
American University in Cairo American University in Cairo 

AUC Knowledge Fountain AUC Knowledge Fountain 

Theses and Dissertations Student Research 

Spring 6-21-2023 

User Profiling through Zero-Permission Sensors and Machine User Profiling through Zero-Permission Sensors and Machine 

Learning Learning 

Ahmed ElHussiny 
aelhussiny@aucegypt.edu 

Follow this and additional works at: https://fount.aucegypt.edu/etds 

 Part of the Other Computer Engineering Commons 

Recommended Citation Recommended Citation 

APA Citation 
ElHussiny, A. (2023).User Profiling through Zero-Permission Sensors and Machine Learning [Master's 
Thesis, the American University in Cairo]. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/2156 

MLA Citation 
ElHussiny, Ahmed. User Profiling through Zero-Permission Sensors and Machine Learning. 2023. 
American University in Cairo, Master's Thesis. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/2156 

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge 
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC 
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu. 

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F2156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=fount.aucegypt.edu%2Fetds%2F2156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/2156?utm_source=fount.aucegypt.edu%2Fetds%2F2156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/2156?utm_source=fount.aucegypt.edu%2Fetds%2F2156&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu


 
 

Graduate Studies 

 
 
User Profiling through Zero-Permission Sensors and Machine 

Learning 

 

A THESIS SUBMITTED BY 

Ahmed Khalid ElHussiny 

 
 
 

TO THE 

 

Department of Computer Science and Engineering 
 
 
 

SUPERVISED BY 

 

Professor Sherif Aly and Professor Tamer ElBatt 

 

 
16/5/2023 

 
 
 

in partial fulfillment of the requirements for the degree of  

Master of Computer Science 



i  

Declaration of Authorship 

I, Ahmed Khalid ElHussiny, declare that this thesis titled, “User Profiling through Zero-

Permission Sensors and Machine Learning” and the work presented in it are my own. I 

confirm that: 

 

• This work was done wholly or mainly while in candidature for a research degree at this 

University. 

• Where any part of this thesis has previously been submitted for a degree or any other 

qualification at this University or any other institution, this has been clearly stated. 

• Where I have consulted the published work of others, this is always clearly attributed. 
 

• Where I have quoted from the work of others, the source is always given. With the 

exception of such quotations, this thesis is entirely my own work. 

• I have acknowledged all main sources of help. 

• Where the thesis is based on work done by myself jointly with others, I have made clear 

exactly what was done by others and what I have contributed myself. 

 
 

Signed: 
 
 

 
 

Date: 
15/05/2023 
 



ii  

STUDENT TO INSERT HERE THE PAGE WITH 

THE SIGANTURES OF THE THESIS DEFENSE 

COMMITTEE 

  



iii  

Abstract 

With the rise of mobile and pervasive computing, users are often ingesting content on the go. 

Services are constantly competing for attention in a very crowded field. It is only logical that users 

would allot their attention to the services that are most likely to adapt to their needs and interests. 

This matter becomes trivial when users create accounts and explicitly inform the services of their 

demographics and interests. Unfortunately, due to privacy and security concerns, and due to the 

fast nature of computing today, users see the registration process as an unnecessary hurdle to 

bypass, effectively refusing to provide services with personalization information. In other cases, 

they may provide inaccurate profile information, either due to lack of accuracy, or for malicious 

purposes. In this thesis, we use machine learning with zero-permission sensors to test the degree 

to which it can be used to effectively profile a user without necessitating any explicit input. We do 

so through first iterating through building an application that collects data from the following zero-

permission sensors: the gyroscope, accelerometer, and ambient light sensor. Following that, we 

pass the data through a multi-step transformation process for feature selection, filtration, and 

homogenization. We then pass this processed training data through machine learning algorithms, 

enabling accurate user profiling without the need for explicit information gathering. We 

additionally test the minimum timespan needed to accurately profile a user, and test three machine 

learning models. We find that it is indeed possible to accurately predict the biological gender of a 

user, given 1-day intervals, and using a support vector machine. 
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Chapter 1 

 

Overview 

 
When the World Wide Web was first conceived, it was thought of as an information system, 

capable of delivering information to users. The pages delivered to individuals around the 

world, therefore, could be static: like pages of a book. An author with knowledge in a specific 

field would compose specific information, orient it as they please in HTML, and could even 

hyperlink to their sources, or other places where information could be found. With the dawn 

of the participative web, pages delivered to users could be generated by programs that relied 

on user input. These were no longer the static pages of the past; a user could see their own 

name after “Hello,” and that was very exciting. In a sense, this was the very first step towards 

what we experience today. 

Today’s web is mostly user-generated. One need only look at the most popular websites in 

the world to understand that user content, instead of the authoritative content of the past, has 

come to dominate the Internet. Social media, personal blogging, volunteer-written 

encyclopedias, and video-sharing websites have become the driving force of modernity. And 

with the prevalence of mobile and pervasive computing, user-generated content is only on 

the rise. With such huge volumes of this content - an estimated average of 1.7 Megabytes are 

generated per individual per second [1] - users are finding difficulty locating and subscribing 

to content they find interesting. This is exactly why personalization plays a key role in today’s 

web. If users can find content they are interested in, or receive advertisements that are relevant 

to them, they are more likely to engage with that content and spend more time on a given 

website. The question then becomes not one of generating new content, but rather of how to 

properly target specific content to a specific user. 

There is a very easy way to personalize user content: simply use the information that they 

have provided about themselves during the registration process. Simple demographic 

information like a user’s gender and age can easily allow for the generic filtration of content 

to properly target said user. For a while, this worked well. Users understood the expectation 

to have to register and provide information about themselves to be able to use a service. 

Unfortunately, with repeating data breaches, privacy concerns, and data misuse scandals by 

the largest companies in the world, users’ trust has quickly eroded. A lot of users see the 

registration process not only as a hinderance, an extra hurdle for having to use a service, but 

also a potential security concern. When users do register, they are often providing false 

information. The most obvious indicator for this is the rise of temporary email services, with 

users often preferring to use a temporary email rather than provide a service with their actual 
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email address. 

This creates a very interesting gap. Users want content to be personalized to their profiles but 

refuse to provide the information necessary for this personalization for privacy fears. What 

this thesis aims to do is provide a method that relies on machine learning through which the 

most basic factor of this personalization can occur: biological gender. The data necessary for 

this profiling would not come explicitly from users, circumventing tampering, nor would it 

come from identifiable sources, successfully addressing users’ privacy concerns. Instead, it 

would come from the zero-permission sensors embedded in users’ mobile devices. 

This, however, presents an interesting set of questions that come associated with it. Which 

sensors should we be using? How long should we be recording data in order to get an accurate 

prediction of the biological gender? Is it possible at all? And if it is indeed possible, which 

machine learning paradigms and algorithms should we use to accurately perform this 

prediction? 

These are exactly the questions this thesis delves into and attempts to provide an answer for, 

as explained in detail in the following sections. 
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Chapter 2 

 

Motivation 

 
For users to be able to find the content that they are seeking in this data-congested world, 

personalization is very important. Let us consider YouTube, the world’s largest video sharing 

service with over 2 billion monthly active users. It is so popular that the Q3 2019 Sandvine 

Global Internet Report shows it accounting for 8.7% of all global Internet traffic [9]. By Q1 

2022, YouTube’s domination had grown to account for 14.61% of all global Internet traffic [61]. 

More specifically, the 2019 Sandvine Mobile Phenomena Report also reveals that YouTube 

accounts for 35% of all mobile web traffic [11], while the 2021 report places YouTube as 

consuming 24.6% of all mobile web traffic [62]. While the number has decreased over time, 

one must remember that this is a percentage, and that overall internet usage has risen 

significantly in the 2 years between the reports. It is almost important to note that this 

“decline” is largely contributed to the rise of competitor TikTok [62], which is yet another 

highly personalized service. But continuing to use YouTube as an illustrative example, it is 

clear that it alone represents a significant portion of the Internet. According to the most recent 

statistics released by YouTube, 70% of what users watch is determined by the 

recommendation algorithm [13], not explicitly sought out by them. Effectively, this means 

that the recommendations algorithm is responsible for approximately 6.1% of all Internet 

traffic and 17.2% of mobile web traffic. These staggering figures emphasize the absolute 

importance of this recommendation algorithm for the business of YouTube, and 

personalization as a whole to other services, and highlight the impact it has on our world. An 

important question then becomes, how does it work? 

A paper published by Google, the parent company of YouTube, aims to explain the inner 

workings of the recommendation algorithm. Put simply, the algorithm relies on deep neural 

networks to determine the best potential recommendations for a given video for a given user. 

In the paper, Google states that the most important input to the neural network is the user’s 

search and watch histories [4]. It is a logical approach: if a user has searched for or watched a 

specific video, perhaps they want to see a similar video. As users consume more content, 

YouTube begins to form a picture of their tastes, behaviors, and interests. But what about 

users with sparse search and watch histories? This is commonly known as the cold-start 

problem with recommender systems. Lika et al explain that there are three types of cold-start 

problems: users with sparse histories, items with sparse interactions (videos with fewer views, 

in this example), and items with sparse interactions for users with sparse histories [10]. 

In order to get around the first type of cold-start problem, sparsity of user history, YouTube 
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also provides its recommender neural network with other inputs. In the paper, they state that 

demographics are the most important input to their neural network for users with sparse 

histories. These demographics are a user’s geographic region, device, logged-in state, gender, 

and age [4]. For users with sparse histories, these factors become the primary inputs to the 

neural network, thereby actively determining what gets seen. 

With this example of one service, we can already see the importance of collecting and 

understanding demographic data. However, demographics do a lot more than simply drive 

user engagement and help people find the content they are looking for. In today’s web, 

demographics have a monetary value that is quite significant.  

For the fiscal year of 2019, Alphabet, Google’s parent company, reported over $15.1 billion 

from YouTube’s advertising alone [2]. For the fiscal year of 2022, YouTube’s advertising 

revenue had grown to $29.24 billion, very close to doubling over just three years. Meanwhile 

Facebook, owning properties accounting for 20% of worldwide mobile traffic [11], made $16.6 

billion in just the second quarter of the 2019 fiscal year [6] and $32.17 billion in the fourth 

quarter of 2022 from advertising alone [71], again almost doubling in just three years.  

Interestingly, both Facebook [5] and YouTube’s [3] respective support pages list 

demographics, such as “age and gender,” as the very first method through which advertisers 

could target specific audiences. PWC reports that “Internet advertising revenues in the United 

States totaled $107.5 billion for the full year of 2018.” [7] The same report but only covering 

the first half of 2019, the first 6 months of the year generated $57.9 billion, a 16.9% increase 

over 2018’s first half’s $49.5 billion [8]. Finally, the same report covering fiscal year 2021, 

reports that internet advertising revenues in the United States had risen to $189.3 billion [72]. 

Importantly, these reports only cover revenue in the United States, and none of the many 

other countries in the world. 

Revenue is not everything, however. Targeted advertising not only helps the advertisers by 

ensuring that the target market is the one being reached, but research also shows that 75% of 

users prefer fewer advertisements that are more aligned with their needs and interests, rather 

than more advertisements that are randomized [12]. Users listed the reduction of irrelevant 

advertising, the potential to discover unfamiliar items that could align with their interests, 

and the convenience of quickly finding items of interest as their primary reasons for this 

preference. According to a survey conducted with 1,500 participants in 2019 by InfoGroup, 

90% of consumers say that messages that have not been personalized for them are regarded 

as “annoying” to them [73]. Furthermore, 67% of Millenials/Gen-Z’ers fully expect any 

advertising they see to be personalized [74]. 

The motivation is simple. User demographics, perhaps most importantly age and gender, play 

a key role not only in assisting users to find the content they did not even know they wanted 

and protecting them from being bombarded with advertisements irrelevant to them, but also 

in generating massive amounts of revenue for the most visited services in the world. 

Having highlighted the importance of personalization to modern-day systems, it is clear that 



5  

having authentic user data is of the utmost importance. According to Facebook’s Q4 2019 

Earnings Report [14], on Facebook alone, and excluding the other social media entities owned 

and operated by the platform, there were 2.5 billion monthly active users (MAU). By Q4 2022, 

that number had risen to 2.96 billion MAU [63]. By Facebook’s own estimates [15], 5% of the 

MAU were fake accounts. The problem is so prevalent that Facebook has had to remove over 

3 billion accounts between October of 2018 and March of 2019. And in Q4 of 2022 alone, 

Facebook “actioned” 1.3 billion accounts for being fake ones [64]. Even with these estimations 

indicating a significant problem, others seem to think it is much larger. PlainSite, a 

government transparency project and legal research tool, published a report [16] stating 

clearly, “Facebook has been lying to the public about the scale of its problem with fake 

accounts, which likely exceed 50% of its network.” With no way to really determine the truth, 

it is safe to assume that the real number is somewhere in the middle. 

The problem is far from being only Facebook’s. Between January of 2018 and April of 2020, 

Twitter has removed over 250,000 users [17][18] and have stated that they will remove up to 

6% of their total accounts [19] for misrepresenting who they are. While this number remains 

much smaller than Facebook’s, Twitter admits [17] that it has a more difficult time 

determining fake users than Facebook. The Australian newspaper published an article 

interviewing Dan Woods, a former FBI and CIA security specialist. His estimate, based on 

research he conducted, was that around 80% of Twitter users are fake [65]. Perhaps this is why 

Twitter revealed it actually actions a million accounts each day for being “spam accounts” in 

a call with its executives in 2022 [75]. This problem of fake users is much larger than just 

simply having accounts for whom the recommendation algorithm would not be as effective. 

It is important to remember that Facebook and Twitter use the profile information of a user to 

properly target advertising, meaning that businesses are potentially losing a lot of money 

advertising to some people thinking they are of a completely different profile. 

Not only is financial loss at stake here. Several American congressmen suggested that former 

US President Donald Trump would not have been elected President of the United States if it 

were not for the spread and reach of news stories propagating false information, or fake news. 

Hunt and Gentzkow, in their research, did confirm the existence and spread of political 

misinformation during the 2016 election, and that it was strongly tilted in the favor of Donald 

Trump [20]. The spread of this misinformation is only possible through “spamming,” or the 

act of repeatedly sharing the same article, by the same or different accounts, with the purpose 

of making it gain popularity and forcing it to appear on others’ feeds. This is only possible if 

one is in control of several accounts, with different profiles, hence fake accounts.  

But in addition to the woes of financial losses, and potential political manipulation, there is 

also potential humanitarian effects. Seriously lacking in formal research, with it only starting 

to trickle in publications, we are all familiar with the concept of catfishing, or adopting a 

different “persona” online, for the purposes of fooling others into believing the existence of 

that persona. This concept is so prevalent that a simple Google search will display results such 
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as “top 10 states with the highest catfishing rates.” This of course can lead people to become 

invested in relationships with people other than who they think they are [76]. This form of 

online impersonation can also be used for cyberbullying, for identity theft, or even for 

performing elaborate social-engineering or phishing attacks. Overall, it decreases trust in 

users to use specific services, and makes them disinterested in engaging in the web as we 

know it [76]. This is why we are seeing social trends emerge encouraging people to delete 

social media and dating applications. 

In addition to all the problems caused by the abundance of fake profiles, there is also the 

problem of no profiles at all. According to research conducted by International Translation 

Resources [21] on 4000 subjects, 15.6% of users uninstall mobile applications due to a complex 

registration process. Users view registration as an unnecessary hurdle between them and the 

content they want to access. That is exactly why the Apple Human Interface Guidelines 

recommend delaying the authentication of a user as much as possible, first convincing a user 

of the value or use of the application before asking them to register or login [22]. With data 

breaches, from even the most popular and “reliable” services, most notably the Cambridge 

Analytica scandal for Facebook, users are also afraid about their information being leaked. 

Another clear indication that users are unlikely to register is the advent of “social logins,” 

single sign-on systems created by popular social networks. These systems not only show that 

users do not want to register for the different services and remember the different credentials, 

but also highlights the problem of fake accounts on social media platforms. This fake account 

will not only be used on the social network, but it will spread this misinformation on other 

websites that use social logins. 
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Chapter 3 

 

Problem Definition and Resolution 
Approach 

 
 

In this section, we formally define the problem we are facing, as well as our suggested 

resolution approach. We find that our work will have five main contributions, as discussed 

below. 

Through our research, we have found that users simply do not want to register for services, 

and when they do register, the information that they provide cannot be validated and cannot 

be trusted. This presents a very important contradiction between users not providing the 

information necessary for personalization, and yet wanting and expecting applications to 

personalize the content to their profiles. In addition to being a problem in and of itself, the 

challenge of lacking and untrustworthy-when-available user data is the root to many others. 

This data challenge drives the issues for online impersonation, loses potentially billions of 

dollars on marketing and advertising revenue, disabling healthy economic competition and 

introducing the potential for economic attacks through simple impersonation. And even at a 

fundamental level, political manipulation is possible due to the same data challenge, affecting 

policy and direction. In our research, we hope to address this problem of profile fulfillment 

or validation, thereby making our research question straightforward: How accurately can we 

determine the biological gender of a user given inputs from zero-permission sensors such as 

those recording the physical manipulation and lighting environment of the user’s device?  

This question is very multi-faceted. First off, there is of course the logic behind the selection 

of biological gender as the demographic value of choice. This is driven by our research stating 

that it is the most important factor contributing to personalization and is easily determined 

due to its binary nature. We are cognizant that determining selective gender is a much more 

complex question to attempt to answer, but we focus our research on the biological gender of 

birth. It is also important to note that, in most cases of online impersonation (or catfishing), 

users were found to use a biological gender different than their own [76]. 

Following that, why have we selected zero-permission sensors as the input through which we 

plan on making this determination? This was done for two reasons: relying on physical 

sensors in a user’s device ensures that they are tamper resistant. The sensors are constantly 

collecting information about the user’s environment and handling of the device, and therefore 

would only be tampered with through the most careful and deliberate of measures. “Faking” 
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the biological gender of an account would require the malicious user to either go through the 

process of spoofing the sensor data or actually replicating the sensor pattern of the other 

gender. This places the technical challenge of faking the gender of a profile at a much higher 

bar, and therefore being a lot less accessible and a lot more difficult.  

Additionally, due to being zero-permission by design, the sensors do not require any user 

input, flagging permissions, or any additional steps on the part of the user. This makes this 

process a seamless, non-invasive one that presents the user with no extra hurdles, removing 

that constraint as a problem for user registration. 

After the selection of zero-permission sensors as the category of choice we would target, there 

comes a decision on which specific sensors we would use. We explore this question through 

experimenting with all possible combinations of the three most prevalent zero-permission 

sensors: the accelerometer, gyroscope, and ambient light sensor. This would help us 

determine which one or combination of these sensors is the best driver for accurate 

predictions regarding the biological gender of a given user. 

Another important part of the question we are attempting to answer is how long does the 

process need to run to accurately determine the gender of the user? We explore this question 

through experimenting with different timespans to determine the minimum amount of time 

necessary in order for our applied machine learning algorithms to make an accurate 

prediction about the gender of a given user. 

And speaking of machine learning, the final decision of our exploration targets that of the 

machine learning algorithm selection. Which machine learning algorithm would perform best 

for accurately predicting the gender of a user given a specific timespan of specific zero-

permission sensors? We explore this question through repeating all of our experiments with 

three different machine learning algorithms instead of just one arbitrarily selected algorithm. 

