
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations Student Research

Spring 6-21-2023

Stochastic Worst-Case Test Vectors for ASIC Devices in Single Stochastic Worst-Case Test Vectors for ASIC Devices in Single

Event Environment Event Environment

Mostafa Hemeda
mostafa.hemeda@aucegypt.edu

Follow this and additional works at: https://fount.aucegypt.edu/etds

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation

APA Citation
Hemeda, M. (2023).Stochastic Worst-Case Test Vectors for ASIC Devices in Single Event Environment
[Master's Thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/2120

MLA Citation
Hemeda, Mostafa. Stochastic Worst-Case Test Vectors for ASIC Devices in Single Event Environment.
2023. American University in Cairo, Master's Thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/2120

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F2120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=fount.aucegypt.edu%2Fetds%2F2120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/2120?utm_source=fount.aucegypt.edu%2Fetds%2F2120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/2120?utm_source=fount.aucegypt.edu%2Fetds%2F2120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu

Graduate Studies

Stochastic Worst-Case Test Vectors for ASIC Devices in

Single Event Environment

A THESIS SUBMITTED BY

 Mostafa Abdelmohsen Hemeda

TO THE

Electronics and Communications Engineering Department

SUPERVISED BY

Prof. Ahmed Abou-Aouf

May 2023

in partial fulfillment of the requirements for the degree of

Master of Science

i

Declaration of Authorship

I, Mostafa Abdelmohsen Hemeda, declare that this thesis titled, “Stochastic worst-case test

vectors for ASIC devices in Single Event Environment” and the work presented in it are my

own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this

University.

• Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.
• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

iii

Abstract

Charged particles and energetic particles can impact the integrated circuit, referred to as single

event effects (SEE). Nuclear reactors and space radiation can produce these particles. These effects

can negatively affect the reliability and performance of electronics. When SEE occurs, a transient

current is created, which can cause electronic devices to have incorrect outputs and ultimately fail.

As a result, ensuring the reliability of ASIC circuits is a significant concern.

This thesis discusses the different fault types, then discuss the soft error and, in particular, the

Single Event Transient (SET) and its causes and models. Then, this thesis proposes a new model to

get the probability of error of standard cells using a pre-characterized cell module. The proposed

method guarantees that no logical masking and over-estimation of the probability of error has

occurred. Furthermore, it suggests calculating the error probability of the whole combinational

circuit in application-specific integrated circuits (ASIC) using the Krishnaswamy method and a

newly proposed method. Finally, this thesis presents a new approach to getting the worst-case

vector based on Krishnaswamy and a newly proposed method. The flow gets the most probable

vector as the worst-case vector from a set of vectors generated from the Automated Test Pattern

Generation (ATPG) tool. In addition, a new error metric is discussed to find the worst-case

vector based on two-norm.

iv

Acknowledgments

I would like to convey my utmost gratitude and appreciation to my thesis advisor, Prof.

Ahmed Abou-Auf, for his unwavering support, invaluable guidance, and remarkable

patience throughout the duration of my thesis.

 I would like to thank my examiners for devoting time to review the thesis and

providing valuable comments.

Also, I would like to thank all my colleagues that offered help and support throughout the

research work, especially Eng. Mohamed Wael, Eng. Ahmed Ibrahim and Eng. Mostafa

Abdelaziz.

