝑐
𝑃

“

˜

B𝑆

B𝑟ℎ

¸

𝑃

˜

B𝑟ℎ

B𝑇

¸

𝑃

(6.4)

This leads to an easy identification of the heat capacity with the slope of the temper-
ature with respect to 𝑟ℎ. Whenever the slope is positive, the heat capacity is positive,
whenever it is negative the heat capacity is negative. Between 𝑟ℎ being zero, and large
𝑟ℎ, the number of roots of the first derivative will lead us into knowing the behaviour of
the function. The first derivative takes the following form
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B𝑇

B𝑟ℎ
“

8𝑃𝜋𝑟4
ℎ

` 𝑟2
ℎ
p´8𝑛2𝑃𝜋 ` Φ2

𝑒 ´ 𝑘q ` 3p𝑝ℎ ´ 𝑛Φ𝑒q
2

4𝜋𝑟4 (6.5)

The numerator is an even function in 𝑟 , this means that in the event that roots exist,
we will have at most two positive roots. Since the asymptotic behaviour on the domain
takes the function from approaching negative infinity to positive infinity, unless a root
coincides with an inflection point, we must have an even number of roots. Thus, if there
is only one positive root then it will also be an inflection point.

Let us first examine the case where we have two positive roots. Since the temperature
moves asymptotically from a negative to a positive value, the slope will change from
positive to negative at the first root of the derivative. This will be a local maxima. The
next root will then arrive at a local minima. The region between both roots will always
have a negative slope, making it always unstable. Since we cannot have more than two
positive roots, this tells us that we will have at most two stable phases.

Any two stable phases will be seperated by a region where no stable black hole can
exist. By virtue of a local maxima preceding a local minima on a function whose asymp-
totic behaviour is increasing, taking a horizontal line at constant temperature between
the maxima and minima will intersect the curve at three separate radii. The smallest one
will have a positive slope and will hence be stable, as will the largest. The middle one
will always have a negative heat capacity.

The two stable phases will exist at different radii. It’s important to note that the
entropy changes as the radius changes. This means that between the larger and smaller
black hole, there is a discontinuity in entropy. This discontinuity in entropy signifies the
existence of a first order phase transition. To examine the behaviour at a deeper level,
let us take a look at the second derivative

B2𝑇

B𝑟2
ℎ

“
𝑟2
ℎ
p𝑘 ` 8𝑛2𝑃𝜋 ´ Φ2

𝑒q ´ 6p𝑝ℎ ´ 𝑛Φ𝑒q
2

2𝜋𝑟5 (6.6)

The second derivative has at most one positive root for the same pressure. Since we
cannot have an odd number of first derivative roots unless the root is an inflection point,
this means that we have at most one of such. However, this doesn’t mean that there is
only one critical pressure. This will become clearer in our discussion of mechanical
stability. Whenever this happens, we will have a critical point. A critical point occurs
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when
B𝑇

B𝑟ℎ
“

B2𝑇

B𝑟2
ℎ

“ 0 (6.7)

The possible positive roots of the first derivative are

𝑟ℎ “
1
4

g

f

f

e

8𝑛2 `
𝑘

𝑃𝜋
´

Φ2
𝑒

𝑃𝜋
˘

b

pΦ2
𝑒 ´ 𝑘 ´ 8𝑛2𝑃𝜋q2 ´ 96𝑃𝜋p𝑝ℎ ´ 𝑛Φ𝑒q

2

𝑃𝜋
(6.8)

The critical point occurs at

𝑟ℎ “
1
4

d

p8𝑛2𝑃𝜋 ` 𝑘 ´ Φ2
𝑒q

𝑃𝜋
(6.9)

It is easy to see that the radius at which the critical point occurs is the same as the
roots whenever the portion after the ˘ sign is zero. Thus, we have a region that expands
or contracts until it disappears completely. At the point where it just disappears, the
coinciding roots signify the merging of the largest and smallest radii. At this point a
second order phase transition occurs; there is no discontinuity in the entropy.

By solving for the case where the second square root vanishes, we can examine
the values at which the critical point occurs. The condition for the critical point gives
two independent equations, in principle, we can use that to parameterise two of the
unknowns in term of the other variables. We use that to solve for the critical radius and
the critical pressure. We can then simply plug these expressions into the equation for
the temperature to get its critical value. We show each critical value below

𝑇𝑐 “
𝑘𝑟2
𝑐 ` 8𝜋𝑛2𝑃𝑐𝑟

2
𝑐 ´ 𝑛2Φ2

𝑒 ` 2𝑛𝑝ℎΦ𝑒 ` 8𝜋𝑃𝑐𝑟4
𝑐 ´ 𝑝ℎ

2 ´ 𝑟2
𝑐Φ

2
𝑒

4𝜋𝑟3
𝑐

𝑟𝑐 “

a

𝑘 ` 8𝜋𝑛2𝑃𝑐 ´ Φ2
𝑒

4
?
𝜋

?
𝑃𝑐

𝑃𝑐 “
𝑎𝑐 `

?
𝑏𝑐

128𝜋2𝑛4

𝑎𝑐 “ 96𝜋𝑝ℎ2
´ 16𝜋𝑘𝑛2

` 112𝜋𝑛2Φ2
𝑒 ´ 192𝜋𝑛𝑝ℎΦ𝑒

𝑏𝑐 “ p𝑎𝑐q
2

´ 256𝜋2𝑛4
p𝑘2

´ 2𝑘Φ2
𝑒 ` Φ4

𝑒q

(6.10)

Though, we have been discussing the 𝑝ℎ ‰ 𝑛Φ𝑒 case, none of our calculations are
contingent on this condition. In this case the temperature will no longer always approach
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negative infinity as 𝑟ℎ approaches zero. This is due to the positive definite term van-
ishing and the behaviour being dominated by the 𝑟2

ℎ
term. When this term is negative,

the asymptotic behaviour will approach negative infinity and when the term is positive
it will approach positive infinity.