This will allow us to more accurately define the best algorithm given the task of predicting a 

user’s biological gender from machine learning on zero-permission sensor data alone. 

 
3.1 Thesis Contribution 

In this subsection, we explore the main contributions our suggested resolution approach will 

have. We have determined five main contributions that this thesis will result in. We believe 

these contributions to be of significant valuable impact, helping tackle the problems of lack of 

data, and lack of truthful data, as well as helping distill the value of the suggested resolution 

approach. 

3.1.1 Dataset Collection 

In our research for related work, we were unable to find a dataset of mobile users’ zero-

permission sensors. While there are indeed open datasets for accelerometer and gyroscope 

data such as UCI-HAR, MobiAct, and MotionSense [99], these datasets tend to be extremely 
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focused on recognizing human activity and do not include data from other zero-permission 

sensors such as the ambient light sensor, for example.  By amassing and availing this dataset 

of users’ accelerometer, gyroscope, and ambient light sensor data, we are not only collecting 

data for the purposes of this research, but also potentially assisting future research that may 

need a dataset of this information. We intend to avail this dataset publicly and for free for the 

research community on a well-established dataset repository, such as Kaggle or GitHub, to 

support future research. The dataset, as well as its collection methodology and method, are 

described in detail in Section 5.1. 

3.1.2 Exploring Feasibility of User Profiling through Zero-Permission Sensors 

Our first step is to determine whether zero-permission sensors could be used, along with a 

classification method, to properly determine users’ respective biological genders at all. If it 

can be used, then we will have provided applications and services a way to identify and verify 

user-entered information, potentially more accurately than explicit user input, which may or 

may not be accurate. This will assist recommendation, personalization, and advertisement 

targeting algorithms in achieving their targets. Thereby, we will take a big step towards the 

eradication of fake user profiles and all that it entails. Additionally, we will also provide 

services the capability to “fill in” pieces of data about users, simplifying or eliminating the 

need for a registration process. 

3.1.3 Exploring and Analyzing the Trade-Offs Associated with Reducing the Timespan of the 
Data on the Profiling Accuracy 

Our second set of experiments does not focus on whether profiling is possible using data 

collected from zero-permission sensors and classification, but rather on testing the minimum 

timespan needed for the profiling to be accurate. While our first target is to determine that 

possibility and will therefore use the full dataset collected, the second set attempts to perform 

the same procedure, but with increasingly smaller timespans. By doing so, we will determine 

how fast services can accurately profile a user and to what degree of confidence. A description 

of the experiments participating in this exploration can be found in Section 5 below. 

3.1.4 Exploring and Analyzing the Trade-Offs Associated with Reducing the Timespan of 
the Data on the Profiling Accuracy 

While our second set of experiments focuses on reducing the timespan of the dataset being 
fed to a classifier, the third set of experiments focuses on reducing the actual sensor data being 
fed to said classifier. Through that, we will determine which sensors have the largest impact 
on accurate user profiling, reducing the need for services to collect data from sensors that not 
only may end up being useless to the profiling use-case, but may potentially be introducing 
extra “noise,” unnecessarily confusing the classifier. By determining the minimal set of 
sensors needed for profiling a user, we also reduce the overhead that the services must do to 
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properly classify and profile a user. A description of the experiments participating in this 
exploration can be found in Section 5 below. 

3.1.5 Exploring and Analyzing the Effectiveness of Multiple Machine Learning Algorithms 
on Zero-Permission Sensor Data 

After surveying potential machine learning algorithms, our research will select the three most 
relevant algorithms for our specific use-case. Instead of arbitrarily selecting one or the other, 
we will pass the data through all three algorithms, and compare their acquired results. 
Effectively, this allows the data to be tested across different potential algorithms and 
determine if the augmentation of the other options helped or hindered the overall 
classification and profiling process. This exploration is approached through an experimental 
behavior across all experiments performed described in Section 5, concurrent to the factor 
being tested, whether it be feasibility, timespan, or sensor combination. Therefore, each of the 
experiments will be repeated for all three of the algorithms being assessed. 
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Chapter 4 

 

Related Work 

 
In this chapter, we discuss background information and related work in the field. The three 

most important points of this research are user profiling, zero-permission sensors, and 

machine learning on zero-permission sensors. We provide an extended discussion of each in 

a respective subsection, examining previous work in the field, how it compares to our own 

planned work, and seeking guidance from previous research. We also assess the merits and 

fallbacks of the topic. This is followed by a section where we focus on the combination of these 

concentrations: the use of zero-permission sensors in the activity of user profiling, 

identification, or authentication. The figures below describe the taxonomy of this section. 

 

 
Figure 1: Taxonomy of Subsection 4.1 User Profiling 

4.1 User Profiling: 
what is meant by 

"profiling"

4.1.1 Explicit Profiling: 
Gathering user 

information explicitly
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4.1.3 Hybrid Profiling: A 
hybrid approach of 
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profiling

4.1.3.1 Information 
Filtering Techniques: for 
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4.1.3.1.1 Content-Based 
Filtering: using content as 
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4.1.3.1.2 Collaborative 
Filtering: using group 
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primary guide to profile

4.1.3.2 Static Content 
Profiling: Using the static 

user information to 
profile

4.1.3.3 Static 
Collaborative Profiling: 
Statically grouping the 

user to profile

4.1.3.3 Dynamic Content 
Profiling: Using user 

content consumption to 
profile

4.1.3.4 Dynamic 
Collaborative Profiling: 

Using user group 
membership to profile
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Figure 2: Taxonomy of Subsection 4.2: Zero-Permission Sensors 
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Figure 3: Taxaonomy of Subsection 4.3: Machine Learning on Zero-Permission Sensors 

4.3 Machine Learning and its use on Zero-
Permission Sensors: what machine 

learning is and how it is used on zero-
permission sensors

4.3.1 Machine Learning 
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4.3.2.1 Naive Bayes: what it 
is and how it was used on 
zero-permission sensors 
and its degree of success

4.3.2.2 Decision Trees: 
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4.3.2.3 Multilayer 
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permission sensors and its 
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4.3.2.4 Logistic Regression: 
what it is and how it was 
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4.3.2.5 Support Vector 
Machines: what it is and 
how it was used on zero-

permission sensors and its 
degree of success

4.3.2.6 K-Nearest 
Neighbor: what it is and 
how it was used on zero-

permission sensors and its 
degree of success
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Figure 4: Taxonomy of Subsection 4.4: Work with Similar Applications 

 
4.1 User Profiling 

Kanoje et. al [33] succinctly define user profiling as “the process of extracting, integrating and 

identifying the keyword-based information to generate a structured profile and then 

visualizing the knowledge out of these findings.” We certainly agree with this. While some 

sources, even Kanoje in different research [23], limit the profile to the “interest domain” of a 

user, we strongly believe that the profile itself – who the user is – informs the interest domain 

of the user – what the user likes –, not that it is part of it. Hence, our view of a profile is simply 

key data and characteristics about a user that can be used to infer other attributes. In Kanoje 

et al’s analysis of user profiling, they break it down into three main subcategories: explicit 

user profiling, implicit profiling, and a combination of both called hybrid profiling [23]. We 

will dedicate a subsection to understanding each. 

4.1.1 Explicit Profiling 

Explicit or static user profiling is defined as analyzing a user’s characteristics from users 

themselves, usually through surveys or electronic registration forms [24]. The reason this type 

of profiling is also referred to as static highlights one of the main problems associated with it: 

the profile itself does not change or evolve as the user’s interests change and evolve [24]. If a 

user creates a profile while having no interest in sports and then develops this interest, he or 

she would have to go and manually change their profile to reflect this newly acquired taste. 

Additionally, this type of profiling is biased to a user’s subjectivity and may not reflect correct 

values [24]. Often users may be unaware of their own potential interests, focusing only on 

what they know, rather than what they could potentially end up liking. This is, of course, not 

even considering malicious users that deliberately provide the registration system with false 

information for one reason or another, as discussed in the overview and motivation sections 

above. 

4.4 User Identification 
Applications of Machine Learning 

on Zero-Permission Sensors: 
previous work related to ML on 

zero-permission sensors with 
similar applications to our goal

4.4.1 User Authentication: ML on 
ZPS for the purposes of 

authentication
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important ethical caveats of ML 
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4.1.2 Implicit Profiling 

Implicit, or dynamic, profiling is the opposite of explicit profiling. Instead of relying on user-

supplied data, the system itself is what performs the analysis of a user’s activities and actions 

to determine the interests of a user [24]. This can also sometimes be referred to as behavioral, 

adaptive, or ontological profiling [23]. The main advantage with this method of profiling is 

that it grows and adapts to a user’s interests as they themselves adapt, given that the process 

of profiling is a repeating effort, not performed only once. Most commonly, this method of 

profiling is done through continuously understanding a user’s web browsing patterns and 

forming an understanding of the user and their interests based on said patterns [23]. In some 

cases, it is even possible to refine these user profiles to the degree of using them for 

identification and authentication, a step further than profiling [34]. Another approach is to 

analyze the interactions with the service for which the profile is being built. It is not difficult 

to imagine that YouTube will profile a user as a child if their entire watch history is children’s 

cartoons, but perhaps more interesting is the research conducted by De Andrés et al. In their 

paper, they build user profiles relying on the accuracy and time between different computer 

mouse interaction operators. These operators were “pointing,” “dragging,” “key pressing,” 

and “mental” which is used whenever the user must perform a simple decision [36]. They 

were indeed capable of determining the demographic profile (age and gender) of a user based 

solely on these interactions, showing that users of differing demographic profiles performed 

these interactions differently than one another [36], a very promising finding for our research, 

different as it is. 

Two other common approaches include scrapping a user’s social media [35] for information, 

perhaps explaining the boom in social-media login services, tracking cookies, and scrapping 

external web pages for information about a profile to generate another profile [35][33]. 

Unfortunately, all of these methods could only get as good as the source information they are 

scrapping from. This means that, for example, if a user has created a false social media profile 

and uses it to log into another service, the service’s “implicitly-created” profile would also be 

false. Additionally, laws such as the The General Data Protection Regulation (GDPR) in the 

European Union and anti-tracking mechanisms in modern browsers and operating systems 

have made this process less possible for systems to implement, highlighting the trade-off 

between the privacy users covet and the personalization these same users demand of the 

services they use. 

 

4.1.3 Hybrid Profiling 

Hybrid profiling is the combination of either static or dynamic profiling with different 

information filtering techniques in recommendation systems [23] to establish a user’s profile-

generating attributes. To understand how this happens practically, and the different types of 
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hybrid profiling methods, we discuss below the various information filtering techniques that 

contribute to the effort of profiling a user. 

4.1.3.1 Information Filtering Techniques 

The method through which content is filtered in recommender systems is its heart and core. 

The question is a simple one: for a given user, how should content recommendations, 

regardless of what they may be in terms of videos, songs, restaurants, or even the social media 

posts that comprise the user’s feed, be made? While there are many approaches, the two most 

interesting, widely used, and widely researched approaches are content-based filtering and 

collaborative filtering. 

4.1.3.1.1 Content-Based Filtering 

Content-based filtering focuses on the content that a user consumes and compares that to 

other available content. If the new content is found to have a large degree of similarity to those 

that the user consumes, then it becomes a viable option to be recommended to a user [24]. On 

a video-sharing website, for example, if a user already watches a lot of sports videos, content-

based filtering would suggest recommending more sports videos to the same user. This 

process can sometimes be further enhanced using explicit inputs from the user. For example, 

Avery and Zeckhauser [25] were first to find that incorporating a user’s ratings of the 

recommended content and using said ratings as filters for recommending additional content 

was a successful method. This concept later evolved by Fuchs and Zanker to allow users to 

not only rate the content, but to perform a multivariate rating of the content [26] to understand 

a user’s opinion more granularly. In their case, it was focused on hotel reservations, and 

therefore, instead of having users rate their overall stay experience, they had users rate 

individual aspects of the stay such as the comfort and cleanliness to allow for 

recommendations to target users with similar specific criteria. We could see how a similar 

approach could be followed for other specific recommendations. While this concept of 

multivariate rating was indeed successful [26], Ramscar et al quickly proved this effort too 

tedious for users [27] having to perform these multivariate ratings for each piece of content 

consumed.  This is perhaps what gave rise to research in the area of implicit rating and 

filtering, and the associated well-cited patents [29]. Some ways through which this can be 

accomplished is to identify specific actions that a user would naturally take to indicate a 

positive rating, such as saving, completing, repeated viewing, etc., and their opposite, such as 

deleting, non-completed viewings, etc. to indicate a negative rating [28]. 

4.1.3.1.2 Collaborative Filtering 

In collaborative filtering, unlike content-based filtering focusing on content similarity as the 
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criterion through which other content is recommended to a user, the users themselves are 

placed in similarity groups. This is usually done by clustering the profiles. The algorithm then 

expects users in the same group to have similar interests, thereby if enough users in a group 

find a piece of content interesting, it is recommended to other users in a group [24]. For 

example, if user A is in the same similarity group to user B due to some shared attributes (or 

perhaps event content consumed), user A would be recommended content that user B has 

found interesting, and vice-versa. Interest, itself, is expressed through similar means as in 

content-based filtering: either explicit or implicit rating. While there are many different 

approaches to improving the accuracy of collaborative filtering [30][31][32], the key challenge 

facing this filtering approach is the method through which the users are clustered, providing 

for the most similarity between users of the same group, and enough dissimilarity between 

users of different groups [24]. 

4.1.3.2 Static Content Profiling 

In static content profiling the focus is on collecting and maintaining user information [24]. A 

simple snapshot is taken of a user’s content consumption in time and used to profile the user 

once. The disadvantage of that is, as in simple explicit profiling, there is no real growth or 

development to the user profile over time.  If a user happened to join a video-sharing platform, 

for example, to view children’s cartoons, and that is when the profiling was done, the user 

would be profiled as a child, despite them not actually being one. The advantage is that this 

type of profiling is easy to perform and not at all, resource intensive. 

4.1.3.3 Static Collaborative Profiling 

In static collaborative profiling, more information goes into profiling the user. A user is 

explicitly stated as being part of the group, whether by choice (through social media group 

memberships, for example) or assignment (through being placed in a specific administrative 

group or age group, for example). The interests of the group indicate the potential interests 

for the user and help inform his or her profile [24]. The advantage with this approach is that 

it does help take the user out of their own personal “bubble.” If a user is interested in one type 

of content, he or she will also be shown additional types of content that are consumed by the 

specific group. The disadvantage here is that, again, it is static. Users do not “change” their 

collaborative group, despite their actual views or opinions changing. As an illustrative 

example, let us consider a hotel booking system. A user may be determined to be interested 

in luxury hotels due to their affluence or previous reservations. With static collaborative 

profiling, if the user were to lose their job, they would continue to receive recommendations 

of hotels that people of the same group were reserving – likely targeting a luxurious standard 

over economical options – despite no longer being applicable. Another disadvantage is that, 

while this approach takes the user out of their own personal bubble, it puts them in the “group 
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bubble,” failing to recommend other pieces of content that may provide a viewpoint different 

from their own, further inciting divisionism. 

4.1.3.4 Dynamic Content Profiling 

Dynamic content profiling is different. It combines the virtues of dynamic profiling with the 

prowess of content-based filtering. Basically, a user’s interests are determined based on the 

content that they had previously consumed. As the content changes or shifts from one 

category to the other, so does the content [24]. One main disadvantage of this profiling method 

is that it does not expose the user to content that may be interesting but does not strictly fit 

their profile. 

4.1.3.5 Dynamic Collaborative Profiling 

Dynamic collaborative profiling acts similarly to dynamic content profiling but for a group, 

instead of a specific individual. The interests of the group are the sum of the interests of the 

individuals within that group [24]. This removes this “bubble” that a user is placed in through 

content profiling, exposing the user to other content that may be interesting based on the 

interests of the group. Additionally, this type of profiling addresses the fallbacks of dynamic 

collaborative profiling through making the group determination itself dynamic. The user can 

“flow” between groups and different interest sets, as their interests and affiliations change 

and develop over time. 

 
4.2 Zero-Permission Sensors 

Zero-permission sensors are sensors that do not explicitly require the user’s permission to be used 

by an application. Applications could be running in the background completely undetected and 

without requiring any input from the user, monitoring these sensors, and collecting and/or 

sharing their readings with the cloud [38]. 

4.2.1 Accelerometer 

The accelerometer is a device used for measuring linear acceleration in meters per second 

squared along a moving body [39][40]. In this particular case, we are focusing on tri-axial 

accelerometers, measuring linear acceleration along the three axes: x, y, z. In Figure 5 below, 

the accelerometer measures acceleration along the axes themselves. 

4.2.2 Gyroscope 

The gyroscope is a device used for measuring angular acceleration in radians per second along 
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a moving body [39][40]. Again, we are directing our interest to triaxial gyroscopes measuring 

rotation along the three axes: x, y, and z. The difference between the accelerometer and 

gyroscope is perhaps best illustrated by Figure 5 [39]. The gyroscope measures rotation along 

the three axes in the figure. 

 
Figure 5: Accelerometer and gyroscope measurements on a mobile device. The three axes 

intersecting with the center of the device represent the readings by an accelerometer along the 
physical axes. The three circles along the tips of the axes represent the gyroscope readings 

along the three axes. 

4.2.3 Ambient Light Sensor 

The ambient light sensor measures the illuminance in a device’s environment [42] in lux, 

which is the standard unit of illuminance in the SI system. 

4.2.4 Other Zero-Permission Sensors 

There are other zero-permission sensors in some devices, but they are less common and have 

significantly fewer applications. In our research, we have elected not to use them, however 

explain their usages here for deeper understanding of their potential roles in related works or 

future works. We also include these sensors and their definitions to highlight the multitude 

of potential data that could be gathered or otherwise used, without the user even being made 

aware of the fact. Other sensors, such as step detection for example, require the user to allow 

the device [41]. 

4.2.4.1 Magnetometer 

A magnetometer measures the strength of the ambient geomagnetic field, again along the 

three physical axes [42]. Combined with software algorithms, these values can indicate which 

way the phone is facing. 

4.2.4.2 Proximity 
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A proximity sensor measures the distance from the sensor in centimeters [41]. This sensor is 

typically placed close to the earpiece to determine whether the device is being held up to the 

person’s ear. 

4.2.4.3 Other Environmental Sensors 

There are also other zero-permission sensors that may be placed in a user’s device that 

potentially gather data about a user’s environment [42]. Those include the device and ambient 

temperatures in degrees Celsius, the ambient air pressure in hectopascals, and the relative 

humidity in percentage [42]. 

4.2.5 Potential Applications 

The potential applications of the most common Zero-Permission sensors include using the 

accelerometer and gyroscope as game controllers, orientation identifiers, and the recognition 

of physical human activity [39][40]. An ambient light sensor can be used to detect the 

surroundings of the device to determine whether it is in a dark environment (such as a dark 

room or a pocket) or a well-lit environment [42]. 

 
4.3 Machine Learning and its use on Zero-Permission Sensors 

In this section, we provide a discussion of machine learning in general, before surveying a number 

of specific and prominent examples of applying different machine learning algorithms to zero-

permission sensor data. 