v

Contents

Declaration of Authorship ... i

Abstract ... iii

Acknowledgments .. iv

Contents .. v

List of Figures... vii

List of Tables .. ix

List of Abbreviations ... x

List of Symbols .. xi

Chapter 1 .. 12

Circuit Faults .. 12

1.1 Permanent Faults .. 13

1.2 Transient Faults ... 15

1.3 Fault Modeling ... 18

1.4 ATPG .. 21

Chapter 2 ... 27

Single Event Transient ... 27

2.1 SET Causes ... 28

2.2 SET Modeling .. 31

2.3 SET Pulse Models .. 37

Chapter 3 ... 40

Characterization and SET Modeling for Standard Cell .. 40

Fault Modeling .. 41

3.1 Analytical Model .. 41

vi

3.2 Cubic Interpolation Model .. 43

Chapter 4 ... 45

ASIC Circuit Probability of Error and Worst Case Vector ... 45

4.1 PTM and ITM .. 45

4.2 Krishnaswamy’s Method ... 48

Chapter 5 ... 55

Standard Cell Probability of Error ... 55

5.1 AND gate probability of error .. 56

5.2 NAND gate probability of error ... 58

5.3 OR gate probability of error .. 58

5.4 NOR gate probability of error ... 59

5.5 Buffer gate probability of error ... 60

5.6 Inverter gate probability of error .. 60

5.7 XOR gate probability of error .. 61

5.8 XNOR gate probability of error .. 62

5.9 Proposed Method Significance ... 62

Chapter 6 ... 64

New Probabilistic Circuit Testing Algorithm .. 64

6.1 New Node Model .. 64

6.2 Probability of Stimulus at Standard Cell's Outputs ... 64

6.3 Propagation of Probability of Error .. 65

6.4 Worst-Case Vector Exploration ... 66

6.5 Algorithm Implementation.. 68

6.6 Algorithm Validation ... 70

6.7 Results and Discussion ... 71

6.8 Significance of The Proposed Algorithm ... 74

Chapter 7 ... 76

Conclusion and Future Work ... 76

References .. 78

Appendix 1 ... 81

1) FastSCAN Code. .. 81

2) MATLAB Code. ... 81

vii

List of Figures

FIGURE 1 Cost of Fabrication vs Cost of Testing[1] ... 12

FIGURE 2 IDDQ example ... 14

FIGURE 3(A) Example of Bridging error and (B) Example of floating node Error 15

FIGURE 4 Effect of temperature on the average SET width[10] ... 18

FIGURE 5 Testing stuck-at-1 fault[12] ... 20

FIGURE 6 Equivalent cells example[12] ... 21

FIGURE 7 Random test algorithm[13] .. 23

FIGURE 8 D-Algorithm illustration[14] .. 24

FIGURE 9 D-algorithm backtrack and retry[14] .. 25

FIGURE 10 An energetic neutron hits an NMOS Device ... 29

FIGURE 11 Packaging in CMOS circuit[20] ... 30

FIGURE 12 A charged alpha particle hits an active device[20] ... 31

FIGURE 13 SET propagation to output in inverter[21] ... 32

FIGURE 14 STG DICE TCAD Simulation[22] .. 33

FIGURE 15 Output of STG when changing the location and the energy of the hitting

particles[22] ... 33

FIGURE 16 SET Macro modeling [21] ... 34

FIGURE 17 Micro-Modeling of SET[21] .. 34

FIGURE 18 Mixed-level simulation of 10 cascaded inverters[23] .. 35

FIGURE 19 Mixed model simulation between 3D NMos and SPICE Simulation[23] 35

FIGURE 20 Stuck Drain voltage for different LET[23] .. 36

FIGURE 21 Effect of Propagation through gates [23].. 37

FIGURE 22 Double-Exponential Current Model [24] ... 38

FIGURE 23 Double sinusoidal Voltage Pulse[25] .. 39

FIGURE 24 Standcell characterization testbench[27] .. 40

FIGURE 25 Voltage and pulse width transfer function[26] ... 42

FIGURE 26 Pulse output width from NO2HDSVTX4 cell characterization. (a) simulation result,

(b) model from [26], and (c) cubic interpolation.[27] .. 44

viii

FIGURE 27 PTM generation flow for each standard cell .. 47

FIGURE 28 special ITM for wire swapping and fanout.[29] .. 47

FIGURE 29 Cascaded buffer PTM example ... 48

FIGURE 30 Example of PTM calculation of 2 parallel gates .. 49

FIGURE 31 A completed combinational circuit PTM calculated example[31] 50

FIGURE 32 The first round of the parser flow chart ... 52

FIGURE 33 Voltage and pulse width normal distribution ... 55

FIGURE 34 Illustration of logical masking[28] .. 56

FIGURE 35 Gate Level Netlist of C17 ISCAS85 Example ... 66

FIGURE 36 Novel algorithm flow chart .. 69

FIGURE 37 Removing dependency at the output for C17 ... 73

ix

List of Tables

Table 1 Decision of fault based on IDDQ method ... 15

Table 2 Influence of attitude in neutron flux in New York[18] ... 28

Table 3 PTM and ITM for famous commonly used cell.. 46

Table 4 AND gate probability of error calculation .. 57

Table 5 NAND gate probability of error calculation ... 58

Table 6 2-input OR gate probability of error calculation .. 59

Table 7 2-input NOR gate probability of error calculation .. 60

Table 8 2-input XOR gate probability of error calculation ... 61

Table 9 2-input XNOR gate probability of error calculation .. 62

Table 10 Comparison between MATLAB ideal circuit output VS SystemVerilog for C17............ 70