This then results in Hawking-Page-like behaviour whenever the term is positive. As
𝑃 changes, however, a transitions occurs. There is no critical point for this transition,
though. For the vanishing of the second derivative in this case the behaviour must be
independent of 𝑟ℎ. This means that both lower order terms vanish for the first derivative.
Since 𝑃 is positive-definite, this means that there is no way for the first derivative to
vanish. In fact it then becomes a straight line starting at the origin.

In this case, when 𝑃 ă 𝑃𝑐 we get Hawking-Page-like behaviour, 𝑃 “ 𝑃𝑐 results in
completely linear behaviour and a naked singularity, and for 𝑃 ą 𝑃𝑐 we get a black hole
that is everywhere stable. This is very similar to the variation with the charges in the
sner-Nordström-AdS case.

6.2 Mechanical Stability
The compressibility is the instantaneous change in volume under the variation of

pressure. For a system with positive compressibility, when there is an isothermal
increase in pressure, there will be a decrease in volume. In contrast, a system with
negative compressibility will see its volume increase under an increase in pressure. We
use this criteria to find the stable cases where compressibility is positive. We can begin
by examining the pressure

𝑃 “
4𝜋𝑟3

ℎ
𝑇 ` 𝑟2

ℎ
pΦ2

𝑒 ´ 𝑘q ` p𝑝ℎ ´ 𝑛Φ𝑒q
2

8𝜋𝑟2p𝑛2 ` 𝑟2
ℎ
q

(6.11)

We will follow in the steps of our analysis for the temperature. The behaviour is
similar in the sense that we can see that whether 𝑝ℎ “ 𝑛 ¨ Φ𝑒 or not will influence the
asymptotic behaviour of the pressure in the limit of small 𝑟ℎ. We will be considering
the more general case first before seeing how matters differ for this case. Let us first
consider the isothermal compressibility

𝜅 “ ´
1
𝑉

˜

B𝑉

B𝑃

¸

𝑇

(6.12)
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We will appeal to a similar trick to the one we used with the thermal capacity. Lets
us consider the volume and how it changes with the temperature. The partial derivative
for 𝑉 with respect to 𝑟ℎ will always be positive definite whenever 𝑟ℎ ą 0. This allows us
to consider

𝜅 “ ´
1
𝑉

˜

B𝑉

B𝑟ℎ

¸

𝑇

˜

B𝑟ℎ

B𝑃

¸

𝑇

(6.13)

Thus, whenever the first derivative for the pressure with respect to 𝑟ℎ is negative, we
have positive compressibility. When the lowest order term is positive definite, we then
have that 𝑃 approaches positive infinity for small 𝑟ℎ. I all cases, 𝑃 will be approaching
zero from above in the limit where 𝑟ℎ tends to infinity. This is because the temperature
being positive definite.

We will proceed with calculating the first and second derivatives of the pressure.

B𝑃

B𝑟ℎ
“

´2𝜋𝑟5
ℎ
𝑇 ` 𝑟4

ℎ
p𝑘 ´ Φ2

𝑒q ` 2𝑛2𝜋𝑟3
ℎ
𝑇 ´ 2𝑟2

ℎ
p𝑝ℎ ´ 𝑛Φ𝑒q

2 ´ 𝑛2p𝑝ℎ ´ 𝑛Φ𝑒q
2

4𝜋𝑟3
ℎ
p𝑛2 ` 𝑟2

ℎ
q2

B2𝑃

B𝑟2
ℎ

“
4𝜋𝑟7

ℎ
𝑇 ` 3𝑟6

ℎ
pΦ2

𝑒 ´ 𝑘q ´ 12𝑛2𝜋𝑟5
ℎ
𝑇 ` 𝑟4

ℎ
p𝑘𝑛2 ` 10𝑝2

ℎ
´ 20𝑛𝑝ℎΦ𝑒 ` 9𝑛2Φ2

𝑒q

4𝜋𝑟4
ℎ
p𝑛2 ` 𝑟2

ℎ
q3

`
𝑟2
ℎ
p9𝑛2p𝑝ℎ ´ 𝑛Φ𝑒q

2q ` 3𝑛4p𝑝ℎ ´ 𝑛Φ𝑒q
2

4𝜋𝑟4
ℎ
p𝑛2 ` 𝑟2

ℎ
q3

(6.14)
The first derivative reinforces the analysis we did above, for low 𝑟ℎ the compress-

ibility is always positive provided that 𝑝ℎ ‰ 𝑛Φ𝑒. It would be the converse in the case
that it is. We cannot explicitly solve for the roots of the equation since it is a fifth degree
polynomial with arbitrary coefficients. What we can do, is check if we can solve both the
above equations together for the critical point(s). In practice, a slight variation around
the critical point leads us to the roots of the first derivative.