4.3.1 Machine Learning Paradigms and Approaches 

In his book, Introduction to Machine Learning, Alpaydin [37] defines machine learning as 

“programming computers to optimize a performance criterion using example data or past 

experience.” He continues to explain that there are three major paradigms of machine learning: 

reinforcement, unsupervised, and supervised. Reinforcement learning allows the machine to be 

able to generate actions based on the “utility” of such actions. It provides a method to the machine 

to be able to assess the benefit of an action taken under particular circumstances, and the machine 

learns to maximize this benefit. Artificially intelligent non-playable characters (NPCs) in a game, 

for example, could be taught to maximize interference with a player’s objective to increase the 

difficulty of a game. In unsupervised learning, the only data available is input, without any 

associated output. Therefore, the learning process becomes one of grouping similar data to each 

other – or clustering – without being able to “label” this data. If the data is of a constrained number 

of classes, this labeling can happen manually following the automated clustering performed by the 

algorithm. In supervised learning, the aim is to map an input to an output, all as a supervisor 
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provides the correct mapping for a subset of the inputs. In that sense, the criterion being optimized 

is the error between the correct input-to-output mapping, and the mapping provided by the 

algorithm. Perhaps the most discriminating aspect for the type of learning to be used, and then the 

method of learning, is the input data. Several aspects of the data contribute to this decision: its type 

– textual, graphical, audible, unstructured –, the volume of the data – do we have large amounts 

of data or just a few examples –, its labels – whether the data is or can be labelled or not –, and the 

density of the data – the volume per class –. Therefore, it becomes important to our research to 

understand doing machine learning in the specific context of the type of data that we will be 

dealing with. Already, before diving too deep into the potential algorithms and their 

particularities, we can see that mapping inputs (zero-permission sensor data) to outputs (a user’s 

biological gender) is the aim of our research, and therefore we chose to select supervised learning 

as our selected approach. 

4.3.2 Potential Algorithms 

Seeing how popular it has become of a field in recent times due to the advent and increased 

popularity of smartwatches and fitness trackers, and the relative affordability of the sensors and 

the computing power to perform the classification on those sensor data, most researchers focus 

their zero-permission sensor machine learning efforts in the area of activity recognition and 

classification. While the applications of their classification efforts are different from our own, even 

ranging to working with animals instead of humans, they are still interacting with very similar 

data from the same set of sensors. For this reason, we survey a number of telling experiments to 

determine the potential machine learning algorithms we may use and the approaches taken to that 

effort. We remain, however, mindful of the difference of application. We explore experiments with 

similar data that focus on applications like our own – user profiling, identification, and 

authentication – in section 4.4. 

4.3.2.1 Naïve Bayes 

The naïve Bayes classifier performs its classification through relying on the Bayesian theorem 

which states 

𝑝(𝑐𝑗|𝑑) =  
𝑝(𝑑|𝑐𝑗)𝑝(𝑐𝑗)

𝑝(𝑑)
 

given that p(c_j│d) is the probability that d belongs to the class c_j, p(d|c_j ) is the given probability 

of d being in class c_j, p(c_j) is the probability of c_j occurring in the dataset, and p(d) is the 

probability of d occurring in the dataset [85]. A more straightforward way to think about this is 

that the naïve Bayes algorithm is able to predict the probability that a given feature belongs to a 

specific class by assuming the effect of a particular attribute on the feature, ignoring the effect of 



22  

other attributes and accounting for the probabilities of the class and the feature occurring [43]. 

In their experiment, Joshua et al used the naïve Bayes method to attempt to classify construction 

activities on data collected from accelerometers placed at mason workers’ waists.  After filtering 

their features for the most distinctive and testing multiple machine learning algorithms, they were 

able to reach a maximum accuracy of 70.33% using naïve Bayes [43] as their classifier. As seen in 

the following subsections, they were able to obtain better results using other classifiers. 

Aziz et al tried to detect falls by an accelerometer also worn around the waist. Naïve Bayes was 

one of the classification algorithms they tested, and it provided the highest sensitivity (recognizing 

a fall), and a 91% specificity (correctly recognizing a non-fall) [50], the lowest score by comparison 

to the other tested algorithms. This is a possible indication of the sensitivity of the naïve Bayes 

algorithm to abrupt motion, which could potentially skew results. Overall, it shows that naïve 

Bayes may be very prone to false positives. 

Albert et al also tried to detect falls, however this time with smartphone accelerometers, instead of 

a dedicated one worn on the subject. This level of device freedom is more relevant to our 

experiments, despite the difference in application. Their results seem to confirm Aziz et al’s 

findings that naïve Bayes was poor at fall detection, as it was only accurate 66.3% of the time [52], 

a large difference from its next competing algorithm.  

In their research, Wu et al attempted to classify thirteen different physical activities – mainly 

jogging, walking different speeds, sitting, going upstairs and downstairs at different speeds – using 

gyroscope and accelerometer readings from an iPod Touch. The device was placed, strapped in an 

armband for the jogging activities, and in the subject’s front shorts pocket for the other activities. 

For the weighted average of all the activities being classified, naïve Bayes had a 63.2% accuracy, 

the lowest score of all evaluated algorithms [51].  

Similarly, Yin et al attempted to classify the activities of walking, running, and sitting using a 

loosely placed smartphone in the subject’s pocket. They assessed multiple machine learning 

algorithms to perform their classification, one of which was the naïve Bayes. They found that it 

had the least accuracy among the tested algorithms. That least accuracy, however, was at a 

whopping 99.1645% [85], displaying that while it was the least accurate of those tested, it still 

performed an excellent job at the task of differentiating between the different activities that were 

being classified. It is, however, important to note that Yin et al’s feature selection algorithm was 

questionable, choosing to select every 20th feature without justifying this approach. Additionally, 

no mention of the number of participating subjects is made in the paper. The difference in results 

between Wu et al and Yin et al’s experiment may be attributed to a few factors, such as the 

experimental setup or the difference in time between the two papers allowing for better-developed 

technologies perhaps with more sensitive accelerometers. 

Edeib et al attempted to detect falls – either forward, to the right, or to the left – using data collected 

from the triaxial accelerometer, combined with an additional data point that aggregates the data 

from the three axes for the total magnitude of motion. In their experiment, they found that naïve 
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Bayes performed the worst at the task, reaching an accuracy of 91% [91], relatively low by 

comparison to the other algorithms they tested. 

Palmerini et al also attempted fall detection experiments. In them, they relied exclusively on 

accelerometer data but also fed to multiple machine learning algorithms, one of which was naïve 

Bayes. They found that it provided an accuracy of 99.6% [94], sharing the highest accuracy with 

the logistic regression model, contrary to Edeib et al. 

Continuing with the application of fall-detection, in Al Nahian et al’s experiments, they used the 

accelerometer readings from three open-source datasets: UR Fall, MobiFall, and UP Fall. They also 

used six different machine learning algorithms to detect and classify a falling action, one of which 

was naïve Bayes. For the UR Fall dataset, Naïve Bayes shared the spot of highest accuracy at 

detecting the falls with random forests at 99%. With the UP Fall dataset, it had a middling 97% 

accuracy. Finally, with the MobiFall dataset, seemingly the most optimized for fall recognition, it 

scored equally to all of other algorithms at 99% accuracy [100]. This gave it an average, across the 

datasets, of 98.33%, sharing second place with the logistic regression algorithm. 

4.3.2.2 Decision Trees and Random Forests 

Decision trees are simple trees on which each node represents a test of a specific attribute, each 

branch an outcome of said test, and each leaf a classification. These classifiers are simple, fast, and 

reasonably accurate, explaining their popularity [43]. This form of classification is illustrated in a 

simple example classifying whether or not a person should play soccer based on weather attributes 

in Figure 6 below. 

 
Figure 6: Sample decision tree illustrating the classification for whether or not someone 

should play soccer, to illustrate how a decision tree works 
 

In the aforementioned construction activity classification experiment conducted by Joshua et 

al, they also tested the performance of decision trees. They were able to obtain a maximum 

accuracy of 76.67%, a significant improvement over naïve Bayes’ 70.33% [43]. 

In Aziz et al’s fall-detection experiment, the sensitivity and specificity of decision trees were also 

measured. It provided a 94% sensitivity, a mediocre score relative to the other algorithms, and 96% 
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specificity, equal to the best score [50]. Again, these results are confirmed by Albert et al, showing 

decision trees to have an accuracy of 95.9% at detecting falls [52]. While that makes it the 

second worst, the difference between it and the worst evaluated (naïve Bayes at 66.3%) is 

significant, and places it in the range of very accurate. 

Althobaiti et al also used decision trees as one of the assessed machine learning algorithms in 

their fall detection experiment. Their experiment, however, was unique in the sense that it not 

only attempted to classify falls, but also 6 other human activities, including jumping, lying down, 

bending, sitting, standing and walking. This means that they were able to provide two accuracies 

from their experiments for each of the assessed algorithms, testing whether or not the activity was 

classified correctly, and whether or not the activity was a fall or not. Decision trees provided a 

middling performance at detecting whether or not the activity was a fall at 97.14%. The middling 

performance continued at detecting the actual activity itself with an overall accuracy of 91.24% 

[96].  

In Wu et al’s aforementioned human activity classification research, decision trees scored a 

weighted average of 83.0% across the activities, a relatively mediocre score [51]. 

Ali et al also attempted to recognize human activity – particularly sitting, walking, jogging, and 

falling – with the J48 algorithm generating decision trees. The trees were trained on the data coming 

from the embedded accelerometer in a phone placed in the subject’s upper right pocket. They were 

able to achieve accuracies of 82.76%, 69.56%, 70.56%, 60.15% for each of the aforementioned 

activities respectively [97]. Again, this is a very mediocre score, with an overall average accuracy 

of 70.76%. It is unfortunate that they did not attempt other machine learning algorithms to get a 

better sense of whether the issue was their data, the model, or the way they trained it.  

Random forests are a specific variation of decision trees. In it, instead of calculating every potential 

decision in a single tree as in classical decision trees, multiple decision trees are generated where 

the decisions to be considered are selected randomly but the progression is only on the best 

decision. This makes the classification significantly more efficient, and the accuracy loss is not huge 

due to statistical laws [46]. Further still, extremely randomized trees are another variation very 

similar to random forests. In extremely randomized trees, however, the progress from one node to 

another is not based on the best result, but rather also randomly selected [47]. 

Zdravevski et al attempted an experiment to automatically identify intended jogging periods using 

accelerometers. In their experiment, they used both random forests and extremely randomized 

trees. They were able to find that random forests were not as successful as the other classification 

methods they were evaluating, however extremely randomized trees were the most accurate when 

provided data from the respective favored hip of each subject, or data from the respective favored 

hip and favored ankle of each subject [44]. This is a strong indication to the viability of ERT as a 

classification algorithm for accelerometer data. 

Fattahi et al attempted to use random forest classifiers to assess driver behavior for aggressive 

maneuvers including careless driving, aggressive lane changing, and tailgating. Although their 

application is quite different from ours, the methodology of applying a machine learning algorithm 
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on accelerometer data is the same. They found that they were able to reach an overall accuracy of 

89% [80]. It is important to note here, however, that they did not only employ random forest 

classifiers to conduct their prediction, but rather also included a second step of using a multilayer 

perceptron – discussed in the following subsection – without discriminating the results of the 

random forest classifier alone. Additionally, they also used data coming from the OBD-II of the 

car, which they found to be more relevant to the classification [80] than those coming from the 

smartphone sensors, putting into question both the data fed to the model, and the model itself.  

B.R. dos Reis et al. also experimented with an application different from ours, but with a similar 

methodology. They attempted to classify cattle activities – grazing, lying, resting, and walking – 

using a triaxial accelerometer, gyroscope, and magnetometer. They also evaluated different 

machine learning algorithms and found that the random forest classifier was best, among those 

evaluated, at the classification performance, identifying grazing at a 93% accuracy, lying at 92% 

accuracy, walking at 94% accuracy, and resting at 92% accuracy [81]. 

Riaboff et al also attempted to classify cattle activities, same as dos Reis et al, but with some 

additional activities for ruminating. They tested multiple machine learning algorithms and were 

able to reach an accuracy of 97% with random forests [93]. Among those tested, this was a middling 

performance, neither providing the best nor the worst classification accuracy. 

Abdull Sukor et al focused on comparing different machine learning algorithms for classifying six 

human activities: standing, sitting, lying, going upstairs, going downstairs, and walking. One of 

the assessed machine learning algorithms was decision trees. They found that they were able to 

reach a 95.36% accuracy with the original accelerometer features, and an even better 96.85% with 

a dimensionality reduction process they performed [87]. 

Shakya et al conducted an in-depth analysis of comparing the capability to recognize human 

activities between various machine learning and deep learning algorithms. The aim was to 

compare the performance of decision trees, random forests, K-nearest neighbor, convolutional 

neural networks, and recurrent neural networks at recognizing activities such as jogging, lying 

down, sitting, going upstairs, standing, walking, biking, and going downstairs [88]. They also 

conducted these experiments with two different datasets. In their experiments, they found that 

decision trees were able to reach an accuracy of 90.57% for the first dataset and 87.96% for the 

second dataset [88], to an average overall accuracy of 89.27% across both datasets. With their 

experiments with random forests, they were able to reach accuracies of 95.77% and 89.72% for the 

first and second datasets respectively [88]. The overall average accuracy between both datasets was 

92.75%. This shows a significant improvement while using random forests over decision trees, 

perhaps due to their increased complexity. 

Gomes et al chose to focus on a different aspect of activity recognition. Instead of directing their 

attention to the type of activity that was being conducted, instead they focused on classifying the 

intensity of the activity being conducted, varying from light to moderate to vigorous. In their 

experiments, they assessed the activity intensity using three different machine learning algorithms 

on accelerometer data collected from a smartphone placed at the subject’s waist. They also 
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attempted two different alternatives: the first was one classifier being used to detect both the 

activity itself and the intensity, the second was using one classifier for each of the classification 

tasks: the activity and its intensity. One of the algorithms tested was random forests. They found 

that random forests were correctly able to identify the activity along with the intensity of the 

activity 77% of the time [95], placing it right in the middle between the k-nearest neighbor accuracy 

and the support vector machine accuracy. When classified separately, they found that random 

forests performed the best at recognizing the activity being conducted (at 97%) and the worst at 

recognizing the intensity of the activity (at 79%) [95]. Calling it the best and the worst, however, is 

misleading, given that it only had one percentage point difference from K-Nearest neighbor which 

was the worst at recognizing the activity conducted and the best at recognizing the intensity of 

said activity [95]. 

In Edeib et al’s fall detection experiment, another one of the machine learning algorithms they 

tested was decision trees. They found that it performed best at the task with an overall accuracy of 

97%, beating naïve Bayes’ 91% and SVM’s 95% [91]. In their fall-detection experiments, Palmerini 

et al found that random forests provided a middling performance, with an accuracy of only 98.9% 

[94], relatively low in comparison to the other models they tested. 

Al Nahian et al used both decision trees and random forests to detect falls from accelerometer 

readings in three datasets. While decision trees shared the position of least accurate with many of 

the other machine learning algorithms at 97% for the UR Fall dataset, random forests on the other 

hand had the best classification accuracy for the same dataset at 99%. This pattern continued with 

the UP Fall dataset, with decision trees providing the least accuracy of all assessed algorithms at 

96%, while random forests shared the position of second most accurate with other algorithms at 

98%. With the MobiFall dataset, both random forests and decision trees had an accuracy of 99% 

[100]. Across the three datasets, decision trees had an overall accuracy of 97.33%, the least accurate 

at detecting a fall from the three datasets, while random forests had an overall accuracy of 98.67%, 

the most accurate at detecting a fall across all three datasets. 

4.3.2.3 Multilayer Perceptron 

A multilayer perceptron is a neural network in which different “neurons” (input-output units) 

are connected in a network. Each connection has an associated weight which is adjusted 

during the learning phase, and a specific calculation is performed inside each neuron to determine 

its result. Data features act as inputs and the potential classification labels are the outputs [43]. It is 

trained through backpropagation of the errors and adjusting the weights between the connections 

[85].  

In the masonry classification experiment, the researchers also tested the multilayer perceptron as 

a potential classification method. Their result of 79.83% accuracy proved to be the most accurate of 

the three classification methods tested [43]. 

Wu et al also evaluated the multilayer perceptron in their activity classification research. It scored 

a weighted average of 83.4% across the different activities, very similar to decision trees, and an 
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overall mediocre score.  

As aforementioned, Fattahi et al also used a multilayer perceptron as a second “layer” to their 

classification of erratic driver behavior after random forest classifiers. They were able to reach a 

rather impressive 89% accuracy, but again they were primarily using the data coming from the 

OBD-II port in the car, reducing the impact of the smartphone sensors [80]. 

Yin et al found the most success at their attempt of classifying walking, running, and sitting 

activities with the multilayer perceptron, reaching an accuracy of 99.8956% [85]. 

Among the different machine learning algorithms Abdull Sukor et al tested to recognize six 

common human activities was a neural network, a specific kind of a multilayer perceptron. When 

using the original features, prior to a dimensionality reduction process they applied, the neural 

network was able to reach an accuracy of 97.54%, the highest of the assessed algorithms [87]. 

Interestingly, after the application of their dimensionality reduction process, the neural network 

was able to classify the activities with 100% accuracy [87]. This is an extremely interesting figure, 

encouraging the use of neural networks for the recognition of human activity. 

Shakya et al in their comparative analysis of traditional machine learning and deep learning 

algorithms did not suffice with just testing one deep learning algorithm. Instead, they tested both 

convolutional neural networks and recurrent neural networks for their classification of human 

activities. They found that convolutional neural networks were able to reach an accuracy of 92.22% 

for the first dataset and a very impressive 99.12% for the second dataset [88]. This provides an 

average accuracy of 95.67% across both datasets. Meanwhile, recurrent neural networks performed 

worse than convolutional neural networks. They provided accuracies of 81.74% and 95.65% for the 

two datasets respectively, with an overall accuracy of 88.7%. This shows that, for the purposes of 

recognizing human activities from triaxial accelerometer data, convolutional neural networks will 

perform significantly better than recurrent neural networks. 

Ferrari et al also performed a similar comparative analysis of traditional machine learning and a 

deep learning algorithm. Their deep learning approach of choice was to use transfer learning on 

the ResNet Convolutional Neural Network. Their analysis was also very comprehensive, having 

tested three different datasets of accelerometer and gyroscope data, both in conjunction and 

separately. They found that ResNet performed the best on the accelerometer-only alternative 

providing 90.73%, 92.98%, and 99.47% for the UCI-HAR, MobiAct, and MotionSense datasets 

respectively. The Convolutional Neural Network continued its superior performance with the 

gyroscope-only alternative, providing accuracies of 89.36%, 96.09%, and 98.07% for each of the 

three datasets respectively. Interestingly, when the combination of accelerometer and gyroscope 

readings were used, ResNet performed best with only two of the datasets with accuracies of 96.46% 

and 99.08% for the UCI-HAR and MotionSense datasets respectively. k-nearest neighbor 

performed better with the MobiAct dataset at 94.20% accuracy compared to ResNet’s 92.94% 

accuracy [99]. Overall, ResNet had an average accuracy across the three datasets of 94.39% for the 

accelerometer-only alternative, 94.51% for the gyroscope-only alternative, and 96.16% for the 

combination of accelerometer and gyroscope readings. This provides an overall accuracy, across 
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the datasets and the combinations, of 95.02%, an extremely impressive result. 