Table 11 New Algorithm Computational Result Result ... 71

Table 12 The output pattern probability of error for different input vectors for C17 using

Krishnaswamy method and the proposed method ... 73

Table 13 The output pattern probability of error for different input vectors for C17 using

Krishnaswamy method and the proposed method after removing one level of dependency. 74

x

List of Abbreviations

SET Single Event-Transient

SEE Single Event Effects

EM Electromigration

IC Integrated Circuits

ESD Electrostatic Discharge

ATPG Automated Test Pattern Generation

ASIC Application-Specific Integrated Circuits

BEOL Back End Of Line

SEU Single Event Upset

xi

List of Symbols

𝐼𝑆𝐸𝑇 SET current

𝑄𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 The critical charge for SET

𝑀 PTM matrix

𝐽 ITM matrix

𝐴 Output stimulus probability matrix for faulty circuit

𝐵 Output stimulus probability matrix for ideal circuit

12

Chapter 1

Circuit Faults

According to Moore's law, the transistor keeps scaling down until it reaches the nanometer

range. Scaling down transistors, in turn, introduced some new effects that were not

considered before, like RLC parasitics, on-chip variations, and IR drop. In addition, the

complex fabrication process of advanced nodes can cause defects in the fabricated chips.

Furthermore, process variation in advanced nodes became a serious problem. These effects

are known as Deep Submicron effects (DSM). Furthermore, the high cost of testing the

chips makes it vital to study the possible faults to manufacture fault-free chips and make

sure that the fabricated chip is testable. For example, FIGURE 1 indicts the cost of fabrication

per transistor is decreasing over the years, but the cost of testing per transistor is almost the

same. [1]

FIGURE 1 Cost of Fabrication vs Cost of Testing[1]

In general, circuit faults can be divided into two main categories:

1) Permanent faults: these can cause the circuit to break permanently, such as stuck-

at faults, IDDQ.

2) Transient faults: these faults can cause the circuit to fail momentarily, such as

Single-Event-Transient (SET), due to radiation, electromagnetic interference,

13

electromagnetic discharge, or power noise.[2]

1.1 Permanent Faults

Any fault, in general, is the abstraction of failure in a circuit in a particular node.

Permanent faults can happen due to the mal-fabrication of the circuit interconnect, which

causes stuck-at faults. Furthermore, any device mal-fabrication can cause more current to

flow across it than expected. This can cause IDDQ faults.

1.1.1 Stuck at Faults

For example, if the 2-input AND gate has 2-input terminals A and B and one output

terminal C. Stuck-at Faults can happen due to shorting a certain node to VDD (stuck-at 1) or

to ground (stuck at 0). If any terminals are tied to VDD, it is called a stuck-at-1 fault. On the

other hand, if they are tied to zero, it is called stuck at zero faults. This can damage the

circuit functionality, which is 𝐶 = 𝐴𝐵. This problem is becoming more severe due to the

need for a less resistance interconnect, such as a cooper can cause faults such as stuck-at

faults due to shorts[3]. Moreover, these defects can be caused by:

1- Process Defects:

Process defects are caused by fabrication processes like shorts, opens, or latch-up.

2- Material Defects:

Material defects are related to materials used in fabrication, such as metals and silicon, as

the material can have imperfections that will cause faults.

3- Aging Defects:

Some metals can become open due to aging effects over time. This is called

electromigration (EM). This is caused when current flows in a net with a value greater than

the maximum value. EM is solved by widening interconnect. Furthermore, temperature,

mechanical stress, or radiation can cause the dielectric to break, which can cause to ruin the

transistor's functionality.

14

4- Packaging Defects:

Some faults can happen due to packaging if there is a mismatch between the core pads and

wire bonding which can be caused unwanted parasitics that will cause the circuit to fail.

1.1.2 IDDQ Based Faults

When the input is static, no current must be drawn out from the circuit (as the leakage

current is negligible). So, if some current is taken from the VDD for some static input, this

circuit must be faulty, as shown in FIGURE 2. So, the main concept of this method is to

measure the output current and observe the quiescent supply current. If the current is large,

a fault issue can cause failure or reliability [4].