It is interesting to note the difference between the expressions above and those for
the derivatives of the temperature. We can no longer ascertain propositions so simply.
The equations above do not allow us to easily claim the number of critical points as we
previously did. The behaviour is richer and more complex. We move on to calculating
the critical points through

B𝑃

B𝑟ℎ
“

B2𝑃

B𝑟2
ℎ

“ 0 (6.15)
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The critical points occur at

𝑃𝑐 “
𝑇𝑐𝑟𝑐 ` pΦ2

𝑒 ´ 𝑘q

2p𝑛2 ` 𝑟2
𝑐q

`
p𝑞 ´ 𝑛Φ𝑒q

2

8𝜋𝑟2
𝑐p𝑛2 ` 𝑟2

𝑐q

𝑇𝑐 “
2p𝑝ℎ ´ 𝑛Φ𝑒q

2

𝜋𝑟3
𝑐

𝑟𝑐 “

g

f

f

e

6p𝑝ℎ ´ 𝑛Φ𝑒q
2 ˘

b

6p𝑝ℎ ´ 𝑛Φ𝑒q
2 ´ 12𝑛2p𝑘 ´ Φ2

𝑒qp𝑝ℎ ´ 𝑛Φ𝑒q
2

2p𝑘 ´ Φ2
𝑒q

(6.16)

As we had stated above, it is possible that we have more than one critical point. We
manipulate the expression for the critical radius to find the cases in which it is real. This
can allow us to establish the conditions for the existence or non-existence of critical
behaviour. This highlights the usefulness of the use of 𝑘 in our analysis. We can now
tell how the existence of critical points depends on horizon geometry.

We separate treat each possible critical radius separately. Let us denote

𝑟𝑐1 “

g

f

f

e

6p𝑝ℎ ´ 𝑛Φ𝑒q
2 `

b

6p𝑝ℎ ´ 𝑛Φ𝑒q
2 ´ 12𝑛2p𝑘 ´ Φ2

𝑒qp𝑝ℎ ´ 𝑛Φ𝑒q
2

2p𝑘 ´ Φ2
𝑒q

𝑟𝑐2 “

g

f

f

e

6p𝑝ℎ ´ 𝑛Φ𝑒q
2 ´

b

6p𝑝ℎ ´ 𝑛Φ𝑒q
2 ´ 12𝑛2p𝑘 ´ Φ2

𝑒qp𝑝ℎ ´ 𝑛Φ𝑒q
2

2p𝑘 ´ Φ2
𝑒q

(6.17)

For 𝑟𝑐1 , the condition for existence is
˜

`

𝑝ℎ ď 𝑛Φ𝑒 ´

a

𝑘𝑛2 ´ 𝑛2Φ2
𝑒

?
3

˘

_
`

𝑝ℎ ě 𝑛Φ𝑒 `

a

𝑘𝑛2 ´ 𝑛2Φ2
𝑒

?
3

˘

¸

^
`

Φ2
𝑒 ă 𝑘

˘

(6.18)
While for 𝑟𝑐2 there are two possibilities for existence. Whenever any of the below
situations occur, 𝑟𝑐2 will exist

˜

`

𝑝ℎ ď 𝑛Φ𝑒 ´

a

𝑘𝑛2 ´ 𝑛2Φ2
𝑒

?
3

˘

_
`

𝑝ℎ ě 𝑛Φ𝑒 `

a

𝑘𝑛2 ´ 𝑛2Φ2
𝑒

?
3

˘

¸

^
`

Φ2
𝑒 ă 𝑘

˘

(6.19)
p𝑘 ă Φ2

𝑒q ^ p𝑝ℎ ‰ 𝑛Φ𝑒q (6.20)

It is now clear that there are two distinct cases which depend on the relative values
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of 𝑘 and Φ2
𝑒. Whenever 𝑘 is less than Φ2

𝑒 we will have one critical point so long as
𝑝ℎ ‰ 𝑛Φ𝑒. However in the case where 𝑘 is greater than Φ2

𝑒, we could have either have
two critical points, one critical point, or none, depending on the value of 𝑝ℎ.

The above conditions allow us to know what we are looking for when we are explor-
ing the phase structures of the different spacetimes. For example, 𝑟𝑐1 only exists for the
spherical case since it is impossible for Φ2

𝑒 to be less than zero or negative one. However,
this guarantees the existence of a critical point whenever 𝑝ℎ ‰ 𝑛Φ𝑒. In contrast the
existence of critical points is not guaranteed for Φ𝑒 ă 1.
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6.3 Stability and Phase Structure For Hyperbolic Hori-
zon Geometry

For the hyperbolic geometry, we have that 𝑘 “ ´1. We will examine the existing
phases for the hyperbolic geometry by considering the available phases. Upon finding
the stable cases, we will find which phase is preferable.

Below, we plot the case where the pressure is just above 𝑃𝑐
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Figure 6.1: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.0281

Above the critical pressure we have a region where the slope is negative. This region
is physically unstable. This means that we will have one stable region to its left, and one
to its right. Between the local minima and the local maxima, there is a region where the
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black hole can stably exist at two different radii, but at the same temperature.

If we were to decrease the pressure until we reach the critical pressure, we will see
that this behaviour will cease to exist.
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Figure 6.2: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.0281

When we decrease it further, the graph continues to be monotonic. This is the only
critical point that exists for the hyperbolic geometry as we found out above in our analysis
for the mechanical stability. Only one critical point exists for the hyperbolic and flat
geometries.

Above the critical pressure we find that a first order phase transition occurs. Below
there transitions are second order. Since the function becomes monotonic, no two radii
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share the same temperature and there are no unstable regions. This then shows us that
there is no discontinuity in the entropy and there is no region where a first order phase
transition occurs.

When we plot the temperature with the radius, varying the pressure around the critical
value we get
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Figure 6.3: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.0281

We now move on to plotting the pressure versus the horizon radius. As opposed
to the temperature graph where the positive slope indicated stability, the case here is
the opposite. In regions where the slope is negative, the phase will be a stable one.
Whenever it is positive, the phase is not physical.