4.3.2.4 Logistic Regression 

Logistic regression is a probabilistic model, similar to others like naïve Bayes and support 

vector machines, used to determine the probability of a specific event. It is binary in nature, 

however multiple combinations of it can allow for classification across several classes [45]. Its 

main advantages are its simplicity of understanding, and speed [44]. 

In Zdravevski et al’s jogging classification experiment, they employed logistic regression as one of 

the evaluated classification models. It succeeded in being the best classification model when all of 

the data, regardless of subject favorability, was fed to the classifier, providing a whopping accuracy 

of 99.90% [44]. 

In the fall detection experiment by Aziz et al, logistic regression scored 95% on sensitivity and 92% 

on specificity [50], comparatively mediocre scores in both categories. This is again confirmed by 

Albert et al in their own research, showing logistic regression as having a 98.0% accuracy at fall 

detection [52]. While that only puts it at an 0.2% disadvantage from being equal to the top accuracy, 

it is also just a 0.1% difference from third place, confirming its relative mediocrity.  

In Al Nahian et al’s fall detection experiments, logistic regression was also used. It provided – 

along with other assessed algorithms – the least accuracy of 97% for the UR Fall dataset. On the 

other hand, for the UP Fall dataset, it actually was the most accurate at 99%. With the MobiFall 

dataset, it – and the other machine learning algorithms – had 99% accuracy [100]. This gives it an 

overall average accuracy across the different datasets of 98.33%, a respectable second place shared 

with naïve Bayes. 

The classification mediocrity continues in Wu’s research, with logistic regression scoring a 

weighted average of 77.2%, the second worst score of the evaluated algorithms, and with a 

significant 13% gap between it and the most accurate evaluated algorithm [51]. 

But contrary to both aforementioned researches, Palmerini et al found that logistic regression 

shared the position of best overall accuracy at fall detection with naïve Bayes, at 99.6%. 

B.R. dos Reis et al’s experiment for classifying cattle activities also used logistic regression and 

although they did not report the specific accuracies obtained by using logistic regression, they did 

report that logistic regression performed the worst among the three evaluated machine learning 

algorithms [81]. 

Fang et al attempted to classify human activity but were particularly focused on the subjects getting 

on and off a bus. In order to do so, they provided users with a smartphone that they could place 

anywhere on their body as they undertook the action, and labeled seven particular activities – 

subjects being stationary, walking, running, going upstairs, going downstairs, going up a bus, and 

going down a bus [84]. They attempted their classification through multiple machine learning 

models, one of which was logistic regression. They found that among their selected algorithms, 

logistic regression performed the worst, at 83.9% accuracy, relatively low to the other algorithms. 

They do, however, note the freedom of movement of the device introducing potential noise that 
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may have confused the machine learning algorithms. While they did perform extensive feature 

selection, they do mention in the limitation of the study that they were unable to find a feature 

that specifically targeted the task they were attempting. Perhaps a more refined feature 

extraction method would have provided better results. 

4.3.2.5 Support Vector Machines 

A support vector machine (SVM) is a supervised machine learning algorithm that relies on 

calculating a “decision boundary” between different classes to be able to classify a sample. It 

attempts to cluster the data into groups, drawing “lines” between the different groups, to 

attempt to understand how to classify a newly incoming datapoint [48]. 

SVMs were also evaluated by Zdravevski et al in their jogging research. They found that SVM 

provided the highest overall accuracy, a 99.94%, but only when fed the data from the favored 

ankle of the subject [44]. This may indicate that while SVM could be capable of providing the 

best overall accuracy, it may also be the most sensitive to data noise, requiring the features of the 

input data to be well-filtered and well-selected. 

In the fall detection experiment by Aziz et al, SVM scored the highest score on specificity, 96%. 

While this score is equal to other classification algorithms evaluated in the same experiment 

(decision trees and k-nearest neighbor), it had the highest sensitivity of its equal competitors, also 

96% [50]. Albert et al also confirm SVM as the best for detecting falls, finding it at a 98.2% accuracy 

at the task [52]. 

In Palmerini et al’s own fall detection experiments, support vector machines continued to shine, 

providing a 99.3% accuracy [94] at correctly classifying a fall from accelerometer data, only a 0.3% 

difference from the highest accuracies achieved by both logistic regression and naïve Bayes.  

Al Nahian et al’s fall detection experiments also used support vector machines as one of the tested 

algorithms. Using the accelerometer readings from the UR Fall dataset, support vector machines 

were capable of classifying a fall accurately 97% of the time, sharing the position of least accurate. 

With the UP Fall dataset, SVMs shared the position of second most accurate at 98%. When the 

MobiFall dataset was used, SVMs were 99% accurate at detecting a fall, equal to the other assessed 

algorithms [100]. This gave SVMs an overall accuracy across the datasets of 98%, putting it squarely 

near the bottom at third most accurate (out of four) along with k-nearest neighbor. 

In Althobaiti et al’s activity recognition experiments, of which a fall was one, support vector 

machines provided the best accuracy at detecting whether or not the activity was a fall at 98.48% 

[96]. It also continued to shine at detecting the actual activity being conducted, reaching an 

accuracy of 93.33%, only 0.41% away from the best accuracy achieved by the linear discriminant 

analysis algorithm [96]. 

Kilany et al performed a human activity classification experiment, not unlike Wu et al’s. While Wu 

and his team did not test SVM as one of their classification algorithms, Kilany only used SVM as 

his classification algorithm. Between different trials, he was able to show that SVM had an accuracy 

between 85% and 93% at classifying human activity [53]. While those numbers, if compared 
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directly to Wu’s research, seem to indicate that SVM could potentially have the highest accuracy 

at detecting human activity, it is important to remember that Kilany’s research came a few years 

after Wu’s and used different devices. The increase in accuracy is not necessarily attributable to 

the advantage of using SVM over the other learning algorithms, but could be a symptom of 

technological progress. Only Ren et al actually compared SVM and KNN (the most accurate 

algorithm in Wu’s research [51]). Their findings provide Kilany et al’s merit, showing SVM scoring 

consistently higher than KNN.   

B.R. dos Reis et al also evaluated SVMs and found that it had a middling performance in the 

accuracy of classification [81], relative to the superior random forests and the inferior logistic 

regression. Riaboff et al confirmed the same with their own cattle activity recognition experiment, 

finding SBMs to provide an accuracy of 97% [93], close to being the best of the models tested, but 

being beaten by 1% by the superior XGB algorithm. 

Similar to dos Reis’ experiment, Yang et al attempted to classify broiler – chickens raised 

particularly for meat production – activities such as resting, walking, feeding, and drinking 

through machine learning on triaxial accelerometer data. One of the machine learning algorithms 

they tested was support vector machines. They experimented with different sampling rates, but 

the average accuracies across the different rates for the different activities were 96%, 99%, 90%, and 

92% for resting, walking, feeding, and drinking respectively [89] to an overall mean accuracy across 

the sampling rates and activities of 94.25%. This was significantly better than the other machine 

learning algorithm tested. 

Using support vector machines, Ahmed et al attempted to use triaxial accelerometer and triaxial 

gyroscope data to predict a host of human activities, both static and dynamic. They were table to 

reach a 97.93% accuracy for walking on a level surface, 97% accuracy for walking downstairs, 

95.45% accuracy for walking upstairs, 98.34% accuracy for standing, 98.31% accuracy for sitting, 

97.3% accuracy for lying, 95.74% for the motion from standing to sitting, 95.70% for the motion 

from sitting to standing, 96.77% for the motion sitting to lying, 94.74% for the motion from lying 

to sitting, 96.67% for the motion from standing to lying, and 97.75% for the motion from lying to 

standing. Overall, this provides a combined average accuracy across the twelve classified activities 

of 96.81%, a very impressive and promising figure [82].  

It is important, however, to note three factors that bias these results, even if by a small amount. 

First of all, Ahmed et al conducted these experiments in a controlled laboratory environment, while 

the subjects were being observed, which alters human behavior into a more controlled rather than 

erratic one. Additionally, the sensors – placed in a Samsung Galaxy S II phone – were mounted 

specifically at the subjects’ waists, not allowed any degree of freedom as in our proposed 

experiments. Finally, Ahmed et al performed very specific feature selection, without which they 

still had impressive accuracies for the twelve activities (an average of 90.84% [82]), but less so than 

with the combination of the feature selection. 

Fang et al’s bus ascension and descension experiment also used support vector machines and 

found that they provided a superior performance with an accuracy of 88.9% to logistic regression’s 
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83.9% accuracy [84].  

Yin et al’s experiment classifying walking, running, and sitting used Support Vector Machines to 

a success rate of 99.4526%. While that is an extremely high accuracy, SVMs only accounted for the 

position of second best, behind the multilayer perceptron, and ahead of the naïve Bayes. 

The final algorithm Abdull Sukor et al tested for recognizing the most common human activity 

was support vector machines. With the original accelerometer features, the SVM was able to reach 

an accuracy of 90.19% [87]. This number again faced an increase to 92.87% after their 

dimensionality reduction process. This process caused an increase in accuracy across all three of 

the tested machine learning models [87], giving merit to this process as a potential data pre-

processing step that would help our selected models improve in accuracy.  

The most interesting aspect of Yin et al and Abdull Sukor et al’s respective researches, however is 

that they confirm each other’s one particular finding. In both sets of experiments, support vector 

machines are only outperformed by the multilayer perceptron. However, seeing as the multilayer 

perceptron could be considered a more modern deep-learning approach, this places support vector 

machines as the best performing classical machine learning algorithm assessed in both sets of 

experiments. 

Continuing with the pattern of Human Activity Recognition (HAR), Husain et al’s experiment 

relied on data coming from accelerometer and gyroscope to classify activities using support vector 

machines. They were able to reach an overall accuracy of 95% across the activities being classified 

[92]. 

In Ferrari et al’s comparative research between traditional machine learning algorithms and deep 

learning, one of the selected machine learning algorithms was support vector machines. They 

found that, while it performed poorer than transfer learning on ResNet, it provided a performance 

quite similar to the other assessed machine learning algorithm: k-nearest neighbor, albeit never 

beating ResNet like k-nearest neighbor did. Support vector machines provided accuracies of 

79.51%, 77.93%, and 90.04% for the accelerometer-only readings from the UCI-HAR, MobiAct, and 

MotionSense datasets respectively [99]. This provides an average overall accuracy of 82.49%. The 

gyroscope-only readings from the three datasets provided accuracies of 72.93%, 64.19%, and 

86.92% respectively [99] with an overall average of 74.68%. Combining both the accelerometer and 

gyroscope datapoints yielded accuracies of 86.83%, 79.13%, and 85.87% respectively [99] with a 

combined average of 83.94%. Across the three datasets and combinations of sensors, support vector 

machines had an overall accuracy of 80.37%. Another interesting pattern noticed is that when data 

from only one sensor was used, support vector machines consistently performed best with the 

MotionSense dataset, and worst with the MobiAct dataset, with the UCI-HAR dataset resting in 

the middle. This pattern changed only when data from both sensors were used, with the UCI-HAR 

and MotionSense switching positions (but only by a margin of 0.96%), with MobiAct continuing to 

be the least performing. 

Gomes et al’s experiment with detecting the intensity of the activity, rather than the actual activity 

being conducted, also used support vector machines as one of the machine learning algorithms 
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being tested. They found that SVMs provided the least accuracy at detecting the activity being 

conducted along with the intensity of said activity from accelerometer data coming from a subject’s 

waist, at only 72% [95]. This made them abandon it as an assessed machine learning algorithm in 

the alternatives where the activities and their intensities were classified separately. This was 

surprising to us, given the other works that successfully used support vector machines, and were 

often even able to achieve the most superior results with the algorithm. 

Park et al attempted to do pedestrian dead reckoning (PDR) – which is a type of pedestrian 

navigation system (PNS) that uses inertial sensors, such as the accelerometer and gyroscope, to 

estimate a pedestrian’s speed and direction – using support vector machines. In their experiments, 

they attempted different placements for the phone and tested for the relative accuracy of the other 

placement. When the SVM was trained with accelerometer and altitude data from a handheld 

position, they were able to achieve 98.13% accuracy for prediction from more test points from a 

handheld position. When they attempted to perform the prediction on data from the back trouser 

pocket or front trouser pocket, they received 0% accuracy for both. When the SVM was trained 

with data from the back trouser pocket, it provided 94.83% accuracy for the test points from the 

back trouser pocket, but only 0.99% accuracy for the front trouser pocket and 0.32% for the 

handheld position. Finally, when data from the front trouser pocket was used to train the SVM, it 

was accurate to 99.01% with test points from the front trouser pocket, but only accurate to 5.17% 

and 1.56% for the back trouser pocket and the handheld position, respectively [90].  

This provides a few interesting points of insight. First, SVMs seem to be excellent at detecting steps 

from accelerometer and altitude data, reaching an accuracy up to 99.01%. However, it also shows 

that SVMs will be very sensitive to the training dataset provided, showing a significant 

degradation in accuracy when the test points came from a different position than the training 

points. Finally, it also shows that if one were to want to train an SVM for step detection, the best 

placement would be the front trouser pocket as, not only did it provide for the best accuracy across 

the three positions, but it also provided for the best – albeit still quite low – accuracies when the 

test points came from different positions. 

In the fall detection experiment conducted by Edeib et al, they were able to reach an overall 

accuracy of 95% with support vector machines. This was a middle performance, relative to naïve 

Bayes’ 91% and decision trees’ 97% [91]. They do however state that the results of the SVM were 

very close to the best accuracy achieved, and it would have sufficed as the algorithm of choice. 

4.3.2.6 K-Nearest Neighbor 

The k-nearest neighbor (KNN) algorithm works by calculating the distance between a sample point 

and the different points in the graph. A constant K determines the number of neighbors to be 

considered who are closest to the sample point. Based on these nearest neighbors, a classification 

can be made [49].  

In Aziz et al’s fall detection experiment, k-nearest neighbor scored the highest score on specificity, 

96%. While that is the case, it also had the lowest sensitivity of all evaluated algorithms [50]. This 
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indicates a high potential for false negatives from the k-nearest neighbor algorithm. Palmerini et 

al’s fall detection experiments confirmed these results, with k-nearest neighbor providing the least 

accuracy of the assessed machine learning models at only 95.8% [94]. Albert et al found KNN to be 

97.9% accurate at detecting falls, putting it squarely in the middle, relative to the other evaluated 

models. 

Al Nahian et al’s fall detection experiments also utilized k-nearest neighbor as one of the assessed 

machine learning algorithms. It shared the position of least accurate at only 97% when trained with 

accelerometer data from the UR Fall dataset. With the UP Fall dataset, it provided a middling 

performance, sharing the position of second most accurate at 98%. Like the other assessed 

algorithms, it was 99% accurate with the MobiFall dataset [100]. This meant that it had an average 

accuracy of 98% across the datasets, making it share the position of third most accurate (out of 

four) with support vector machines. 

In Althobaiti et al’s human activity recognition experiments, a unique approach was taken. The 

same set of experiments were repeated for multiple K constants. These provided some very 

interesting results. First, for the classification of whether or not the activity itself was a fall, trying 

with 1 nearest neighbor proved just as accurate as trying with 3 nearest neighbors at 98.1% 

accuracy [96]. Changing K to 5 nearest neighbors proved to improve the accuracy, reaching 98.29% 

at detecting whether or not the activity was a fall, equating it with the Linear Discriminant Analysis 

and shy only 0.19% of the best accuracy achieved by support vector machines. Increasing the 

neighbors, however, doesn’t always guarantee an improvement of classification performance, as 

increasing the neighbors to 7 dropped the accuracy of detecting a fall to 97.71% [96], putting it very 

close to the bottom. 

These results continued to be consistent at detecting the activity in the same research, not just 

whether it was a fall or not. Using 1 nearest neighbor provided the lowest accuracy of 90.10% [96]. 

Interestingly, the same lowest accuracy was achieved by using 7 nearest neighbors. Using 3 nearest 

neighbors provided the highest accuracy of the KNN substitutes at 91.05%, but still far from the 

highest overall accuracy achieved by the Linear Discriminant Analysis at 93.71%. Using 5 nearest 

neighbors only dropped the accuracy to 90.67% [96].  

KNN continued to prove its accuracy in Wu’s research, being 90.2% accurate for the weighted 

average of the classified activities, the highest of all evaluated learning algorithms [51]. This lends 

merit to KNN as a potential classifying algorithm for accelerometer data. 

Fang et al’s experiments also vouch for the robustness of k-nearest neighbor as a machine learning 

algorithm for predicting human activity from accelerometer data, showing it as the most accurate 

of the algorithms tested, with an average accuracy of 95.3% across the different activities, relative 

to SVM’s 88.9% and logistic regression’s 83.9% [84]. 

Braganca et al, in their proposed Human Activity Recognition system, called HAR-SR [86], use the 

k-nearest neighbors algorithm as one of the steps through which they identify human activity. In 

order to test their system, they conducted multiple different experiments with different 

combinations of sensors, different position placements, and different datasets. The most relevant 
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one to this work is the position-independent all-sensor result, as our users will not be placing their 

phones in a fixed position on their bodies, and also as we will be using the all-sensor dataset as the 

baseline experiment for our analysis. While we will certainly be experimenting with different 

combinations of sensors, the most related result of their work here is the aforementioned one.  

Overall, their proposed algorithm, of which KNN is a part, was able to reach an overall accuracy 

of 77.82%. This was slightly skewed by their proposed system’s inability to distinguish among 

stationary activities [86]. The system performed significantly better as classifying between 

stationary and dynamic activities and among dynamic activities themselves. 

Shakya et al’s final tested machine learning algorithm was the k-nearest neighbor. This provided 

the best accuracy across the machine learning algorithms for both datasets with 97.6% and 90.16% 

respectively [88]. With an overall accuracy of 93.88%, the k-nearest neighbor algorithm far 

outperforms decision trees and random forests for these experiments, as far as the assessed 

machine learning algorithms go. One of the more interesting aspects of this set of experiments, 

however, is that while working with the two datasets, dataset number one seemed to be better 

classified using traditional machine learning algorithms, while dataset number two was better 

classified using deep learning algorithms. This gives the rather important insight of needing to 

match the dataset to the machine learning mechanism to use, providing a refutation to the notion 

that deep learning mechanisms would necessarily perform better at classification than traditional 

machine learning approaches, regardless of the dataset provided. 

Ferrari et al’s similar experiment also compared the k-nearest neighbor algorithm. They found that 

when using the accelerometer-only readings from the UCI-HAR, MobiAct, and MotionSense 

datasets, k-nearest neighbor was capable of achieving accuracies of 73.71%, 87.69%, and 79.19% 

respectively [99] averaging 80.19% accuracy. When the gyroscope-only readings were used, the 

accuracies were 70.74%, 78.54%, and 85.16% for each of the datasets respectively [99] with an 

average of 78.14%, the lowest of the averages. When the readings from both accelerometer and the 

gyroscope were considered, the resulting accuracies for each of the datasets were 82.36%, 86.25%, 

and 74.08% [99] with an overall average of 80.89%, the highest of the averages. Across the different 

combinations of sensors and the different datasets, the k-nearest neighbor algorithm provided an 

accuracy of 79.74%, lower than both support vector machines and the ResNet tested, even while 

performing higher than both individually in some cases. Unlike the support vector machines, 

however, there was no consistent pattern with k-nearest neighbor performing best or worst with 

one specific dataset. 