FIGURE 2 IDDQ example

Example of errors :

1) Bridging error: If the NMOS transistor is off, and PMOS is on because the input is 0 in

a certain branch, but the NMOS is on, and PMOS is off in another branch, and then

there is a direct path from the two on transistors as shown in FIGURE 3 A then the

current will flow. This can be captured by IDDQ test.

2) Floating node detection:

The floating node can take any value regardless of the input. So, it can take a value that can

drive current in this branch, as shown in FIGURE 3 B.

15

FIGURE 3(A) Example of Bridging error and (B) Example of floating node Error

This method has a lot of advantages as it simply depends only on measuring the current

and can catch a lot of defects. Area overhead is minimum. On the other hand, it takes less time

than scan chains and is inefficient for technology with large leakage. So Table 1 summarizes the

IDDQ testing process. So, if there was a high current at a high frequency, that is most probably

because of a defect.

Table 1 Decision of fault based on IDDQ method

𝑰𝑫𝑫 𝑭𝑴𝑨𝑿 Decision on IC

H H Good -Fast

H L Defect

L H Unlikely

L L Good -Slow

1.2 Transient Faults

Transient faults are a type of fault that causes the circuit to malfunction instantaneously.

These errors are called soft errors in a circuit. There are various reasons for transient errors,

such as:

1) Cosmic rays

High-energy particles from space, such as protons and neutrons, can collide with the atoms

16

in the semiconductor material and create a charge imbalance in the chip that affects the state

of the device, causing the logic to change. In fact, 95% of soft errors are caused by cosmic

rays. Although cosmic rays' leading cause is not reaching Earth, the resultant alpha particles

that hit the Earth's surface cause SET. For example, in New York, the flux of neurons is 14

𝑛𝑒𝑢𝑟𝑜𝑛𝑠

𝑐𝑚2ℎ
. It has been noted that cosmic rays decay with distance, meaning that the nearer the

earth's surface, the fewer neurons will reach the ground. In other words, well-isolated chips

and computers have fewer soft errors than regular chips. IBM has studied the effect of

cosmic rays on chips and found that concrete shielding will cause a significant reduction in

SET [5]. For example, an experiment was done to measure the transient error rate at to be

5,950 failures in time per billion hours per DRAM chip. On the other hand, when the same

test setup was moved to a shielded underground vault of rock that effectively eliminated all

cosmic rays, no soft errors were measured [6].

2) Alpha particles:

Alpha particles are emitted by radioactive materials in the environment and can cause soft

errors in VLSI. These particles can be a big problem in space and nuclear power systems.

Furthermore, space and nuclear power devices need high reliability as they are costly to

produce, and such systems have no tolerance for error. [5]

3) Neutron radiation:

In a space or nuclear environment such as a nuclear reactor, neutrons can trigger nuclear

reactions in the semiconductor material causing defects. Neutron beams can cause a brust

that can affect the condition of nearby device’s state. Neutron beams damage electronics and

can affect measurements. [7]

4) Power supply fluctuations:

Rapid changes in the power supply voltage or current can cause transient errors in the

device's function. Electromagnetic interference and power spikes near the power sources

can cause rapid change. These fluctuations are very sensitive for analog designs. For

example, for a voltage-controlled oscillator (VCO), power fluctuations can cause the variable

17

capacitors to charge, including the drain-bulk capacitance, which causes shifting of the

output frequency of the VCO and its gain, which can damage the functionality

momentary[8].

5) Electrostatic discharge:

Electrostatic discharge (ESD) can cause soft errors in VLSI devices by creating a charge

imbalance in the circuit. ESD occurs when an object with a high electrical charge comes into

contact with a conductor or semiconductor material. This contact can cause a sudden

discharge of static electricity, which can generate a high-energy pulse of electrons (unwanted

current). When the ESD pulse reaches a VLSI device, it can induce a transient voltage that can

alter the device's state. The voltage generated by the ESD pulse can be much higher than the

operating voltage of the device, which can cause an unintended state transition in the circuit.