The graphs above were all isobaric. An isobaric process is one that occurs at constant
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pressure. The ones we will be examining now are isothermal. An isothermal process
is a process where the temperature remains fixed. We begin by showing the existence
of a region where there is a phase transition. We plot the pressure above the critical
temperature below
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Figure 6.4: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑇𝑐 “ 0.0243

We can clearly see that there is a region where the black hole is unstable. This region
is then replaced using the Maxwell equal area law. This entails that a line that crosses
the unstable region with an area bound between itself and the graph, will intersect at two
different radii on either side. When the areas on either side of the line and the graph are
equal, these radii are the physical ones at which the transition occurs.

As we have seen before in the temperature case, we will examine the effect of altering
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the isotherm so that we cross the threshold of the critical temperature. We then get this
behaviour
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Figure 6.5: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑇𝑐 “ 0.0243

The behaviour then becomes monotonous as we cross into the region where 𝑇 ă 𝑇𝑐.
To find out which of the phases, the small or the large radius is more stable we will
examine the variation with the chemical potential.

When the chemical potential is smaller we will have a region that is more stable than
the other. Some regions may be stable in the sense that they have positive heat capacity
and compressibility, however, that does not mean that they are preferred. To figure out
which one is preferred we plot the potential with the pressure.
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Figure 6.6: Isobaric plot for the chemical potential with respect to change in the horizon radius.
Φ𝑒 “ 0.3, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑇𝑐 “ 0.570

Instead of using the Maxwell equal area law directly, we make use of the fact that the
two stable phases have the same chemical potential and lie on the same isotherm. This
then allows us to solve for the radii in terms of our variables. Once that is the case we
can the substitute in the term for the pressure or the temperature to plot the phase diagram.

The phase diagram shows us where there is a homogeneous transition and where the
transition is first order. Any path that cuts a solid line in the phase diagram contains a
first order phase transition. This means that in passing this line, the system endures a
discontinuity in its entropy. We plot the phase diagram for the hyperbolic case below.

73



Critical Point

Large bH

Small bH

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T0.0

0.1

0.2

0.3

0.4

0.5
P

Figure 6.7: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1.5, 𝑛 “ 1.9, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.0820, 𝑇𝑐 “ 0.473

With this, we conclude our discussion of the hyperbolic geometry phase structure.
We will visit these results later in the conclusion to compare the different geometries in
retrospect.
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6.4 Stability and Phase Structure For Flat Horizon Ge-
ometry

For 𝑘 “ 0 the phase structure is almost identical. The only difference is that for
Φ𝑒 “ 0 there is no critical point for the flat case whilst there is one for the hyperbolic.
This could be useful if we were interested in pursuing a canonical ensemble withΦ𝑒 “ 0.
Otherwise, the phase structure is completely identical.

As we did before, we show the case where we have a first order phase transition as
𝑃 ą 𝑃𝑐
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Figure 6.8: Isobaric plot for the temperature with respect to change in the horizon radius. Φ𝑒 “ 1, 𝑛 “ 1.98, 𝑝
ℎ

“ 2, 𝑃𝑐 “ 0.0105

In the region where there exists more than one radius for the same temperature, we
have a first order phase transition. The discontinuity in entropy is the same as the flat
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case and signifies the phase transition.

Upon reaching the critical pressure the behaviour changes to
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Figure 6.9: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.0105

As we found while exploring the mechanical stability, there is only one critical point
for the flat geometry. Thus, after decreasing the pressure to and beyond the critical point,
the behaviour becomes completely monotonous. This indicates that there is a region
below the critical pressure where a second order phase transition takes place.

Transitions below, and at the critical pressure, are second order but are first order
above it. The lack of unstable region coupled with the fact that each black hole radius
corresponds to a unique temperature is what shows us that the transition is second order.
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We show the change in behaviour under a slight change in 𝑃 around the critical point
below
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Figure 6.10: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.0105

We can now do similar analysis in the 𝑃 ´ 𝑟ℎ plane. We will show the variation
around the critical temperature as we did in the hyperbolic case. The change of the the
behaviour for the pressure as the temperature changes is very similar to what we have
seen above.

The main difference between the temperature and the pressure in the graphs is that
the negative gradient region is the one that corresponds to a stable phase. This stands in
contrast with the temperature graph. This owes to the difference between the conditions
for stability. For the compressibility to be positive, the change of the pressure with

77



respect to the volume must be negative.
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Figure 6.11: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑇𝑐 “ 0.0145

When the temperature increases beyond the critical temperature, a first order phase
transition occurs. As with the temperature, the region in the middle is not physical. The
physical radii can be found by employing the Maxwell equal area law or matching the
chemical potential at both points. The question we ask now is which region will be
preferred to the other, the larger or the smaller radius?

To answer this question we plot the variation of the chemical potential with the
pressure, bearing in mind that a lower energy implies a preferred state. It’s also important
to not while examining the graph that a larger pressure corresponds to a smaller radius
and vice versa. This may make the graph seem misleading at first glance.
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Figure 6.12: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 0.3, 𝑛 “ 1.9, 𝑝

ℎ
“ 2, 𝑇𝑐 “ 0.469

Below the critical temperature, there is no swallow tail behaviour in the graph. The
swallow tail only begins to show when exceed the critical temperature and continues on
in increasing. Below the critical temperature there is not discontinuity in the entropy
and there is only a second order phase transition.

The point where both the lines representing the chemical potential meet is the
one where the phase transition occurs. The transition happens at a fixed energy, and
temperature. This means that the transition happens between two different black hole
radii. This is what creates the discontinuity in the entropy.