In Gomes et al’s experiments classifying activity intensity from accelerometer data streamed from 

a subject’s waist, they also found that k-nearest neighbor provided the best accuracy for detecting 

both the activity and its intensity simultaneously at 79% [95]. When classified separately, KNN 

continued to be the best at recognizing the intensity of the activity at 80%, while performing worst 

at recognizing the actual activity being conducted at 96% [95]. Again, however, it is important to 

note that these positions of best and worst respectively are narrowly achieved, with only a single 

percentage point’s difference for each of the positions from the random forests algorithm. 
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Yang et al’s broiler behavior recognition experiment also used k-nearest neighbor as one of the 

assessed algorithms. Again, they repeated their experiments with different sampling rates, but the 

average accuracies were 96%, 97%, 83%, and 86% [89] for resting, walking, feeding, and drinking 

respectively. This provides an overall accuracy across the timespans and activities of 90.5%, 

significantly lower than the 94.25% overall average accuracy obtained by support vector 

machines. 

 

4.4 User Identification Applications of Machine Learning on Zero-Permission 
Sensors 

In this section, we provide an investigation of the works that performed machine learning on 

zero-permission sensor data for applications that are like ours in nature. Namely, we focus on 

the applications of user profiling, and identification / authentication. Seeing as the works here 

are fewer than those addressing machine learning on zero-permission sensors at a general 

level, we will be splitting this section into subsections focused on the application of the work, 

rather than the method of machine learning used as previously done, with an additional 

section on the potential consequences of this kind of work. 

4.4.1 User Authentication 

Seeing the amounts of research conducted in user authentication really shows how important 

of a field it is, and how users still perceive it as an obstacle or a hindrance. Simplifications in 

user authentication have gone from auto-filling passwords in the browser to integrating 

fingerprint and facial recognition authentication in everyday apps on smartphones, to even 

password-less logins in recent times, yet still more ease is being sought after. That is why 

automated user identification and authentication research is an active field with multiple 

contributions. We will focus on a few of these works pertaining to machine learning on zero-

permission sensor data. 

Zaharis et al used the accelerometer, albeit in a Wii Remote instead of a smartphone, in a 

unique way to perform user authentication. They had the user register a 3-dimensional 

signature and then attempt to recreate it in space. The accelerometer collected data about the 

position of the device, as well as the rate of motion in creating this signature. They would then 

match an input pattern to be matched to the registered signature. If a match is verified, then 

the user is authenticated properly. They did not use machine learning, but rather other factors 

such as the elapsed time for signature completion, maximum and minimum accelerations, etc. 

While the security of this approach is questionable, they were able find that users were 

successfully authenticated 98.2% of the time, with zero false positives in their experiment [55]. 

These numbers are very impressive; however, it is important to note that the sample size was only 

four users. Additionally, signing your name in the air with your phone every time you want to 

access it is arguably even more of a hindrance than currently established authentication methods, 
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in addition to being socially awkward. 

Shi et al’s proposed SenGuard authentication and security system takes a different approach 

altogether. It highlights that authentication today is based on a single-shot approach, rather than a 

continuous one. Entering your password and leaving your device unlocked as you get a cup of 

coffee, for example, would leave you vulnerable to attacks. Instead, they suggest that 

authentication should be done in a continuous form and implement such a system in their 

proposed SenGuard authentication mechanism. Although it does not exclusively rely on zero-

permission sensors for authentication, they are a large and important factor of their inputs. They 

find that users implicitly have a walking signature, unique to themselves. Using a  naïve Bayes 

classification model, they calculated the confusion matrix in Figure 7 for four users [56]. Those 

numbers are indeed very impressive and represent a high degree of confidence for user 

authentication through the zero-permission sensors. 

 

 
Figure 7: Confusion Matrix for four users’ walking patterns, relying on the accelerometer [56]. 

It shows that users can be classified appropriately with a high degree of confidence. 

Nickel et al also focused on users’ walking signatures as a form of authentication. They used 

the accelerometer in a phone attached to the right side of the hip of each subject. Data was 

collected from each subject and then fed into Hidden Markov Models. They found that, 

combining quorum voting which merges multiple classification results to one, they were able 

to reach a minimum equal error rate of 5.81% [57], an impressive number. It is important to 

note, however, that this experiment was done in a highly controlled setting, with the walking 

route being predetermined. It would be interesting to see how these numbers compare to a 

real-world setting where the monitoring is being done over an unspecified route. 

Strada et al attempted a similar experiment, recognizing users by their gait. Unlike Nickel et 

al, they did not use a smartphone, but rather placed and glued Inertial Measurement Units 

(IMUs) containing a triaxial accelerometer in the right sole of the shoe that participants used. 

Their final aim was to develop a product called the Wahu shoe, which would be capable of 

adapting to the external environmental factors like terrain, temperature, and humidity and to 

the user’s own state and provide services such as foot pressure analysis and fall prevention. 
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Their experiments, however, focused entirely on identifying the user based solely on their 

steps. They had 5 male subjects, each 23 years old walk for around 12 to 15 minutes each, 

collecting around 3700 steps for the participants. They divided these steps into 1,932 and 1,802 

for the training and testing datasets respectively. They also used two machine learning 

algorithms, k-nearest neighbor and linear discriminatory analysis. They were able to correctly 

correlate the step to the user with an accuracy of 97.8% using the k-nearest neighbor and a 

whopping 99% using the linear discriminatory analysis [98]. While these results are very 

impressive on the gait identification front, our own assessment is that their experiments 

veered from their original objective, not clearly correlating exactly how the identification of 

the user would assist their proposed shoes in adapting to the user’s environment or own state 

or prevent falls, for example. It can, however, be very compelling research in the area of 

authenticating a user simply by the way they walk, with the accuracies being very promising. 

Seeing the success of these experiments at not only identifying users’ traits, but going further 

as to authenticate them, inspires a lot of confidence in our own experiment, attempting to 

profile users. While there are major differences to account for, such as the technological 

change between the time these experiments were conducted and now, in addition to 

conducting the full experiment in a real-world setting, we see these results as positive 

indications to the success of our own. 

4.4.2 User Profiling 

We were only able to find one work that had a similar method and application to our own. 

Gao et al’s experiment attempted to predict five personality traits about their subjects: 

extraversion, agreeableness, conscientiousness, neuroticism, and openness. They did this 

combining accelerometer data to recognize the physical activity of the users, comparing it to 

a baseline which relied exclusively on phone usage (phone calls, active applications, SMS 

messages, etc.). Their data was fed to a support vector regression model, combining the 

concepts of support vector machines and linear regression, to perform the prediction. They 

found that combining the accelerometer data to the phone activity data improved the accuracy 

of the prediction model over the baseline for two of the five personality traits: agreeableness 

and conscientiousness. They also found that this inclusion performed better for females than 

it did for males [58]. While these numbers question the validity of using accelerometer data 

for prediction, it is important to highlight that the aim here was to profile personality, and not 

demographic factors as our experiment attempts. 

4.4.3 Questions of Privacy 

Relying on zero-permission sensors to detect data about users without them explicitly 

allowing it does bring ethical questions of privacy. Narain et al conducted an experiment 

where they collected data from the accelerometer, gyroscope, and magnetometer. They did 
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not use machine learning, but rather treated the experiment as a maximum-likelihood 

problem. Using only this data and street information from Open Street Map, they were able 

to show that the actual route taken by a user shows up on a calculated shortlist of ten potential 

routes over 50% of the time in eleven cities where they conducted simulations. In two cities 

where they conducted real driving experiments, they found that the correct route is in the top 

5 predicted routes 50% and 30% of the time, respectively [38]. This shows a significant 

capability of user tracking through sensors that requires zero permissions whatsoever. We 

believe this is what may have prompted them to comment on the “perils” of zero-permission 

sensor data collection later [59]. A very similar experiment conducted by Liang et al attempted 

to not only infer the route a user was taking, but also the actual position of the user. Again, 

relying only on zero-permission sensors, they found that the inferred position of the user was 

accurate over 65% of the time. Over 86% of the inferences were correct to just 500 meters. For 

the full dataset, all of their estimations were correct to 2.0 kilometers [34]. This shows that not 

only could user routes be tracked using sensors that do not require any permissions, but also 

that the actual position of the user could be tracked using the same sensors, with a very good 

degree of accuracy. Narain and Liang et al make it a point in their respective papers to warn 

against the potential location privacy leakages that could occur without users ever knowing 

about it. 
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Chapter 5 

 

Experimental Setup 

 
In this section, we discuss the experimental design decisions made. After data collection and 

preparation, three sets of experiments will be conducted. The focus of the first set is to establish 

a baseline for the capability of user profiling. The second set attempts to optimize the process 

by determining the minimum timespan needed for accurate profiling, while the third set 

attempts to refine the process by determining the most accurate combination of sensors. 

Concurrent to those sets of experiments is the repetition of each of them on the different 

machine learning algorithms to compare their respective results. 

 
5.1 Data Collection and Preparation 

One of the major challenges of conducting this research is the lack of an available dataset. This 

meant that we had to collect our own data before starting any experimentation. 

5.1.1 Application Design 

During the first attempt for data collection, an Android application was developed and 

provided to a select group of volunteers. The application source code is available in a public 

GitHub repository linked in the appendices of this thesis. The application was developed with 

Java as the programming language of choice (with Kotlin as an alternative we did not select), 

with a target SDK version of 29 (Android 10). It used the Jetpack suite of libraries to reduce 

boilerplate code, support the design of the user interface, and support backwards 

compatibility to a minimum SDK version of 23 (Android Marshmallow). It also used Google 

Material UI Library to provide ready-to-use user interface elements consistent with the design 

language of Android applications at the time of the application development. 

The application largely consisted of seven major components described below. 

5.1.1.1 DatabaseHelper 

The DatabaseHelper class extends Android’s SQLiteOpenHelper. It sets a few constants such 

as the filename for the SQLite database that will be used to collect the data from the sensors 

as well as the user data, the version of the database to allow for upgrading or changing the 

contained information during testing periods, the structure of the database with the associated 

tables and columns, and the logic for the initial creation and upgrading of the database. We 
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chose that the initial creation should simply create the tables, while the upgrade would also 

drop the existing tables prior to the creation, implying that every version change would result 

in a complete rewrite of the database. 

The structure of the database itself is quite simple. It is composed of two tables: UserData – 

which acts as a very simple key-value store for keys we will discuss in later components – and 

SensorData, composed of four columns: an ID to reference the recording, an ID to reference 

the sensor from which the recording was being made (with 1 being the accelerometer, 2 being 

the gyroscope, and 3 being the ambient light sensor), the value of the sensor reading 

(concatenated as comma-separated values in the instances where triaxial readings are 

provided), and the final column recording the epoch time at which this sensor recording was 

made. 

5.1.1.2 MainActivity 

The Main Activity acts as the hub of logic for the application itself, performing a few 

functionalities. The first thing it does is interact with the DatabaseHelper class to obtain an 

existing instance of the database (which would create one if one did not exist). Following that, 

it would attempt to query the UserData table for the existence of the following keys: name, 

consentDate, signature, gender, and ageGroup. If any of these keys were not found in the 

userData table, MainActivity would close and return the user to RegisterActivity. If all of the 

keys were indeed found, the application logic would continue. 

Followed by checking for the existence of the UserData, MainActivity would check if 

permissions were granted to the application. In order to ensure successful operation of the 

application, it required two permissions primarily: the ability to detect Android’s boot-

successful event to be able to run as soon as the phone was started, and the ability to constantly 

run as a foreground service to collect data at all times without being stopped for lack of user 

interaction with the application. If the permissions were not granted, the user would be 

prompted to grant those permissions to the application. If they were, the application logic 

would continue. 

Given that these two permissions were indeed granted, the application would show an 

indeterminate progress dialog to the user, and begin executing in a separate thread the 

following logic. It would query the application’s SharedPreferences (an application-level key-

value store provided by the Android API) for the recording time of the last reading of each of 

the sensors and store them in a hashmap. It would then check if the application was being 

optimized by Android’s battery optimization features. This would affect the quality of our 

data and the sampling rate at which we could constantly operate. Therefore, if Android’s 

battery optimization features were active for the application, the user would be taken to the 

appropriate phone settings screen where they can turn off the battery optimization features 
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for this data collection application. Following that, the application would check whether the 

SensorService, described below, was already started. If not, it would start the service. It would 

then query the service for the sensors that it was actively recording and display in the 

application a green bar for them. A red bar would be displayed by default, if the sensor was 

not one of the ones included in the service. 

While that thread is executing in the background, the foreground thread is also preparing the 

interactivity of the user interface elements. In this case, it is an extremely simple one: just one 

button that enables the user to share the database. When clicked, the application first checks 

that it has the ability to read and write to the device’s external storage. If not, the user would 

be prompted to grant those permissions. Following that, the application creates a separate 

thread that gets access to the SQLite database file, copies it to somewhere accessible in the 

user’s device, and adds a timestamp to the filename. Of course, important error handling is 

also done in this portion, accounting for storage limitations or file duplication, etc. After the 

file was copied correctly, Android’s sharing API is called upon to allow for the file to not only 

be accessible in the storage, but also shared immediately to any supporting application or 

interface such as WiFi-Direct or Bluetooth. This was primarily used to share the database 

directly to Google Drive where it could be stored in the cloud for access by the researchers. 
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Figure 8: MainActivity: Default application screen showing option to share the data collected 
and displaying the latest collection time for each sensor, as well as the green indicator bars for 

the sensors indicating that their readings are being actively recorded 

5.1.1.3 SensorService 

Easily the heart and soul of the application, the SensorService is an Android service 

(application logic without a user interface) responsible for collecting the sensor data. First it 

obtains access to the application database, then works with Android’s sensor manager to 

register a new listener for the accelerometer, the gyroscope, and the ambient light sensors. It 

also initiates an Ongoing (or “sticky”) notification serving two important functions: the first is 

alerting the user to the fact that their data is actively being collected, allowing the user to 

monitor if the application were to fail for any reason and prompting the user to restart it. 

Second of all, the ongoing notification allows the service to continue running in the 
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background, without interrupting its workflow due to the user’s lack of interaction with the 

application itself. This is a very common use case, employed most typically by applications 

that require the ability to continue running in the background, such as playing music or VPN 

services. 

The listener to the accelerometer, gyroscope, and ambient light sensors is registered at 

SENSOR_DELAY_FATEST, further discussed in the Data Density section below. The function 

of it is to listen to changes in any of these sensors and obtain their values. If the sensor values 

are multiple ones (such as those coming for each of the axes in the cases of the triaxial 

accelerometer and the triaxial gyroscope used), the values are concatenated as a comma-

separated string. The values, along with the sensor responsible for them, and the current time 

are stored in the database’s SensorData table. This collection time is also used to update the 

SharedPreferences, recording the latest time for which a sensor reading was done for each of 

the sensors. This was done so that it can be used later by MainActivity for display purposes 

without having to query the extremely large database for the latest recording time for each of 

the sensors, seriously degrading application performance. 

As a safeguard mechanism, if the SensorService were to be destroyed by the Android 

operating system for device resource optimization, despite it being placed in a thread set for 

MAX_PRIORITY, then it would initiate a restartService broadcast through the operating 

system. This broadcast would be listened to by the Restarter components described below. 
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Figure 9: Ongoing notification informating users of the data collection process, and allowing 

the service to continue running in the background 

5.1.1.4 Restarter 

The Restarter component is a very simple extension of the Android BroadcastReceiver. It 

listens for a broadcast coming from the application containing the message restartService. It 

then checks if the service is indeed already started and, if it is, ignores the received broadcast. 

If, however, the service had been terminated for Android’s resource optimization, the 

Restarter starts the SensorService component, guaranteeing the continuation of the data 

collection process. 
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5.1.1.5 BootReceiver 

Registered in the application’s manifest, the BootReceiver component is another simple 

Android BroadcastReceiver. Its function is to listen to the Android boot-completed broadcast, 

indicating that the device has been turned on, and start the SensorService component. This 

guarantees that the data collection process would continue after the device had been turned 

off, either deliberately by the user, or due to power failure or device malfunction. 

5.1.1.6 RegisterActivity 

If the user data were not found in the MainActivity, the user would be taken back to the 

RegisterActivity, the logic for which is quite simple. It would start by checking the 

application’s SharedPreferences file for the user’s consent to the Institutional Review Board 

(IRB) agreement. If it were not found, users would be taken back to the consent activity. 

Otherwise, they would be shown a user interface allowing them to select their biological 

gender and age group. The only way for users to proceed is through clicking the floating action 

button in the bottom right corner. What that would do is first validate that users had indeed 

made an appropriate selection for both questions asked on the form and show them an error 

message if they had not. Otherwise, it would get the consent data from the SharedPreferences 

– which it had queried for at the beginning of its lifecycle –, combine it with the user’s selected 

demographic data, and add this data as key-value information to the UserData table within 

the database before proceeding the user to MainActivity. 
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Figure 10: RegisterActivity: Step 2 of the data collection application - User Registration 

allowing users to input their biological gender and age group 

5.1.1.7 ConsentActivity 

If the Institutional Review Board (IRB) agreement consent is not found in the 

SharedPreferences at launch of the RegisterActivity, the user is taken to ConsentActivity. This 

has a very simple user interface, showing the user the terms of the IRB agreement, and some 

basic information about the research being conducted. The only way for a user to proceed is 

through selecting the “Accept” button at the bottom the screen. At which point, the user 

would be presented with an acceptance dialog, allowing them to enter their full name as well 

as provide a signature, consenting to the data collection by the application. In the acceptance 

dialog, users’ only path forward is to click the “accept” button within it. Doing that prompts 
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the application to validate that the user has indeed written their full name (confirmed by at 

least being 5 characters long and containing of a space), and that the user had provided their 

signature. If not, users would be prompted to do so. After completing the acceptance form 

correctly, the accept button stores a number of key-value pairs within the application’s 

SharedPreferences. First it stores the fact that the user has indeed pressed the accept button, 

indicating their acceptance to the data collection, it also stores the user’s full name, the current 

date of the device, and a base64-encoded bitmap of the user’s provided signature. It would 

then take the user to the RegisterActivity. 