This high voltage can lead to soft errors in the device's data output. ESD can also cause

physical damage to the device, such as melting or puncturing the metal interconnects or oxide

layers which can lead to permanent damage or failure of the device. To prevent ESD-induced

soft errors, designers can use various techniques, such as implementing ESD protection

circuits, grounding and shielding processes, and anti-static devices and procedures during

device handling and manufacturing. ESD protection circuits can be designed to shunt the

high-energy ESD pulse away from the sensitive circuits and discharge the charge safely to the

ground. Grounding and shielding can reduce the buildup of static charges in the

environment. At the same time, anti-static devices and procedures can minimize the risk of

ESD discharge during device handling and manufacturing [9].

6) Process variations:

Process variation can have a significant impact on soft errors in VLSI devices. It refers

to the natural variations that occur during the manufacturing process, which can cause

differences in the electrical properties of the devices. These variations may include

temperature, pressure, doping, and chip location in the silicon, which can cause variations in

the charge collection and generation mechanisms, affecting the device's susceptibility to soft

errors. To mitigate the effects of process variation on soft errors, designers can use techniques

such as redundancy and error-correcting codes. Redundancy involves using additional

hardware (replica logic) to duplicate critical circuits or data paths, which can provide a

18

backup in case of a soft error. In this technique, the same logic is used more than once, and

there is a decision logic based on majority voting to decide the correct logic. Error-correcting

codes use mathematical algorithms to detect and correct errors in the data, which can

improve the system's reliability.[10]

7) Temperature fluctuations:

Rapid temperature changes can cause soft errors in VLSI devices. Temperature fluctuations

can be caused by thermal noise, thermal runaway, or other factors. The experimental result

from TCAD of 130nm technology causes the signal event transient width to increase with

the temperature increase, as shown in FIGURE 4.[10]

FIGURE 4 Effect of temperature on the average SET width[10]

1.3 Fault Modeling

The ability to accurately model circuit faults is critical to diagnosing and troubleshooting

electronics as well as preventing these errors. In this context, fault modeling refers to the

process of identifying, characterizing, and simulating circuit faults to gain a deeper

understanding of how they occur and how they can be mitigated. This involves creating

models that capture the behavior of faulty circuits and developing simulators and test

methods to evaluate the performance of these models.[11]

19

1.3.1 Stuck-at modeling

In order to model stuck-at-fault for a particular node in a netlist, the node in the circuit will

be tied to a fixed value which will be zero for stuck and zero faults and one for stuck-at-one

faults. For any node in a certain design, each node can be stuck at 0 or stuck at 1 or a fault-

free node. This fact gives each node a 3 degree of freedom, so for each circuit, the number of

possible combinations will be 3𝑛 where n is the number of nodes in the circuit. This is a

huge number and will take a long time to compute. If it is assumed that only a single event

happens at a time, the number of combinations will be reduced to only 2𝑛. The scope of this

thesis will focus on a single fault.

The single stuck-at model assumes the following: -

1- Only one fault happens at a time.

2- The node is tied to 0 or 1 permanently.

3- The fault can happen in the inputs or outputs of the gate.

Stuck-at modeling aims to find the test vector that will propagate the error to the

observable output. For example, FIGURE 5 represents a faulty circuit with the output of OR

gate stuck at 1. To make the error propagate, the algorithm needs the inputs of the OR gate

to make the output 0. So the inputs of the OR gate must be 0 and 0. The fault must be

propagated to the observable output of the circuit, so the other input of AND2 must be 1 to

prevent the masking. So the other two inputs of AND1 must be 1 and 1. So to test the stuck-

at error in the output of OR gate, the input must be 1100. Any test modeling algorithm must

assume that only one node is stuck and 1 and find the pattern that will it propagate. Then, it

will assume it is stuck at 0 and find the other patterns. In addition, all the nodes of the

circuit will be assumed to be faulty, and all the patterns will be test patterns generated.

20

FIGURE 5 Testing stuck-at-1 fault[12]

1.3.2 Fault Equivalence

Two faults are equivalent if they will have the same effects on the circuit output using the

same input pattern. For example, if the response of a circuit for a certain test vector (𝑉1, 𝑉2)

are expected to be 𝑓0(𝑉1) and 𝑓0(𝑉2) the output of the circuit, if it has a single error in a

certain node, is 𝑓1(𝑉1) And if the error in the other node is 𝑓2(𝑉2). Then, if the two faults are

equivalent, then 𝑉1must equal to 𝑉2 as following

 𝑓0(𝑉1) ⊕ 𝑓1(𝑉1) = 1 (1)