We can now move on to constructing the phase diagram for the flat geometry.
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Figure 6.13: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1.5, 𝑛 “ 1.9, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.0671, 𝑇𝑐 “ 0.407

As is apparent from the work above, the first order transitions occurs above both
the critical temperature, and pressure. This means that a black hole whose change in
temperature or pressure allows it to move on a path that crosses the line, will see a
discontinuity in its entropy. Another black hole, taking a path that dips below the critical
point and then moves from one side to of the line to the other will not.
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6.5 Stability and Phase Structure For Spherical Horizon
Geometry

The spherical geometry corresponds to 𝑘 “ 1 and represents much richer phase
structure than either the flat or the hyperbolic cases. This owes to the possibility of two
critical points for some values of Φ𝑒. For others, the behaviours mimics that of the flat
and hyperbolic cases. We will see the similar case first, taking Φ𝑒 “ 1.1

Below, we plot the case where the pressure is just above 𝑃𝑐
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Figure 6.14: Isobaric plot for the temperature with respect to change in the horizon radius. 𝑃 ą 𝑃𝑐

Φ𝑒 “ 1.1, 𝑛 “ 1.98, 𝑝
ℎ

“ 2, 𝑃𝑐 “ 0.00415

Th region above the critical pressure contains the first order phase transition. This
can be seen through the discontinuity in entropy between the existent phases. The stable
cases are seperated by an unstable region thus the radii the black hole can exist at will
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have different radii which results in a discontinuity in entropy.
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Figure 6.15: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 1.1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.00415

The behaviour remains one to one for positive 𝑟ℎ at pressures below the critical point.
This is only the case for the spherical geometry whenever the electric potential isn’t less
than one. This means that no matter how we decrease the pressure, the behaviour will
remain monotonic.

In the monotonic region the black hole undergoes a continuous, second order phase
transition as there is only one black hole radius for every temperature. This stands in
contrast with the region were there is such a jump in the radius of the stable regions. In
this region a first order transition takes place.
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What happens above is the same as what happens whenever Φ2
𝑒 ą 𝑘 . This is not

unique to the spherical case. What are, however, are the kinds of phase transitions that
can occur when Φ2

𝑒 ă 𝑘 . This allows for two critical radii, quite different from the other
cases.

We will then have a smaller and a larger critical radius. We have to wonder whether
the phase structure will look anything like it does above. Will the first order transition
occur above or below the critical temperature? We plot the transition at the smaller of
the two radii below
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Figure 6.16: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 0.1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.00127

The transition actually occurs below the critical pressure. That means that below
the critical pressure we will always have a first order phase transition. This owes to the
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fact that this is the smaller of the two radii and that no critical points exist below it. We
examine the behaviour at the larger radius to find
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Figure 6.17: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 0.1, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑃𝑐 “ 0.0795

This allows us to understand the phase structure of the spacetime better. It is not
different from the other two for large 𝑃 and 𝑇 , a first order phase transition is inevitable
beyond a certain point. We will now take a look at what happens when we consider the
pressure under variation in 𝑟ℎ
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Figure 6.18: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 0.3, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑇𝑐 “ 0.0363

As with the case in the temperature for the smaller critical radius, the first order
transition occurs below the critical temperature and pressure. This entails that there is a
region between both critical points where there is a smooth second order phase transition.

Now, let us consider the stability of the phases, since the larger black hole is the one
with the larger entropy we would expect it to be the more stable one. This would also
match the cases in the flat and the spherical horizons where the larger of the two black
holes was preferred. To do so, we examine how the chemical potential changes under
variation in 𝑃
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Figure 6.19: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 0.3, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑇𝑐 “ 0.0363

The swallow tail behaviour indicates that a first order phase transition is taking place.
The temperatures at and beyond the critical temperature do not exhibit such behaviour.
The point where the two chemical potentials intersect is the point where the first order
transition takes place.

We can see that the potential is decreasing in conjunction with the pressure. Along
the same isotherm, a lower pressure will always have a lower potential, except for the
swallowtail region. We ignore the swallowtail because it represents an unstable region
that is not physical. The lower potential corresponding to a lower pressure means that
the larger of the two black holes, once again, will be the favorable state.
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Figure 6.20: Isobaric plot for the temperature with respect to change in the horizon radius. 𝑃 “ 𝑃𝑐

Φ𝑒 “ 0.3, 𝑛 “ 1.98, 𝑝
ℎ

“ 2, 𝑇𝑐 “ 0.338

The way the pressure varies with the temperature does not differ at all, at the larger
critical radius, from that of the other spacetimes or from the case where Φ2

𝑒 ą 1. How-
ever, we plot the variation of the potential with the pressure to determine which of the
phases is favorable.

Expectedly, we find that the larger of both black holes is the favorable solution. As
we stressed above, this is to be expected given that a minimisation of free energy will
correspond to the maximisation of entropy. This is a good sign that our thermodynamic
formulation is consistent.
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Figure 6.21: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 0.5, 𝑛 “ 1.98, 𝑝

ℎ
“ 2, 𝑃𝑐𝑠 “ 0.00510, 𝑇𝑐𝑠 “ 0.0601, 𝑃𝑐𝑙

“ 0.0114, 𝑇𝑐𝑙 “ 0.110

The phase structure then differs from those discussed above because of the presence
of the first order phase transition below the first critical point. The region in the middle
has a second order phase transition where there is not distinction between the larger and
smaller black holes. There is only one black hole.