 
Figure 11: Step 1 of the data collection application - Institutional Review Board Agreement 
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Figure 12: Step 1 of the data collection application - Institutional Review Board Consent 

5.1.2 First Attempt 

The volunteers were to install the application to their own personal phones. The application 

itself consisted of two simple steps: agreeing to the Institutional Review Board (IRB) 

agreement, followed by setting their demographic data – to act as the data label later used for 

machine learning. After these two steps were completed, the application would start listening 

to data incoming from three sensors – the accelerometer, gyroscope, and ambient light 

sensors. Users were made aware of this through an Ongoing notification. A screen letting the 

users know the latest time of collection for each sensor and providing the option to share the 

data at the end of the research was also provided. 
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5.1.3 Data Density 

When registering a listener to a sensor in the Android operating system, developers have to 

select a sampling rate that sensor events are delivered at. Some of the available constants are: 

SENSOR_DELAY_NORMAL, SENSOR_DELAY_UI, SENSOR_DELAY_GAME, and 

SENSOR_DELAY_FASTEST. The sampling rate each of these delay constants determines is 

deliberately not shared. The reason is that the sampling rate chosen by the developer is only 

a “suggestion” to the Android operating system. While Android will try its best to follow the 

suggestion, if the system is overloaded at any point, other actions may be prioritized over 

collecting the sensor event [60]. However, these values have been practically measured to be 

between 215 and 230 milliseconds for SENSOR_DELAY_NORMAL, 75 to 90 ms for 

SENSOR_DELAY_UI, 35 to 40 ms for SENSOR_DELAY_GAME, and 15 to 20 ms for 

SENSOR_DELAY_FASTEST. Our application uses SENSOR_DELAY_FASTEST, meaning 

that we can expect a sensor event from each of our sensors every 15 to 20 milliseconds. This 

places our suggested sampling rate between 50 and 66Hz, with an expected average of around 

58Hz. In addition, and in order to make sure that other less important applications are not 

prioritized over the data collection, we have set the thread listening to the sensors at 

MAX_PRIORITY indicating to the Android operating system that this thread should only be 

ignored in extreme cases. 

In order to prevent the data from getting too large (theoretically around 13 million data points 

a day), we implemented a policy of not storing repeating values. This would ensure that a 

phone left stationary without any changes to its position, orientation, or lighting conditions 

(such as when on a nightstand when sleeping) would not be constantly recording data. It’s 

important to note here that, given the sensitivity of these sensors, they are likely to still collect 

some data points due to some minute movements or lighting changes during the night, but it 

should theoretically be significantly less than in periods of activity. 

5.1.4 The Challenge 

Even with the aforementioned optimization of not recording repeating values, the application 

was generating between 0.5 and 1.0 gigabytes of data a day. With users often dealing with 

limited storage capacity to begin with, this presented a challenge. Additionally, the 

application prioritized itself over all other applications, meaning that users found their 

phones behaving much slower. Also, due to the constantly running nature of the application, 

users’ phones were much warmer (which was less comfortable) and more likely to deplete 

their batteries significantly faster. Not only was that an inconvenience to the users, but also it 

made for inconsistent and constantly interrupted data. Unfortunately, the data from the first 

attempt was scrapped as we prepared for our new approach. 
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5.1.5 Second Attempt 

Given the challenges encountered by the first iteration, we determined that most of these 

problems arose from users relying on lower-performance phones. Users with high-

performance or “flagship” devices reported significantly fewer issues and had significantly 

better data consistency. This is why, for the second attempt, our approach was different. 

Instead of providing users with the application to install on their personal phones, we would 

provide them with the phones directly. We obtained two devices: a Samsung Galaxy Note 

10+ and a Samsung Galaxy S20+. The Note 10+ was designated as the device to collect the 

data for males, while the S20+ was designated for females. Users would receive said device 

and agree to use it as their primary device until they pass it on to the next volunteer. 

5.1.6 Selection Criteria 

In order to remove age as a potential factor in how phones are interacted with, we limited our 

users to the age group of 20 to 30 years old. All volunteers would also be right handed, from 

similar social backgrounds, between the heights of 4’11” and 5’10”, and physically fit and 

healthy. Each phone would spend 3 days with each volunteer, and then be passed on to the 

next volunteer. Six male volunteers and five female volunteers were identified to participate 

in the research. This would provide a grand total of 18 days of male datapoints and 15 days 

of female datapoints. 

5.1.7 Caveats 

It is important to note that even with this approach, some caveats still exist. First of all, even 

with the high-performance phones, the “always-on” and high frequency recording approach 

of the application means that it will get warmer and lose battery faster than a phone in normal 

operation. This means that it might be slightly less comfortable to users than their regular 

phones, leading to potentially differing usage, and will require more charging time, again 

potentially differing from their “typical” usage. In order to reduce the impact of charge-time, 

volunteers were also provided with a 20,000 milliampere hour power bank with each phone, 

enabling them to charge while “in-use.” However, the added bulk of the power banks may 

also contribute to differing usage. An important consolation here is that the aim of the 

research is not to determine the smartphone usage of males and females under typical 

circumstances, but rather to determine if it is possible to predict the gender of the users, given 

the same circumstances. Since both sets of volunteers were dealing with the same warmth 

and charge-time issues, they could be considered constants in our experiments, allowing us 

to proceed with the research.  
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5.1.8 Data Cleanup and Augmentation 

Prior to starting experimentation, we planned on cleaning up the data and preparing it to be 

consumed by our machine learning models. For that, we are writing Python scripts to 

massage the data to better fit the models. The aim of the Python scripts is to use the multiple 

databases collected from the users and create multiple datasets out of it that match the data 

that would be needed for the experiment. These scripts are described in section 6.1 below. 

For the first set of experiments, there isn’t much done to the data. The script just checks for 

regularity in the data and ensures there is no corruption. The data is then combined across 

the different databases, labeled with its respective label, and divided into 2 portions: a portion 

representing 70% of the data to be used as the training set, and a portion representing 30% of 

the data to be used as the validation set.   

For the second set of experiments, the script will actually rely on the dataset created for the 

first experiment. Seeing as this set of experiments is focusing on the effect of the timespan in 

gender determination accuracy, the script’s job will be more involved. Using the dataset 

created by combining the different database, and split into training and validation datasets, 

the script will parse each dataset and create out of it different “slices” representing 1 day, 1 

hour, and 5 minutes. 

For the third set of experiments, the script will also rely on the dataset created for the first 

experiment. With the focus this time being on the effect of the specific sensors on gender 

determination accuracy, the script will slice the datasets based on sensor type, for all 

combinations mentioned further.  

5.2 Summary of Experiments 

In this section, we focus on providing a summary of the experiments and the dependent and 

independent variables and how they will change in the below table. Each set of experiments 

is then described in detail in a following subsection. 
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Table 1: Table describing all the experiments that will be conducted as part of this thesis 

 

 Gender-
Determination 

Capability 

Effect of Timespan 
on Gender-

Determination 

Effect of Sensor 
Selection on Gender-

Determination 

Described In Section 5.3 Section 5.4 Section 5.5 

Machine 
Learning 

Algorithms 

Naïve Bayes, Support 
Vector Machine, 
Logistic Regression 

Naïve Bayes, Support 
Vector Machine, 
Logistic Regression 

Naïve Bayes, Support 
Vector Machine, 
Logistic Regression 

Timespan 

Full Timespan (3 days 
per user) 

Three trials will be 
conducted: 

• 1 day per 
user 

• 1 hour per 
user 

• 5 minutes 
per user 

Full Timespan (3 days 
per user) 

Sensors 

Accelerometer, 
Gyroscope, Ambient 
Light Sensor 

Accelerometer, 
Gyroscope, Ambient 
Light Sensor 

Six trials will be 
conducted: 

• Accelerometer 
only 

• Gyroscope 
only 

• Ambient Light 
Sensor only 

• Accelerometer 
and Gyroscope 

• Accelerometer 
and Ambient 
Light Sensor 

• Gyroscope and 
Ambient Light 
Sensor 
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5.3 The Capability of Predicting Gender using Machine-Learning on data from 
Zero-Permission Sensors 

In this experiment, the aim is to measure the effect of zero-permission sensor data on user 

profiling capability. We hypothesize that zero-permission sensor data can, with a reasonable 

degree of accuracy, predict the biological gender of a user. In this experiment, the full dataset 

(three days of collected data points per participant from the three sensors) will be provided 

to three different machine learning algorithms: Naïve Bayes, Support Vector Machines, and 

Logistic Regression. These algorithms were selected as they displayed a higher degree of 

accuracy than other options in our research. We will be conducting a comparative analysis of 

the results from the different machine learning algorithm. From that, we will be able to 

determine the most accurate individual classifier for the use case of user profiling through 

zero-permission sensors, whether combining individual classifiers could provide a more 

accurate classification, and the degree to which we can accurately profile users based on data 

collected from zero-permission sensors. We will use the results of this experiment as the 

baseline to compare the other attempts to. Future references to “baseline results” are to the 

results of this experiment. 

5.4 The Effect of Timespan on Predicting Gender through Machine-Learning on 
Data from Zero-Permission Sensors 

While the first set of experiments determines the accuracy to which different machine 

learning algorithms can profile users, it does so while utilizing the full volume of the data, 

spanning three days from each participant. This is far from optimal as it requires a large 

amount of collected data over a long period of time. Our experiments indicate that every day 

for every participant is between 500 megabytes and 1.5 gigabytes of raw data. Even after data 

preparation and feature extraction, the amount of data that must go through the machine 

learning algorithms is huge, and classification will be very computationally expensive and 

time intensive. Therefore, it becomes an important endeavor to experiment with smaller 

timespans to obtain a degree of classification accuracy like that established by the baseline in 

the first experiment.  

This experiment tests the effect of data timespan on classification accuracy. We hypothesize 

that classification accuracy will be negatively impacted by reducing the timespan of the data. 

In this experiment, the independent variable of timespan will change from the control 

condition of 3 days per participant to three other conditions: a 1-day slice, a 1-hour slice, and 

a 5-minute slice. The same procedure as the baseline experiment will be used: zero-permission 

sensor data from all three sensors (accelerometer, gyroscope, and ambient light) for the given 

time slice will be provided to the machine learning algorithms and left to train. Following the 
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training phase, zero-permission sensor data of the same timespan size will be provided to the 

trained models and asked to predict the gender. The results of each of the models will be 

calculated and compared to the baseline results. 

5.5 The Effect of Sensor Selection on Predicting Gender through Machine-
Learning on Data from Zero-Permission Sensors 

The first and second sets of experiments both utilize data from all 3 sensors for which this 

research is being conducted: the accelerometer, gyroscope, and ambient light sensors. This 

does not help us determine which sensor has the greatest contribution to the profiling result. 

It is also possible that one sensor is introducing noise or similar data across the different 

profiles, resulting in an improved classification accuracy upon its exclusion. Therefore, we 

will repeat the first set of experiments again, but instead of using the data from all three 

sensors, we will conduct different iterations of the experiment with all the possible 

combinations of sensors: accelerometer only, gyroscope only, light only, accelerometer and 

gyroscope, accelerometer and light, gyroscope and light. The accuracy obtained from each 

combination will be compared to the one obtained in the first set of experiments. From that, 

we will be able to determine if the data collected could be further refined to focus on a specific 

combination of sensors to achieve the best results. This experiment tests the contribution of 

each individual combination of sensors on the classification accuracy. We hypothesize that 

the combination of accelerometer and gyroscope (excluding the ambient light sensor) will 

result in the best classification accuracy. The independent variable is the set of sensors used, 

and its conditions are the aforementioned combinations, compared to the control of the 

baseline experiment. The same machine learning and accuracy calculation procedures as the 

baseline experiment will be used. 
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Chapter 6 

 

Experiments and Results 

 
In this section, we discuss the implementation portion of the experiments, challenges faced, 

and the actual preparation process that the data went through, in order to be ready to be 

processed by the models that we had set up. We pose the specific questions and exactly how 

we will answer those questions. Followed by that, we present the obtained results and 

analyze them, providing the answers to the questions we posed and assessing the accuracy 

of our experiments and hypothesis. 

6.1 Methodology 

In this subsection, we present the specific questions we are trying to answer, the experiments 

we will conduct to answer these questions, and the process the data had to be put through in 

order to allow for these questions to be answered. 

6.1.1 Data Processing Pipeline 

 
Figure 13: Data Processing Pipeline Steps 

Prior to the experimentation phase, we needed to put the data through some very extensive 

processing to convert the raw data into training data ready for consumption by the various 

machine learning models we intended on running. This is due to the data consisting of 22.9 

Gigabytes – nearly half a trillion records –, divided as 8.97 Gigabytes (186.24 billion records) 

for the female class and 13.9 Gigabytes (286.1 billion records) for the male class. 

Chen et al. found in their experiments that using more sensors provided richer data [83], and 

Raw Data

Data Slicing

Delta Calculation

Data 
Homogenization

Inter-Interval 
Homogenization

Data Selection

Training Data
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therefore we were interested in testing this theory by maintaining the data from all the sensors 

in our data processing pipeline and then using the experiments themselves as the testbed 

through which the filtration of the different sensors would take place. Furthermore, they 

highlight the importance of resampling the data to guarantee a balanced dataset across the 

different activities [83]. Since our research does not focus on activity classification, the 

rebalancing needed to happen across two dimensions: the gender, and the actual sensor data 

collected. However, specific logic needed to be applied for this resampling, which is further 

explained below. 

This pipeline was built incrementally and was comprised of five major steps. The first step 

was the data slicing step. The target of this step is to break the full, raw datasets, for both the 

male and female classes, into smaller datasets sliced by the amount of time that the 

experiment will be run for, or what we refer to as the timespan, time slice or interval. This 

was a first step into chunking the data, and also making it significantly more manageable to 

deal with from a volume perspective. 

The second step was delta calculation. In this step, we loop over the individual time slices 

created by the data slicing step, and instead of maintaining the raw values, we calculate the 

delta between the current reading and the previous reading from the same sensor. This 

highlights the changes in sensor readings, amplifying the importance of significant changes 

over the minimal ones, instead of maintaining the raw values which do not mean much 

relatively on their own. 

The third step was the data homogenization. In this step, it was important to make the 

readings look similar to one another. Given that some sensors – namely accelerometer and 

gyroscope – gave three readings (and therefore three delta values in the previous step) and 

the ambient light sensor gave just one reading, the aim of this step was to make sure that each 

one of the values processed by the models looked the same. Therefore, we adopted the 

padding approach with the light sensor, inserting zeroes in the other two vector sections, 

guaranteeing that each reading would always be a three-digit vector of the changes from the 

previous reading. 

The fourth step was the inter-interval homogenization. This step was run at the beginning of 

each experiment, instead of one complete separate step of the data processing pipeline. What 

this step does is guarantee that each of the slices ran through the model as an individual 

training sample is the same size as the others. To understand the significance of this step, let 

us first establish that data entered to a model must be of the same size [66][67]. Now let us 

consider the 1-hour time slice, for example. Some 1-hour intervals will be full of change 

activity, where the user is very active, moving around, and changing lighting environments. 

Other 1-hour intervals, where the user is sleeping for example, will have very little change 

activity. To guarantee that these intervals were the same size as far as the model is concerned, 

we had to decide between the two most common approaches used in machine learning: 

cropping and padding [68]. In typical machine learning, the padding approach either resizes 
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the image through typical image rescaling mechanisms which would “pad” the image with 

data, or through zero-padding. Zero-padding is a technique that pads the borders of the 

image with the zero-value (black) to just focus on the image [68]. Since we are working with 

numerical data, our version of data padding would insert values to the less active intervals, 

padding them to be the same size as the most active intervals. The challenge in going this 

route is that the data quality itself would be affected: there would be a lot of decisions 

concerning where the augmentation data should be inserted within the intervals itself, and 

exactly what values to add [69]. The cropping mechanism, in typical machine learning, crops 

the image to be focused on the subject the model is attempting to classify [68]. Since we are 

working with numerical data, our version of cropping would be more about the filtration of 

data than it is about clipping parts of an image. With the cropping approach, we would filter 

down the most significant intervals to be of the same size as the least significant intervals. 

With that came the challenge of selecting which readings to keep in the significant intervals. 

In machine learning, the cropping is done to focus on the subject, so we needed to determine 

how we would define our “subject.” For that reason, this step adds a new metric to the 

dataset, “significance.” Significance combines each reading into a single value, summing up 

the absolute values of the change readings already in the data. We would then only keep the 

most significant values, that match the size of the smallest interval. Another approach 

suggested by other researchers for this type of feature extraction is performing a separate 

machine learning effort on the dataset in order to first extract the features before performing 

the primary machine learning effort tasked with classifying the biological gender of the user. 

This approach would have been, in itself, experimental, and was outside the scope of our 

thesis. 

The fifth and final step was the splitting of the data into the training dataset – determined at 

70% of the provided training data – and the prediction dataset – the remaining 30% of the 

training data. This was again conducted as a step within the running of the model itself. The 

reason we have chosen to include this step as an integrated one, rather than an individual 

step in the pipeline, is because we wanted to simulate real-world conditions where the data 

would not be statically split and selected. This introduced more entropy in the selection of 

the dataset and provided a better reflection of real-world scenarios. 

6.1.2 Experimentation 

In this subsection, we discuss the experiments conducted and the purpose behind each of 

them. 

6.1.2.1 The Capability of Predicting Biological Gender 

The first question our thesis attempts to answer is whether we can use zero-permission 

sensors to be able to detect the gender of a user, with accuracy over 50%, 50% serving as a 
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base value of making a “guess” between the two classes of biological genders. To answer this 

question, we used the full dataset, divided into three-day intervals, relying on the readings 

from all three of our sensors – the accelerometer, gyroscope, and ambient light sensor. In this 

set of experiments, we will simply pass the data through the machine learning models and 

see how they compare to our selected metrics, defined in section 6.1.3.  

The first model, referenced in the code as NB-3Day-AllSensors.py focuses on experimenting 

with Naïve Bayes. It starts with loading all the data for the 3-Day interval and excluding a 

random set of 4 3-Day groups to act as the validation dataset, leaving 8 3-Day intervals to 

form the training dataset. After conducting the inter-interval homogenization step of the data 

processing pipeline as described above, a GaussianNB model is created using the Scikit-learn 

library. The model is then trained incrementally, using the model’s partial_fit function on 

each of the files in the 8 sample files. Progress is reported to the screen in the form of a 

progress bar. After completing the training, the model is then tested for its accuracy by having 

it predict the gender for the four 3-Day groups preselected for validation. The results of those 

predictions are used to generate a classification report.  

The second model, referenced in the code as LG-3Day-AllSensors.py tests the Logistic 

Regression algorithm. Since the Logistic Regression algorithm may be trained multiple times, 

reducing for error, our approach was different. We again load all the data for the 3-Day 

intervals and exclude 4 3-Day intervals entirely to act as our validation dataset. We also select, 

but not exclude, two 3-Day intervals from the training dataset to act as a testing dataset, 

showing us the progress of the learning effort. We then perform the inter-interval 

homogenization step, followed by using the Scikit-Learn library to build a Stochastic Gradient 

Descent Classifier with the loss defined as being determined through logistic regression. We 

do set the maximum iterations to 3,000 without the potential for early stopping. The reason 

we chose to do that is because we were not going to be serving the dataset to the model’s 

fitting function all at once, but rather partially through the model’s partial_fit function. The 

justification is that each of these datasets is very large and therefore could not be processed 

at once had they been served to the model. We perform a loop over a maximum of 10 epochs. 

Within each epoch, we first train the model on the 8 available 3-Day intervals. Following that, 

we use the 2 selected test intervals to make the model predict the associated biological gender 

and generate a classification report from them. We check the loss of the model and if it had 

gotten consistently worse for 3 epochs, we stop the training early and take the best trained 

model. Finally, we perform the predictions on the validation dataset selected at the start and 

generate a classification report for them. 