 𝑓0(𝑉2)⊕ 𝑓2(𝑉2) = 1 (2)

 This means that there are output is different, and no logical masking happened. And

𝑓0(𝑉1) is different than 𝑓1(𝑉1). In addition, 𝑓0(𝑉2) is different than 𝑓2(𝑉2). If 𝑉1 = 𝑉2 = 𝑉 then,

the two faults are equivalent as follows

 (𝑓0(𝑉)⊕ 𝑓1(𝑉))⊕ (𝑓0(𝑉)⊕ 𝑓2(𝑉)) = 1 (3)

Simplifying :

 𝑓1(𝑉)⊕ 𝑓2(𝑉) = 0 (4)

21

So the two faults are equivalent.

Patterns can not distinguish between equivalent faults. For example, a stuck-at-0 in any of

the inputs of the AND gate is equivalent to each other and to a stuck-at-0 at the output of

the gate. In addition, a stuck-at-0 at the inverter input is equivalent to a stuck-at-1 at the

inverter output. FIGURE 6 illustrates the different equivalent faults for standard cells. The

dotted arrow means that the fault is equivalent. For example, for NOR gate, the stuck-at-1 at

any input is equivalent to each other, and the stuck-at-0 at the output.

FIGURE 6 Equivalent cells example[12]

The number of distinct stuck-at faults is around 50-60% for any typical circuit, which

makes any tool needs to find the distinct stuck-at faults before generating the test vectors.

[12]

1.4 ATPG

Automatic Test Pattern Generation (ATPG) is a process used in designing and

manufacturing integrated circuits to generate test patterns that can be used to detect faults

in the circuit. ATPG aims to produce a set of test patterns that can detect the largest number

of faults in the circuit while minimizing the number of patterns required and the time it

takes to test the circuit. This is essential because it ensures that the manufactured circuits

meet the required specifications and are defect-free.

22

A possible way to generate the test patterns is to try all the possible inputs for a circuit and

test them; this process is inefficient for large circuits. For example, for a 64-bit adder, which

will have around 129 inputs (64 for the first input and 64 bit for the 2nd input, and 1 bit to

determine whether it is addition or subtraction), the number of test patterns needed will be

around 2129. If each test takes 1 ns to compute, the algorithm will need 2121 second which is

5.26 ∗ 1027 years. This is impossible to compute. The process of ATPG involves several

steps, including fault modeling, test generation, and simulation. Fault modeling identifies

potential faults in the circuit and creates a model of each fault. This model includes

information about the fault's location and type of fault, such as a stuck-at or bridging fault.

Test generation involves using fault models to create test patterns to detect faults.

Simulation is then used to test the circuit using the generated patterns and to identify any

faults that were not detected. There are many ATPG methods, each with advantages and

disadvantages:

1- Random test pattern generation:

This method includes generating random patterns without specific knowledge of the

circuit being tested. While this method is simple and easy to implement, it is not very good

at detecting faults and may require multiple testing procedures to achieve proper fault

coverage. A typical random test algorithm starts by assuming all the probability of inputs to

be equal. Then, the algorithm generates a random vector, sees the fault that it simulates, and

saves the tested nodes. Then, the algorithm checks the coverage, which is the nodes and

faults percentage tested in a circuit. If the coverage is still small, the algorithm generates

another test vector to get new faults and test other nodes. If no new faults is tested, the

vector is discarded, changing the probability of inputs to get a new vector. Finally, once the

target coverage is reached, the algorithm is halted. FIGURE 7 represents the flow chart of a

random algorithm[13].

23

FIGURE 7 Random test algorithm[13]

2- Deterministic test pattern generation:

Another approach is deterministic pattern generation, where test patterns are generated

using predefined algorithms and rules. This approach is more capable of detecting errors

than random sample generation but can be more complex and time-consuming to

implement. One example of such an algorithm is the D algorithm which is an efficient and

effective method for generating test patterns for single stuck-at faults in a circuit.