Above the larger critical pressure and temperature a first order transition takes place
between the smaller less favorable black hole and the more thermodynamically favourable
large one. For the critical point that occurs at the lower critical pressure and tempera-
ture, the line separates the more stable phase at the larger horizon radius with the one at
smaller horizon radius.
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The phase structure can start to differ upon changing the parameters, however. This
should come as no surprise when we recall that the main difference between the cases
above and this case are the relative values of 𝑘 and Φ2

𝑒. Upon tweaking the nut charge
slightly we find
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Figure 6.22: Isobaric plot for the temperature with respect to change in the horizon radius.
Φ𝑒 “ 0.5, 𝑛 “ 2, 𝑝

ℎ
“ 2, 𝑃𝑐𝑠 “ 𝑃𝑐𝑙

“ 0.00746, 𝑇𝑐𝑠 “ 𝑇𝑐𝑙 “ 0.0796

Only one critical point exists in this case, as both of them overlap. This then entails
that a first order transition occurs all along the 𝑃´𝑇 plane, except for the critical point.
At the critical point, there is no discontinuity in the entropy. However, a black hole
crossing the line at any other point will experience a first order phase transition. The
critical point vanishes completely when we increase 𝑛 further.
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Chapter 7

Conclusion

This chapter will address two topics. The first is presenting a summary to the results
of this thesis and a discussion of the findings. In the second we will remark on possible
avenues that could be explored, and ways in which this work could be improved.

In this thesis we endeavored to explore the phase structure presented by a family of
solutions parameterised by the parameter 𝑘 . The parameter 𝑘 seperated between the
different horizon geometries. For the hyperbolic case we had 𝑘 “ ´1 while for the flat
and the spherical cases, respectively, the value of 𝑘 was 0 and 1.

We wanted to understand the influence the shape of the horizon has on the thermo-
dynamics of the spacetime and the kind of phase structures that exist in each. The shape
of the horizon, is indeed, found to play a significant part in the form and structure of the
thermodynamic phases.

We started by formulating our thermodynamics and making sure of its consistency
by checking that it satisfied several thermodynamic relations. This is very important
since it allows us to explore the phase structure with the knowledge that our foundation
is solid. We will briefly go through how we carried this out, and what the relations we
satisfied were.

We started out by calculating the action first. We calculated the action through
the use of the counterterm method. As opposed to the background subtraction method
where you subtract a background spacetime from the action to cancel the divergences, the
counterterm method uses curvature invariants on the boundary to cancel the divergences.

Aside from the action, it is very important to note the parameters that we fixed on our
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way to finding the action. These parameters are then our thermodynamic parameters.
By fixing 𝐴𝜇 for example, we inherently fix both the magnetic charge and the electric
potential.

In our case in particular, one of the more particular conserved quantities is the nut
charge. We interpret it as some kind of gravito-magnetic charge. Its fixing comes from
the integral of the two-form dual to that of the mass over the boundary. The nut charge
itself differs from one horizon geometry to the next, but the fact that 𝑛 itself is fixed at
the boundary remains consistent.

Since we fixed 𝐴𝜇 at the horizon, the ensemble we used was a mixed one. This is
because electric charges are not fixed, and can vary, while magnetic charges are fixed.
We did not use it, but it is useful to note that there is a term that could be added to the
action that fixes the electric charge at infinity that can take us to the canonical ensemble.

We made sure that when taking the partial derivatives of the our chemical potential
with respect to the fixed parameters, we get their conjugate quantities. In a similar
fashion, we made sure that the first law of thermodynamics holds. This is easy to verify
through making sure the partial derivatives match those we expect to find.

The last two thermodynamic relations are the Smarr relation and the Gibbs-Duhem
relation. The Smarr relation is concerned with the dimensions of the parameters used
and is an application of Euler’s theorem on quasi homogeneous functions. It assigns
coefficients to each of the parameters depending on its dimension in length.

The Gibbs-Duhem relation is concerned with the relation between the chemical po-
tentials in the system. It can be reached through assuming the quasi-homogeneity and
taking the total differential. One part will traditionally be the internal energy, the rest
describes a relation which is exactly the Gibbs-Duhem relation.

We then used forms in order to calculate the charges within the spacetime. We used
that to justify the understanding of 𝑛 as a gravito-magnetic charge. This is in direct
analogy to the calculation of the electric and magnetic charges through the use of forms
over the boundary.

Finally we started classifying the phases that exist and considering their stability.
We presented the conditions for both thermal and mechanical stability before finding the
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stable phases for each geometry. We then examined the phase transitions and the critical
behaviour within each.

The flat and hyperbolic geometries, both, had one critical point. This critical point
came at a critical temperature and pressure above which a first order phase transition
occurs. Below it, however, the transition is homogeneous and is of second order. We
established the more preferable phase in both cases, it was found that the larger black
hole is always favoured over the smaller one.

For the spherically horizon, we have more than one possibility. The distinction
between both lies in the relation between Φ2

𝑒 and 𝑘 . For 𝑃ℎ𝑖2𝑒 ą 𝑘 , there is only one
critical point, which we saw in the flat and hyperbolic cases. However, when Φ2

𝑒 ă 𝑘 ,
we get two distinct critical points.

When this happens we see a different phase structure emerge that is unique to the
spherical case alone. There are now two critical points between which a second order
transition takes place. Below the smaller critical pressure and temperature, we have a
first order phase transition. The same happens for pressures and temperatures greater
than the larger critical values. It’s important to note that the size of the gap depends on
the charges present as was with the existence of the extra critical point.

The phase structure of all geometries is very interesting. In particular, the spherical
case seems to have much more to give than it has currently let on. Studying the geome-
tries in the same manner under traditional, as opposed to extended, thermodynamics
could also prove to be very fruitful.

The relationship between the misner string and the charges is also worth examining
further. In spherical case, the charges lie along the misner string.[37] However, this
would not justify cases where the string does not exist such as the flat Taub-NUT-Ads
metric. Even though there are no strings, there remains a disparity between the charges
at the horizon and spatial infinity.
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Appendix A

Komar Integrals

We will first discuss one-forms, hodge duals, and exterior derivatives before dis-
cussing conserved current. Following that we consider the divergence and Stokes’
theorem. This paves the way to the calculation of conversed charges within a spatial
hypersurface.

A.1 On Forms
No, not Plato’s. Differential forms, or forms for short, are a special class of tensors.