The third model, referenced in the code as SV-3Day-AllSensors.py tests the Support Vector 

Machines algorithm. Here, our approach is almost exactly the same as the Logistic Regression 

approach, with the same set of steps followed: loading the data, excluding the validation set, 

selecting the test set, and performing the inter-interval homogenization. We also again use 

Scikit-Learn’s Stochastic Gradient Descent classifier, however this time with the loss being 
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defined as Hinge, creating a Support Vector Machine. We follow the same training, testing, 

early-stopping, and validation logic used for the Logistic Regression resulting in a 

classification report. 

6.1.2.2 The Effect of Timespan on Predicting Biological Gender 

The second question our thesis attempts to answer is if the size of the interval affects the 

accuracy of predicting the biological gender of a user. To answer this question, we are again 

using the full dataset,  and again using the readings from all three of the sensors, but divided 

into 1-day, 1-hour, and 5-minute intervals. The results of this set of experiments are then 

compared relative both to each other and to the 3-day intervals conducted in the baseline 

experiment. 

First, testing with the Naïve Bayes algorithm, the code – referenced as NB-1Day-

AllSensors.py – first loads all of the 1-Day intervals, excluding 6 for validation. The same 

processing, training, and prediction logic as the ones used for the 3-Day intervals are again 

used here. The same is also done with the 1-Hour intervals in NB-1Hor-AllSensors.py with 

160 validation exclusions and with the 5-Minute intervals in NB-5Min-AllSensors.py with 

3,400 validation exclusions. 

Following that, we tested the Logistic Regression algorithm with LG-1Day-AllSensors.py. 

Again, the maximum number of epochs was 10, with a patience of 3 epochs getting 

consistently worse. Given that we had more samples, however, we were able to set both the 

test and validation dataset sizes to 6 samples each. With the 1-Hour intervals in LG-1Hor-

AllSensors.py, each was composed of 160 samples. And for the 5-Minute intervals in LG-

5Min-AllSensors.py, each was 1700. The same logic as the one used for the 3-Day intervals 

was applied for all of them. 

Support Vector Machines were similarly tested with SV-1Day-AllSensors.py, SV-1Hor-

AllSensors.py, and SV-5Min-AllSensors.py, with the same number of samples used as those 

for the Logistic Regression tests. 

6.1.2.3 The Effect of Sensor Selection on Predicting Biological Gender 

The third question asks whether any of the sensors is introducing unnecessary noise that is 

confusing the machine learning algorithms, particularly if the set of sensors used affect the 

accuracy of predicting the biological gender of a user. To answer this question, we used the 

full dataset, divided into three-day intervals, but divided into every possible combination of 

sensors – accelerometer only, gyroscope only, ambient light only, accelerometer and 

gyroscope, accelerometer and ambient light, gyroscope and ambient light. We compare the 

results of those sensor combination both to each other and to the combination of all sensors 

conducted in the baseline experiment. 

To perform our experiments, we used the same models we did for the 3-Day interval tests. 
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However, we added a step prior to the data homogenization, that filters the data for the 

sensors applicable to the specific experiment we were conducting. For example, in NB-3Day-

Acceler.py, only readings from sensor ID 1 are included. In LG-3Day-AccelLight.py, only 

readings from sensors IDs 1 and 3 are included. 

6.1.2.4 The Effect of Model Selection on Determining Biological Gender 

The final question attempts to determine which of the machine learning models we had 

selected performs best given the task. How does the machine learning model used affect the 

accuracy of predicting the biological gender of a user? To definitively answer this question, 

we conducted each of the aforementioned experiments three times, once for each of the 

machine learning algorithms we are testing in this thesis: Naïve Bayes, Support Vector 

Machines, and Logistic Regression. We compare these results relative to one another. 

We used classical machine learning models, over the more modern deep learning models. 

Previous research backs up the argument of using these three classical algorithms, relative to 

other machine learning ones. We are, however, fully cognizant of the fact that this research 

was conducted in a time where deep learning models weren’t as popular as they are now, 

and that newer technologies can support better research. Even with this recognition, it is 

important to note that matching the dataset to the appropriate machine learning algorithm is 

an effort of its own. As aforementioned, Shakya et al found that of the two datasets they 

tested, one was significantly better classified using the classical machine learning algorithms 

rather than the more modern deep learning approaches [88]. The scope of this research was 

always limited to machine learning, not deep learning, attempting to reach strong accuracies 

with relatively inexpensive and quick solutions using limited resources. This is to simulate 

the possibility that these computations can be done on a user’s mobile device. Additionally, 

given the datasets we were working with, the size of the data itself was massive being 

comprised of 22.9 Gigabytes (472.34 billion records), divided into 8.97 Gigabytes (186.24 

billion records) for the female class and 13.9 Gigabytes (286.1 billion records) for the male 

class. Our solution to that was using the partial_fit functionality of machine learning models 

to incrementally teach the model on new data, without losing the knowledge of the previous 

training samples. This type of incremental learning was only available for machine learning 

models, not deep learning ones. Online, or incremental, deep learning is a much larger 

challenge, with many research articles devoted to furthering it. We decided that it was outside 

the scope of this thesis to attempt deep learning on this large of a dataset, and contrary to the 

purpose of simulating limited resources.  

6.1.3 Result Recording and Comparison 

Each one of the Python scripts developed for the individual experiments conducted concludes 

its functionality by using Scikit-Learn’s Metrics classification_report function, generating 
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important metrics about the prediction results of the algorithm discussed in detail below. This 

classification report, along with other information about the model such as the training, test 

when applicable, and the validation datasets used, are stored in a JSON file that also includes 

the timestamp at which this model was run at a folder location indicative of the experiment 

conducted. The path for such a JSON file would be 

\Results\{Algorithm_Used}\{Interval_Size}\{Sensors_Used}\results_{timestamp}.json. 

Later, a script was written that goes through these JSON files and plots a chart of the selected 

metrics for each of the experiments, for relative comparison. This chart was used internally 

for our own analysis purposes, discussed in detail in the Results and Analysis subsection 

below, and would be superfluous to include in this thesis. 

6.1.4 Metric Selection 

We selected four metrics to consider our results and include in our analysis provided in 

section 8 below. 

1. Accuracy: describing the accuracy of the model. It measures the total number of 

correct predictions, divided by the total number of predictions [78]. The issue with 

this metric, is that it focuses on the “correctness” of a model, rather than giving more 

weight to exactly how the model is making mistakes, be that with a focus on making 

more false positives or false negatives. It is a good generalization for a model, but 

definitely leaves room for insight by other metrics. 

 
Figure 14: Equation for Accuracy [78] 

2. Macro-Average Precision: describing the average precision across the classes. 

Precision focuses on the positives, rather than the negatives. It is the division of true 

positives, over the sum of all positive predictions, true and false [78]. In our case, it 

measures how many times a female was predicted to be female over all the times a 

female prediction made, repeats the process for the male class, and calculates the 

average between them. 

 
Figure 15: Equation for Precision [78] 

3. Macro-Average Recall: describing the average recall across the classes. Recall 

measures the ratio of true positive predictions to the total actual positives [78]. In our 

case, it measures how many times a female was predicted to be female over all the 

times a female was present in the dataset. Again, it repeats the same for the male class, 
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and then calculates the average. 

 
Figure 16: Equation for Recall [78] 

4. Macro-Average F1-Score: describing the F1-score across the classes. The F1-Score was 

created as a ratio between precision and recall [78]. It is simply two times the division 

of multiplying the precision and the recall over summing the precision and the recall. 

It is used as a balancing metric between precision and recall and providing more 

insight into why the model is reaching the accuracy that it is reaching. 

 
Figure 17: Equation for F1-Score [78] 

 

6.2 Results and Analysis 

In this section, we furnish the results of our conducted experiments, and provide some insight 

into these results. We do so first by summarizing the experiment results in a tabular format 

in Table 2 below, followed by an exploration of each of the main questions our thesis tries to 

answer and how the results reflect on these questions. Table 2 shows our selected metrics – 

the accuracy, macro average precision, macro-average recall, and macro-average F1-Score – 

for each of the 10 experiments conducted. However, since each of those experiments were 

conducted three times – once with each of the machine learning models we chose to assess – 

they are also reported three times, once for each. The cells are color-coded to indicate their 

proximity from 100%, with green indicating 100% and red indicating 0%. 
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Table 2: Table summarizing all experiment results, with values color-coded based on their 

respective distance from 0 and 100, with the maximum values formatted 
 

 Interval 3-Day 3-Day 3-Day 3-Day 3-Day 

 Sensors 

Accelerometer,  
Gyroscope, &  
Ambient Light Accelerometer Gyroscope Ambient Light 

Accelerometer 
&  
Gyroscope 

Naïve 
Bayes 

Accuracy 50 50 50 50 50 

Precision 75 75 75 75 75 

Recall 50 50 50 50 50 

F1-Score 33.33 33.33 33.33 33.33 33.33 

Logistic 
Regression 

Accuracy 25 50 50 50 50 

Precision 16.67 75 75 75 75 

Recall 25 50 50 50 50 

F1-Score 20 33.33 33.33 33.33 33.33 

Support 
Vector 

Machines 

Accuracy 50 75 75 50 50 

Precision 75 83.33 83.33 75 75 

Recall 50 75 75 50 50 

F1-Score 33.33 73.33 73.33 33.33 33.33 

 

Interval 3-Day 3-Day 1-Day 1-Hour 5-Minutes 

Sensors 

Accelerometer 
&  
Ambient Light 

Gyroscope &  
Ambient Light 

Accelerometer,  
Gyroscope, &  
Ambient Light 

Accelerometer,  
Gyroscope, &  
Ambient Light 

Accelerometer,  
Gyroscope, &  
Ambient Light 

Naïve 
Bayes 

Accuracy 25 25 83.33 48.75 52.47 

Precision 62.5 62.5 91.67 62.4 60.35 

Recall 50 50 50 52.65 52.75 

F1-Score 20 20 45.45 38.99 41.98 

Logistic 
Regression 

Accuracy 25 50 50 75.62 50.41 

Precision 16.67 75 75 75.16 53.41 

Recall 25 50 50 75.69 51.64 

F1-Score 20 33.33 33.33 75.28 43.8 

Support 
Vector 

Machines 

Accuracy 50 50 83.33 72.5 54.06 

Precision 75 50 87.5 72.93 58.78 

Recall 50 50 83.33 71.52 55.39 

F1-Score 33.33 50 82.86 71.63 49.84 
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6.2.1 The Capability of Predicting Biological Gender 

In this case, we are trying to answer the question of whether it is possible to accurately predict 

the biological gender of a user, given the full dataset divided into three-day intervals, with 

readings coming from the accelerometer, gyroscope, and ambient light sensors. Since we ran 

this experiment three times, one for each of the machine learning models we are assessing, 

we have three different result sets, as can be seen in Figure 18 below. 

 
Figure 18: Results of Base Experiment 

To perform the analysis, we will select the results of the best model, being either the Naïve 

Bayes or the Support Vector Machines, given that they performed equally across all four of 

our metrics. The significant reduction in the Logistic Regression Model’s capability to 

accurately predict the gender is, however, noted.  

In terms of accuracy, we were aiming for a value that is greater than 50%, which is the 

equivalent weight of the biological gender classes for performing a simple guess. None of 

these models have achieved that result, given the full dataset. This misleadingly suggests that 

biological gender cannot be accurately predicted through machine learning on zero-

permission sensor data. Therefore, it was very important to conduct the additional set of 

experiments to determine whether the selection of smaller timespans or different sensor 

combinations would affect the result of the capability at all. Already, however, we are seeing 

logistic regression performing as the worst model for this dataset. 

The macro average precision sits at 75%. With an accuracy of only 50%, this indicates that the 

model is correctly predicting the biological gender of the user, but with an extreme bias. To 

explain this further, let us consider what actually happened with the Naïve Bayes model. 
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After training, the validation dataset consisted of four data points or “intervals.” These data 

points were evenly split across the male and female classes, two for each of them. Despite 

that, the model predicted all of the validation datapoints to be female. Performing the 

calculations, we see that this would result in the following highlighting the inflated precision, 

despite the low accuracy. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
2 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

4 (𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒)
= 50% 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑓𝑒𝑚𝑎𝑙𝑒 =  
2 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑒𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

4 (𝑡𝑜𝑡𝑎𝑙 𝑓𝑒𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
= 50% 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑙𝑒 =  
0 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

0 (𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
= 100% 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
100 + 50

2
= 75% 

Recall additionally sits at 50%, since the model does make the correct prediction 100% of the 

time for the female class, but 0% of the time for the male class. This again indicates the model’s 

lack of capability to correctly predict the gender of a user through machine learning on zero-

permission sensors alone. 

Since the F1-Score is a balance of the precision and the recall, and we have already analyzed 

the results of each of them to indicate the overall failure of the model, diving into its 

calculation is irrelevant. 

6.2.2 The Effect of Timespan on Predicting Biological Gender 

In this set of experiments, we are trying to answer two questions: what the smallest interval 

we can use to accurately predict biological gender through machine learning on zero-

permission sensor readings is, and if using a smaller interval than the 3-day intervals used 

for the base experiment would improve the results. 

For that, we consider the results of the 12 experiments conducted, as shown in Table 3. The 

cells are color-coded to indicate their proximity from 100%, with green indicating 100% and 

red indicating 0%. Additionally included are the 3-Day interval dataset results for relative 

comparison with the new intervals tested. 
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Table 3: Table showing the accuracy, precision, recall, and F1-Score results of running 

three machine learning models on four different interval data 
 

 Interval 3-Day 1-Day 1-Hour 5-Minutes 

Naïve 
Bayes  

Accuracy 50 83.33 48.75 52.47 

Precision 75 91.67 62.4 60.35 

Recall 50 50 52.65 52.75 

F1-Score 33.33 45.45 38.99 41.98 

Logistic 
Regression  

Accuracy 25 50 75.62 50.41 

Precision 16.67 75 75.16 53.41 

Recall 25 50 75.69 51.64 

F1-Score 20 33.33 75.28 43.8 

Support 
Vector 

Machines  

Accuracy 50 83.33 72.5 54.06 

Precision 75 87.5 72.93 58.78 

Recall 50 83.33 71.52 55.39 

F1-Score 33.33 82.86 71.63 49.84 

First, let’s analyze the 5-minute intervals, hoping that these would be the most accurate since 

they would require the least data, and would therefore make for faster predictions. 

Unfortunately, this was not the case. While there is indeed an improvement for all 3 machine 

learning models used in terms of accuracy and F1-Score (balancing precision and recall), over 

using the 3-Day intervals, there it is not a very significant one. The highest accuracy achieved 

with the 5-minute intervals is only 54.06% with Support Vector Machines. The F1-Score is 

always below 50%, showing that the models are always biased, either to one class or the other, 

and very much so judging by these numbers. 

The 1- hour intervals performed better than the 5 minutes overall, though not with the Naïve 

Bayes model. Using these intervals with the logistic regression algorithm provided the best 

results, reaching an accuracy of 75.62% or correctly predicting the gender of the user for a 1-

hour interval for 121 of the 160 hours the model had never seen before. In terms of precision 

and recall, the following calculations are done to reach averages of 75.16% and 75.27%, 

respectively. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑓𝑒𝑚𝑎𝑙𝑒 =  
51 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑒𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

74 (𝑡𝑜𝑡𝑎𝑙 𝑓𝑒𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
= 68.92% 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑙𝑒 =  
70 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

86 (𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
= 81.40% 

𝑟𝑒𝑐𝑎𝑙𝑙𝑓𝑒𝑚𝑎𝑙𝑒 =  
51 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑒𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

67 (𝑡𝑜𝑡𝑎𝑙 𝑓𝑒𝑚𝑎𝑙𝑒𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡)
= 76.11% 

𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑙𝑒 =  
70 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

93 (𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑒𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡)
= 75.27% 

These are very positive indications, showing only a small bias towards the male class. 
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Correctly classifying the gender based on data collected for only 1 hour over 75% of the time 

is a leap forward relative to simply making a guess on the gender, the equivalent of using 

time intervals of 3 days. 

If it were not for the negative results of the 3-Day intervals, one could easily assume that 

increasing the interval size would result in better results. This is evident by the increment 

from 5 minutes to 1 hour, and again by the increment from 1 hour to 1 day. With the 1-Day 

intervals, our models were able to reach accuracies of 83.33% both in the cases of Naïve Bayes 

and Support Vector Machines, correctly classifying the gender of the user given 1-Day of 

Zero-Permission Sensor data for 5 of the 6 days the model had never seen before. This is an 

extremely impressive result that may have been improved by the existence of a larger 

validation set. While both models had the same accuracies, however, the Naïve Bayes model 

had a significantly worse F1-Score, constantly predicting the day to be female, despite the 

existence of a male day in the validation set. The Support Vector Machine was significantly 

more balanced, with an F1-Score of 82.86%, indicating a very small bias. The calculations 

leading to these results are furnished below. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑓𝑒𝑚𝑎𝑙𝑒 =  
3 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑒𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

4 (𝑡𝑜𝑡𝑎𝑙 𝑓𝑒𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
= 75% 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑙𝑒 =  
2 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

2 (𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
= 100% 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
100 + 75

2
= 87.5% 

𝑟𝑒𝑐𝑎𝑙𝑙𝑓𝑒𝑚𝑎𝑙𝑒 =  
3 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑒𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

3 (𝑡𝑜𝑡𝑎𝑙 𝑓𝑒𝑚𝑎𝑙𝑒𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡)
= 100% 

𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑙𝑒 =  
2 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑙𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

3 (𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑒𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡)
= 66.67% 

𝑟𝑒𝑐𝑎𝑙𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
100 + 66.67

2
=  83.33% 

Looking at the results of this set of experiments alone would have led to the false indication 

that increasing the size of the interval immediately leads to an increment in the prediction 

accuracy. However being able to compare them to the “base” set of experiments, utilizing a 

dataset comprised of 3-Day intervals better informs the analysis, showing that there exists an 

interval that is too large to perform an accurate prediction. Put simply, there is a point where 

behavior becomes too generalized, simply human, and not separated by biological gender at 

all. Additionally, we believe that having a larger dataset may have contributed to better 

classification results with the 1-Day models, but unfortunately could not test this hypothesis 

due to the lack of data. 
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6.2.3. The Effect of Sensor Selection on Predicting Biological Gender 

In this case, we are trying to answer two questions: which set of sensors will allow for the best 

prediction of biological gender through machine learning on zero-permission sensor readings 

is, and if using a different set of sensors than all three – as used for the base experiment – 

would improve the results. 

For that, we consider the 21 experiment results shown in Table 4. The cells are color-coded to 

indicate their proximity from 100%, with green indicating 100% and red indicating 0%. 

Additionally included are the All-Sensor dataset results for relative comparison with the new 

sensor combinations tested. 

First with Naïve Bayes, we notice that the accuracy does not improve with filtering sensors, 

relative to using all of them. In fact, when using a combination of two sensors, only using the 

accelerometer and gyroscope resulted in the same accuracy, with using any other 

combination of two sensors resulting in a noticeable degradation in accuracy. The pattern 

previously noticed with the all-sensor dataset continues, with models strongly favoring one 

class or the other, resulting in a rather poor F1-Score. 