They are covariant tensors that are completely anti-symmetric. Since differential forms
are tensors, their existence and characteristics are independent of the coordinate system
in place.

For a spacetime of dimension 𝑛, the number of linearly independent 𝑝-forms are given
by:

𝑛!
𝑝!p𝑛 ´ 𝑝q!

(A.1)

On a form we can define an exterior derivative on a one-form 𝐴 denoted by 𝑑𝐴. The
exterior derivative can be taken on any form of size less than 𝑛 to result in a form of
dimension 𝑛 ` 1. We take the exterior derivative of a 𝑝-form in the following manner

𝑑𝐴𝜇1...𝜇𝑝`1 “ p𝑝 ` 1qBr𝜇1𝐴𝜇2...𝜇𝑝`1s (A.2)

Where the square brackets on the indices represent an alternating sum over the indices
within the brackets
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𝐴r𝑎𝑏s “
1
2!

`

𝐴𝑎𝑏 ´ 𝐴𝑏𝑎
˘

𝐴r𝑎𝑏𝑐s “
1
3!

`

𝐴𝑎𝑏𝑐 ´ 𝐴𝑎𝑐𝑏 ` 𝐴𝑐𝑎𝑏 ´ 𝐴𝑏𝑎𝑐 ` 𝐴𝑏𝑐𝑎 ´ 𝐴𝑐𝑏𝑎
˘

(A.3)

A one-form on a manifold of dimension 𝑛 using wedge notation can be written as:

𝐴 “

𝑛
ÿ

𝑖“1
𝐴𝜇𝑖𝑑𝑥

𝜇𝑖 (A.4)

An 𝑛-form would take the form

𝐴 “ 𝐴 𝑑𝑥𝜇1 ^ 𝑑𝑥𝜇2 ^ ... ^ 𝑑𝑥𝜇𝑛 (A.5)

If we consider a form that exists on a particular hypersurface, let its dimension be of
size 𝑝. On said hypersurface, we will have the equivalent of the 𝑛-form above but on the
hypersurface. This will be a volume element of dimension 𝑝.

This brings us to one of the most important aspects in our use of forms. Let us take a
one-form 𝐴. and take its exterior derivative.

𝑑𝐴𝜇𝜈 “
2
2

`

B𝜇𝐴𝜈 ´ B𝜈𝐴𝜇
˘

“ 𝐹𝜇𝜈 (A.6)

We then take the exterior derivative of the exterior derivative of 𝐴

𝑑p𝑑𝐴𝜇q “ 𝑑p𝐹𝜇𝜈q

“
3
3!

`

B𝜇𝐹𝜈𝜌 ´ B𝜇𝐹𝜌𝜈 ` B𝜌𝐹𝜇𝜈 ´ B𝜈𝐹𝜇𝜌 ` B𝜈𝐹𝜌𝜇 ´ B𝜌𝐹𝜈𝜇
˘

“
2 ¨ 3
3!

`

B𝜇𝐹𝜈𝜌 ` B𝜌𝐹𝜇𝜈 ` B𝜈𝐹𝜌𝜇
˘

“ B𝜇
`

B𝜈𝐴𝜌 ´ B𝜌𝐴𝜈
˘

` B𝜌
`

B𝜇𝐴𝜈 ´ B𝜈𝐴𝜇
˘

` B𝜈
`

B𝜌𝐴𝜇 ´ B𝜇𝐴𝜌
˘

“ B𝜇B𝜈𝐴𝜌 ´ B𝜈B𝜇𝐴𝜌 ` B𝜌B𝜇𝐴𝜈 ´ B𝜇B𝜌𝐴𝜈 ` B𝜈B𝜌𝐴𝜇 ´ B𝜌B𝜈𝐴𝜇

“ 0

(A.7)

In moving from the second line to the third we used the fact that the two-form
𝐹𝜇𝜈 “ ´𝐹𝜈𝜇 is antisymmetric. In the line after we used the definition for 𝐹𝜇𝜈 in terms
of 𝐴𝜇. In the last line we made use of the commutation of the partial derivative. Though
our derivation above was made for the second exterior derivative of a one-form, this hold
for forms.
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This property becomes quite the useful one when we want to consider a charge or
quantity within a spatial hypersurface.

We will now consider the hodge star operator. The hodge star is carried out on a
differential form to give us it dual. It maps a 𝑝 form on an 𝑛-dimensional manifold to
an p𝑛 ´ 𝑝q form. Let us consider an example below of the operator acting on an 𝑛 ´ 𝑝

form to result in a 𝑝 form.

‹𝐴𝜇1...𝜇p𝑛´𝑝q
“

1
𝑝!
𝑔𝜇1𝜎1 ...𝑔𝜇p𝑛´𝑝q𝜎p𝑛´𝑝q

𝜖
𝜎1...𝜎p𝑛´𝑝q𝜈1...𝜈𝑝𝐴𝜈1...𝜈𝑝 (A.8)

Taking the second hodge star of the same form results in the form itself or its negative
depending on the dimensionality, the signature of the manifold, and the number of indices
of the form. If 𝑛 is the dimension of the manifold, 𝑠 its signature, and 𝑝 the number of
indices, operating with successive hodge stars will result in

‹ ‹ 𝐴 “ p´1q
𝑠`𝑝p𝑛´𝑝q𝐴 (A.9)

A.2 Generalised Stokes’ Theorem
We will first discuss the divergence theorem, Stokes’ theorem in three dimensional

euclidean space before introducing Stokes’ generalised theorem. The divergence theo-
rem is arguably the most intuitive, Stokes’ theorem in three dimensions is assumed to be
familiar; both of which are special cases of the generalised theorem.

The divergence of a vector field in euclidean space is a scalar quantity that is
calculated through taking the dot product of the gradient operator with the vector field.
It can be interpreted as the outward flux from an infinitesimal point in space. For
a vector field expressed in Cartesian coordinates 𝐹p𝑥, 𝑦, 𝑧q the divergence takes the
following form.

∇ ¨ 𝐹 “
B𝐹𝑥

B𝑥
`

B𝐹𝑦

B𝑦
`

B𝐹𝑧

B𝑧
(A.10)

One widely used law that makes use of the divergence theorem is Gauss’s law. The
law linearly relates the electric flux through any closed surface to the amount of electrical
charge inside the surface. For example, the net flux for through a surface containing
charges that sum to zero is equal to zero.

95



We can now state the divergence theorem
ż ż ż

𝑑𝑉
`

∇ ¨ 𝐹
˘

“

¿

𝑑𝐴
`

𝐹
˘

(A.11)

Let us use Gauss’s law to make physical sense of the theorem. The theorem states
that the flux that we can calculate by summing over all the sources within a volume 𝑉 , is
equal to the all the flux that will pass through a closed surface enclosing the boundary.
To represent this we take the dot product of the outward pointing normal vector to the
boundary with the field; this represents outgoing flux. So whenever we have sources
within a surface, the net effect of the charges at the boundary is equal to the effect of the
sources within the volume.

We can now move on to Stoke’s theorem in three dimensions. Let us first consider
the curl of a vector field, it represents the infinitesimal rotation about each point in space.
The curl specifies, at each point, the axis of rotation for the field as well as its magnitude.
A field whose curl is zero corresponds to a field that is irrational. Physically, this would
correspond to a conservative field.

In euclidean space, the curl operates on a vector field through taking the cross product
between the gradient operator, and the vector field. For a field 𝐹p𝑥, 𝑦, 𝑧q its curl takes
the form

∇ ˆ 𝐹 “

˜

B𝐹𝑧

B𝑦
´

B𝐹𝑦

B𝑧

¸

𝑑𝑥 `

˜

B𝐹𝑥

B𝑧
´

B𝐹𝑧

B𝑥

¸

𝑑𝑦 `

˜

B𝐹𝑦

B𝑥
´

B𝐹𝑋

B𝑦

¸

𝑑𝑧 (A.12)

Stokes’ theorem states that for any 2-dimensional surface in euclidean space, the
integral of the curl of a field over a surface is equal to the integral of the field over a
closed loop on the boundary of the surface. It’s important to note that the direction taken
along the boundary is non-trivial, it changes the sign of the integral. Convention is to
take a path that moves clockwise about the outward pointing vector to the surface.

We will consider a simple example. If the surface were to be a disk, the curl would
be integrated over the disk. This would then be equal to the integral of the field itself
over the circle that encloses the disk. It is easy to see that upon flipping the unit normal
to the disk we flip both the signs of the integral over the circle and the disk itself.

ż ż

𝑑𝐴
`

∇ ˆ 𝐹
˘

“

¿

𝑑𝑆
`

𝐹
˘

(A.13)
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In both the theorems above, we start with a some type of information about the
change of the field within a volume or on a surface. Let us denote its dimension with 𝑛.
We then relate this change in the field to the field itself at a boundary that has dimensions
𝑛´ 1. In going from 𝑛 “ 1 to 𝑛 “ 0 we would use the fundamental theorem of calculus;
from a line to a difference between scalars.

To talk about the generalised Stokes’ theorem we will invoke the language we used
above in describing forms. We will simply state the theorem itself before moving on to
its uses within general relativity.

ż

Ω

𝑑𝜔 “

ż

BΩ

𝜔 (A.14)

For a form 𝜔 with size 𝑝 the exterior derivative 𝑑𝜔 would have size 𝑝 ` 1. If Ω
represents a hypersurface, as it would in our cases of interest, then we can view 𝑑𝜔 as
the divergence of some field. The right side of the equation would then have us infer
that 𝜔 is the field dotted into the normal unit vector to the boundary. The theorem holds
under more rigorous scrutiny, but the present argument is sufficient for out case.

Let us consider for the example the one form 𝜉 generated by the timelike killing
vector 𝜉𝜇. We first take its exterior derivative before operating on it with the hodge dual
to get

‹𝑑𝜉 (A.15)

𝜉 is a one-form, upon taking the exterior derivative we get a two-form. It’s hodge
dual is then an 𝑛´ 2 form, where 𝑛 is the dimension of the manifold. If we act with the
exterior derivative again, we get an 𝑛 ´ 1 form

𝑑 ‹ 𝑑𝜉 (A.16)

Taking the exterior derivative again will result in an 𝑛 form. However the exterior
derivative of an exterior derivative is zero. This allows us to write an integral over the
manifold

ż

𝑀

𝑑2
‹ 𝑑𝜉 “ 0 (A.17)

By Stokes’ theorem we have
ż

B𝑀

𝑑 ‹ 𝑑𝜉 “ 0 (A.18)

We can separate the above boundary into two separate hypersurfaces in time which
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allows us to separate the integral over the boundary into two integrals
ż

Σ1

𝑑 ‹ 𝑑𝜉 ´

ż

Σ2

𝑑 ‹ 𝑑𝜉 “ 0 (A.19)

Taking both of these surfaces to be at spatial infinity, we can then use them to define
a conserved quantity, in this case for a spacetime with no cosmological constant this
corresponds to the mass

ż

Σ1

𝑑 ‹ 𝑑𝜉 “ 𝑀 (A.20)

Then by applying Stokes’ theorem we reach
ż

BΣ1

‹𝑑𝜉 “ 𝑀 (A.21)
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