With Logistic Regression, an interesting pattern emerges. Although the accuracy continues to 

be very poor, reaching at most 50%, this “best accuracy” is only achieved through using any 

combination of sensors that does not include all 3 and is not just the accelerometer and 

ambient light. This indicates the Logistic Regression algorithm is more sensitive to data 

coming from multiple sensors, with results consistently (with one exception) being constantly 

better when the data was coming from either 1 or 2 sensors. While that improvement does 

indeed highlight the sensitivity of Logistic Regression, it still does not help us answer our 

question as no improvement in accuracy over the minimum required 50% was achieved. 

The superiority of Support Vector Machines continues, once more, in this set of experiments. 

While faring poorly (though equal to the best) with the combination of all sensors, there is a 

significant improvement in SVM’s ability to predict the biological gender when the data is 

coming from just one sensor – as long as that sensor is not the ambient light. Ambient light 

alone was unable to inform our Support Vector Machine enough for it to be able to accurately 

predict the biological gender of a user from a 3-Day interval. When data was coming from 

either accelerometer or the gyroscope, however, there was a significant improvement in its 

prediction ability, with accuracy rising from 50% in the cases of any other combination to 

75%. Precision as well was higher at an average of 83.33% in both instances, and so was recall 

at 75%. This led to a much more-balanced average F1-Score of 73.33%. 

So, which combination of sensor should be used? Generally, most combinations of sensors, at 

the 3-Day interval proven to be large enough for behavior to be genericized, will not be 

capable of accurately predicting the gender of a user. However, two sensors: the 

accelerometer and gyroscope, will significantly outperform the others when combined with 

learning on Support Vector Machines to enable more accurate prediction of the biological 
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gender. 

 

Table 4: Table showing the accuracy, precision, recall, and F1-Score results of running 

three machine learning models on seven different combinations of sensor readings 
 

 Sensor(s) Accuracy Precision Recall F1-Score 

Naïve 
Bayes 

All Sensors 50 75 50 33.33 

Accelerometer 50 75 50 33.33 

Gyroscope 50 75 50 33.33 

Ambient Light 50 75 50 33.33 

Accelerometer & Gyroscope 50 75 50 33.33 

Accelerometer & Ambient 
Light 

25 62.5 50 20 

Gyroscope & Ambient Light 25 62.5 50 20 

Logistic 
Regression 

All Sensors 25 16.67 25 20 

Accelerometer 50 75 50 33.33 

Gyroscope 50 75 50 33.33 

Ambient Light 50 75 50 33.33 

Accelerometer & Gyroscope 50 75 50 33.33 

Accelerometer & Ambient 
Light 

25 16.67 25 20 

Gyroscope & Ambient Light 50 75 50 33.33 

Support 
Vector 

Machines 

All Sensors 50 75 50 33.33 

Accelerometer 75 83.33 75 73.33 

Gyroscope 75 83.33 75 73.33 

Ambient Light 50 75 50 33.33 

Accelerometer & Gyroscope 50 75 50 33.33 

Accelerometer & Ambient 
Light 

50 75 50 33.33 

Gyroscope & Ambient Light 50 50 50 50 

 

6.2.4. The Effect of Model Selection on Predicting Biological Gender 

In this case, we are trying determine which type of model produces the best results of 

predicting the biological gender for a user, given zero-permission sensor data. In order to 

answer this question, we repeated all of our experiments three times, one for each machine 

learning model: Naïve Bayes, Logistic Regression, and Support Vector Machines. This means 

that each model was run 10 times, to a total of 30 experiments, producing the results shown 

in Table 2. 

These results can be hard to digest, so let us consider the model with the best results achieved, 

for each of the algorithms we assessed, recorded in Table 6. Again, the cells are color-coded 

to indicate their proximity from 100%, with green indicating 100% and red indicating 0%. 
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Table 5: Table showing the contributing parameters (interval and sensor combination) and 

the metrics with their values for each of the three machine learning algorithms tested 

Algorithm Interval Sensors Metric Value 

Naïve 
Bayes 

1-Day 
Accelerometer, 
Gyroscope, & 
Ambient Light 

Accuracy 83.33 

Precision 91.67 

Recall 50 

F1-Score 45.45 

Logistic 
Regression 

1-Hour 
Accelerometer, 
Gyroscope, & 
Ambient Light 

Accuracy 75.62 

Precision 75.16 

Recall 75.69 

F1-Score 75.28 

Support 
Vector 

Machines 
1-Day 

Accelerometer, 
Gyroscope, & 
Ambient Light 

Accuracy 83.33 

Precision 87.5 

Recall 83.33 

F1-Score 82.86 

While Naïve Bayes was capable of reaching an accuracy equal to the highest, at 83.33%, and 

the overall highest precision throughout the 30 experiments, when paired with the 1-Day 

interval data coming from the accelerometer, gyroscope, and ambient light, it had extremely 

poor recall at only 50%, greatly hurting its F1-Score. Overall, we would not call this a 

successful model, at its best, with the task of predicting a user’s biological gender from zero-

permission sensor data. 

Logistic Regression consistently performed the poorest of the three assessed algorithms, with 

its highest accuracy being 75.62%. It was interesting to see, however, that this accuracy was 

balanced with an admirable F1-Score, balancing both the precision and the recall. It was also 

very interesting to see that while the other algorithms performed their best with the 1-Day 

intervals, Logistic Regression was more fine-grained, performing best with the data from the 

1-Hour intervals. Consistent with the results of the other algorithms, however, it did so with 

the full combination of sensors. 

Support Vector Machines are definitely our selection, among the assessed algorithms, for the 

task of predicting a user’s biological gender from zero-permission sensor data. Not only was 

it able to achieve an accuracy of 83.33% for 1-Day interval data from all three sensors, it did 

so by only missing 1 out of the given 6 datapoints. This led to both a high precision and high 

recall, therefore a high F1-Score. While that was the case in its best run, Support Vector 

Machines consistently performed better than the other algorithms, regardless of interval size 

or sensor combination. As aforementioned, the only exception was the 1-Hour All-Sensors 

variant of our experiments where the Logistic Regression was superior, but even then, not 

only did SVM come in second place, but it was a close second as well, being only 3.12% less 

accurate. This means that it incorrectly classified only 5 more datapoints, of the 160 provided, 
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than Logistic Regression did. It also did so with balance, having a high overall F1-Score, 

which may be attributed to the 5 incorrect classifications. Overall, Support Vector Machines 

were the superior choice, among the three algorithms, and led to impressive results. 

These findings are fairly consistent with the works surveyed, with Naïve Bayes often 

performing well, but in very specific circumstances, Logistic Regression being fairly mediocre 

at the task of learning from zero-permission sensor data, and Support Vector Machines 

consistently shining as one of the best, if not the best, tested traditional machine learning 

algorithm. 
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Chapter 7 

 

Conclusions & Future Work 

 
Determining the biological gender of a user is extremely important. It is the top factor used 

for targeting content and advertising in a cold-start problem – where the companies do not 

know any information about the user – or battling online impersonation – with platforms 

bearing the brunt of actioning accounts that misrepresent who they are online. This targeting 

of content and advertising is the lifeline for many of these companies, and it is a significant 

force of the way the internet works right now. This is clearly illustrated by the trends in 

advertising revenue showing a growth in the United States alone from $107.5 billion in 2018 

[7] to $189.3 billion [72] in 2022, accounting for almost 1% of the entire United States Gross 

Domestic Product [77]. Even with the financials aside, we have shown that YouTube’s 

recommendation algorithm alone is responsible for over 10% of all global Internet traffic [61], 

showing that recommendation and personalization play a huge factor in how everybody 

interacts with the internet today. 

Therefore, it is important to ask if it is possible to accurately predict the biological gender of 

a user based solely on machine learning on zero-permission sensor data. For this question, 

our answer would have to be a resounding yes. While most models were not able to perform 

better than a binary guess, some models had accuracies that were significantly higher. We 

recommend that future researchers attempt to work with a larger dataset that may be more 

insightful in the potential accuracies that can be reached. While we were limited to a small 

pool of volunteers (six males and five females) and a tight window of data collection due to 

COVID-19, we recommend increasing the scope both in terms of the number of participants, 

as well as the number of days data is collected for each individual. Having a larger dataset 

will help corroborate the results of the experiment to make it more accurate for predicting 

gender on a larger scale. This would propel the results of the experiment forward, allowing 

for a more inclusive prediction across a larger range of people and duration.  

It may also be of merit to assess how accurate the biological gender determination would be 

with a different variety of volunteers selected. While we controlled discriminatory factors 

such as age, activity level, and height, we recommend diversifying not only these factors, but 

others that might be considered relevant to particular biological genders. Similarly, this 

would lead to a more comprehensive dataset that accounts for such nuances, allowing for the 

prediction to be more conclusive at a larger and more accurate scale.  

Additionally, we suggest that researchers test whether these results are affected if a user were 

to have a different selected gender over their biological gender. Finally, we recommend that 
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future work attempt to also include the age group of a user as part of the user profiling 

attributes that could be predicted. 

It is also important to ask about the minimum interval that can be used to accurately predict 

the biological gender of a user based solely on machine learning on zero-permission sensor 

data. For this question, not only have we shown that the minimum interval that can be used 

without the data being too sparse is 1 day, but we have also shown that using the 1-day data 

is even more accurate than using the 3-day data. This is because all human behavior will blend 

at some point and become genericized. We recommend that future researchers dig deeper 

into this question. While we do determine that the 1-day interval size is the best in our 

assessed interval sizes, the next larger interval was 3 times as large, and the next smaller 

interval was one twenty-fourth as large. We encourage future researchers to experiment with 

intervals that are longer than 1 day, but shorter than 3 days, and shorter than 1 day but longer 

than 1 hour to test if the true minimum interval is somewhere in between, and if higher 

accuracies can be reached with the new proposed interval sizes. 

But which sensors should be used?  For this question, we have shown that working with the 

data coming from all three of the accelerometer, gyroscope, and ambient light sensors 

produced the best results. We recommend that future researchers try experimenting with 

other zero-permission sensors, such as the magnetometer, to see if they will influence the 

accuracy at all. Additionally, we recommend future researchers try different combinations of 

intervals and sensors. Our experiment kept the interval size constant when we were 

experimenting with different sensors and kept the sensors constant when we were 

experimenting with different interval sizes. It is possible that reaching higher accuracies may 

be a combination of manipulating both factors simultaneously. 

And how can we determine which data to use, given the large volume and density of sensor 

readings? For this effort, we have chosen to come up with a data processing pipeline that 

relies on traditional data filtering mechanisms to focus on the sensor readings of the most 

significance. Perhaps future works should attempt a separate effort of performing machine 

learning on the raw data to extract the features that would have the most participatory effect 

to the subsequent machine learning effort of classifying a user’s demographics. 

Which machine learning models are best to accurately predict biological gender based solely 

on machine learning on zero-permission sensor data? For this question, we have shown that 

Support Vector Machines perform best for the task, relative to Naïve Bayes and Logistic 

Regression models, reaching accuracies of up to 83.33% in a balanced approach unbiased 

towards any one class or the other. We recommend that future researchers experiment with 

other machine learning algorithms and potentially with deep learning models such as 

convolutional neural networks in environments that can ingest the full datasets. 
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Appendix 3: Data Processing Pipeline – Data 
Slicing Step Source Code 

import sqlite3 

import pandas as pd 

 

con = sqlite3.connect("../Databases/database_copy_1621497091932_day16_f_ex_p.db") 

 

cur = con.cursor() 

 

cur.execute("SELECT * FROM sensordata limit 1") 

firstrow = cur.fetchall()[0] 

startTime = firstrow[3] 

sliceCount = 1 

sliceSize = 24 * 60 * 60 * 1000 

sliceType = "day" 

offset = 0 

total = 0 

batchSize = 10000 

saveSize = 1000000 

lastFrameHadData = True 

 

df = pd.read_sql_query("SELECT * from sensordata where 1 != 1", con) 

 

while lastFrameHadData: 

    processedTime = 0 

    if (len(df.index) > 0): 

        processedTime = (df.iloc[-1]["sensortime"] - startTime) / (sliceSize) 

 

        processedId = df.iloc[-1]["_id"] 

 

        print("Processing. Reached {} records totalling {:10.4f} 

{}s".format(processedId, processedTime, sliceType)) 

 

    try: 

        newFrame = pd.read_sql_query("SELECT * from sensordata LIMIT {} OFFSET 

{}".format(batchSize, offset), con) 

 

        newFrameSize = len(newFrame.index) 

 

        total += newFrameSize 

 

        if(newFrameSize > 0): 

            offset += batchSize 
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            outsideTheSlice = newFrame[newFrame["sensortime"] >= startTime + 

sliceCount * sliceSize] 

 

            if(len(outsideTheSlice.index) > 0): 

                df = df.append(newFrame[newFrame["sensortime"] < startTime + 

sliceCount * sliceSize]) 

 

                df.to_csv("./output/female/{}/{}_{}.csv".format(sliceType, 

sliceCount, total)) 

 

                sliceCount += 1 

                df = outsideTheSlice 

            else: 

                df = df.append(newFrame) 

 

                if (len(df.index) >= saveSize): 

                    df.to_csv("./output/female/{}/{}_{}.csv".format(sliceType, 

sliceCount, total)) 

 

                    cur.execute("DELETE from sensordata where _id in (SELECT _id 

from sensordata LIMIT {})".format(offset)) 

                    offset = 0 

 

                    df = pd.read_sql_query("SELECT * from sensordata where 1 != 

1", con) 

        else: 

            lastFrameHadData = False 

 

            df.to_csv("./output/female/{}/{}_{}.csv".format(sliceType, 

sliceCount, total)) 

    except: 

        lastFrameHadData = False 

        df.to_csv("./output/female/{}/{}_{}.csv".format(sliceType, sliceCount, 

total)) 

con.close() 
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Appendix 4: Data Processing Pipeline – Delta 
Calculation Step Source Code 

import pandas as pd 

import os 

import numpy as np 

sensors = [1, 2, 3] 

gender = "male" 

curslice = "snz" 

filenames = [] 

for (dpath, dnames, fnames) in 

os.walk(os.path.join(".","output",gender,curslice)): 

    filenames.extend(fnames) 

filenames = sorted(filenames, key = lambda filename : 

int(filename[0:filename.index("_")])) 

day = 1 

totalRows = 0 

newTotalRows = 0 

for idx in range(0, len(filenames)): 

    filename = filenames[idx] 

    print("PROGRESS: {}%. FILE NUMBER: {}/{}. NAME: 

{}".format(idx/len(filenames)*100, idx+1, len(filenames), filename)) 

    curday = filename[0:filename.index("_")] 

    if (curday != day): 

        day = curday 

    path = os.path.join(".", "output", gender, curslice, filename) 

    fileFrame = pd.read_csv(path) 

    for sensor in sensors: 

        print("--> SENSOR: {}".format(sensor)) 

        df = fileFrame[fileFrame["sensor"]==sensor].iloc[:, 2:] 

        totalRows += len(df.index) 

        if len(df.index) > 0: 

            df["sensortime"] = df["sensortime"].diff() 

            df = df[df["sensortime"] <= 1000] 

            if sensor == 3: 

                valDiffFrame = pd.DataFrame(df['value']).apply(pd.to_numeric, 

errors='raise').diff() 

                df["diff"] = pd.DataFrame(valDiffFrame["value"].astype(str)) 

            else: 

                valDiffFrame = 

pd.DataFrame(df['value'].str.split(",").tolist()).apply(pd.to_numeric, 

errors='coerce').diff() 

                if len(valDiffFrame.index) > 0: 

                    diffColFrame = pd.DataFrame({"diff": 

valDiffFrame[0].astype(str) + "," + valDiffFrame[1].astype(str) + "," + 
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valDiffFrame[2].astype(str)}) 

                    df["diff"] = diffColFrame["diff"].values 

            if 'diff' in df.columns: 

                df = df[~df["diff"].isin([np.nan, "nan,nan,nan","nan", 0])] 

                df = df[~df["sensortime"].isin([np.nan, "nan,nan,nan","nan", 0])] 

                newTotalRows += len(df.index) 

                df.to_csv("./output/{}/{}/delta/{}_{}.csv".format(gender, 

curslice, filename[0:filename.index(".")], sensor)) 

print("Reduction of {}%".format(newTotalRows/totalRows*100)) 
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Appendix 5: Data Processing Pipeline – Data 
Homogenization Step Source Code 

import pandas as pd 

import os 

gender = "female" 

slicing = "snz" 

filenames = [] 

for (dpath, dnames, fnames) in 

os.walk(os.path.join(".","output",gender,slicing,"delta")): 

    filenames.extend(fnames) 

filenames = sorted(filenames, key = lambda filename : 

int(filename[0:filename.index("_")])) 

lastDay = 1 

dayFrame = pd.DataFrame() 

for filename in filenames: 

    path = os.path.join(".", "output", gender, slicing, "delta", filename) 

    fileFrame = pd.read_csv(path) 

    sensor = filename[-5:-4] 

    print(filename, sensor) 

    if not fileFrame.empty: 

        if int(sensor) == 1: 

            fileFrame[['diffX','diffY','diffZ']] = 

fileFrame['diff'].str.split(",", expand=True) 

            fileFrame[['diffX','diffY','diffZ']] = 

fileFrame[['diffX','diffY','diffZ']].apply(pd.to_numeric, errors="coerce") 

            fileFrame = fileFrame.iloc[:, [1,3,5,6,7]] 

        elif int(sensor) == 2: 

            fileFrame[['diffX','diffY','diffZ']] = 

fileFrame['diff'].str.split(",", expand=True) 

            fileFrame = fileFrame._convert(numeric=True) 

            fileFrame['diffZ'] = fileFrame['diffZ'].fillna(0) 

            fileFrame[['diffX','diffY','diffZ']] = 

fileFrame[['diffX','diffY','diffZ']].apply(pd.to_numeric, errors="coerce") 

            fileFrame = fileFrame.iloc[:, [1,3,5,6,7]] 

        elif int(sensor) == 3: 

            fileFrame['diffX'] = fileFrame['diff'] 

            fileFrame.insert(len(fileFrame.columns), "diffY", 0) 

            fileFrame.insert(len(fileFrame.columns), "diffZ", 0) 

            fileFrame[['diffX','diffY','diffZ']] = 

fileFrame[['diffX','diffY','diffZ']].apply(pd.to_numeric, errors="coerce") 

            fileFrame = fileFrame.iloc[:, [1,3,5,6,7]] 

        print(fileFrame.head(3)) 

        if filename[:filename.index("_")] == str(lastDay): 

            print("Appending") 
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            dayFrame = pd.concat([dayFrame, fileFrame]) 

        else: 

            print("Saving") 

            if not dayFrame.empty: 

                print("DAY " + str(lastDay)) 

                print(dayFrame.head(3)) 

                dayFrame.to_csv("./output/{}/{}/delta/nbprep/{}/{}.csv".format(ge

nder, slicing, gender, str(lastDay)), index=False) 

                dayFrame = fileFrame 

                lastDay = filename[:filename.index("_")] 
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Appendix 6: GitHub Repositories 

The code for the Android application responsible for collecting data can be found at 

https://github.com/aelhussiny/ThesisDataCollection. 

The code for the data processing pipeline, machine learning models, and result comparison 

script can be found at https://github.com/aelhussiny/ThesisPython. 
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