The D-algorithm starts with performing a fault simulation of the circuit using a fault

model. This fault simulation generates a set of fault tables that identify the potential faults in

the circuit and their corresponding fault values. The fault model used in the D-algorithm

assumes that all faults are single stuck-at faults, which means that a single node in the

circuit is always stuck at either a 0 or stuck at 1. Then, pattern generation is done by

backtracking. In D-algorithm, one can use D-algorithm to donate D to the node under test. If

the node tested is supposed to be 1, then its value is donated to D. If it is supposed to be 0,

24

its value is donated to 𝐷̅. For example, FIGURE 8 illustrates a test case of how D- algorithm

works; if test node 5 is the node under test if it is stuck-at-1, the algorithm chooses the path

to node 5 from the input and puts input to an initial value (1 0) as it shall produce 0 (to test

stuck-at-one). Then, the algorithm wants to propagate the fault to the circuit output. So the

output shall be 𝐷̅. So, node 5 must propagate either by node 8 or 7, let's say from 5 to 8, so

node 6 must be zero. Then, for the value to be propagated to node 9, node 7 must be 1. Then,

backtracing is done to find the inputs of the circuit. If there is a contradiction to the

assumption, the algorithm refuses the assumed path and tries another path. For example, in

FIGURE 8, after backtracing, the algorithms found the inputs is 0 0, which contradicts the

initial assumption.

FIGURE 8 D-Algorithm illustration[14]

FIGURE 9 represents the retry for the second path, which is node 5 propagates the fault

through node 7 to the output node. The algorithm found that the inputs agreed with the

assumption. So this pattern will be the correct test pattern to test if node 5 is stuck-at-1.

Then, this method is done for all the nodes to get all the test patterns. [14]

25

FIGURE 9 D-algorithm backtrack and retry[14]

So the process of the D-algorithm can be summarized as

1- Initialize the gate inputs to detect the fault at a certain node.

2- Select the other node values so the fault will propagate to the output

through a certain path.

3- Then backtrack to get the input's value and check for contradiction.

4- If a contradiction is found, repeat from 2 with a different path till no

contradiction is found.

5- If no contradiction is found, record the test pattern and the fault tested and

move to other nodes.

3- Hybrid test pattern generation:

This method tried to take advantage of both stochastic and deterministic approaches to

make the algorithm faster and more efficient. For example, the algorithm could use a

deterministic method to generate test patterns for the most critical faults in the circuit and

then use a stochastic method to generate test patterns for the remaining faults. This will

reduce the coverage of the algorithm to reduce the runtime. Another way is using

26

probabilistic approaches, including deterministic approaches to produce a seed of initial test

vectors, then stochastic approaches to get the remaining test vectors. One example of a

hybrid pattern generation algorithm is the Genetic Algorithm-based ATPG (GA-ATPG).

GA-ATPG is a probabilistic algorithm that uses a combination of deterministic and

stochastic methods. It starts by using a deterministic algorithm to generate a set of initial test

patterns. These test patterns are then used as the initial population for the genetic algorithm,

which generates test patterns from the initial population by mutation and cross-over. Then,

it evaluates the test vector by the number of faults detected. The algorithm stops if the

maximum number of iterations is met or the target coverage is met. [15]

So, choosing the appropriate algorithm requires a tradeoff between the runtime and

coverage. Several commercial ATPG tools are available, including Synopsys' TetraMAX,

Mentor Graphics' Tessent FastScan, and Cadence's Encounter Test. These tools provide a

range of features, including support for different fault models, automatic test pattern

generation, and fault simulation.

27

Chapter 2

Single Event Transient

Single-event Transient (SET) is the dominant source of soft errors in application-specific

integrated circuits (ASIC). SET is becoming more prevalent upon scaling down the transistor

size. Because the downsizing of the transistor scales down the supply voltage, which makes

it more susceptible to SEE. Furthermore, all the electronic devices in the nominal conditions

is exposed to radiation effects which is the main cause of SET. So, it has become necessary to

investigate the SEE effects on electronic devices and try to minimize its effect to increase the

reliability performance of any ASIC circuit [16]. It is worth noting that this phenomenon is

not only special for CMOS electronics but also common for other technologies such as

memristors[17].

The SET effects can cause real reliability challenges for circuit design as they can cause

serious faults. For example, IBM reported 5,950 transient faults per billion hours for its

DRAM in normal conditions [5]. Furthermore, it can happen in a vital system where it can

cause a real problem. For example, in 2008, SEE affected an Airbus when it was traveling

from Singapore to Australia. The SEE caused the computer to believe that the plane's angle

of attack changed, and to adjust it back, the computer moved the cord of the airbus, causing

injury to passengers. This made the plane manufacturer take extra strict measures to prevent

this incident from happening again. This accident indicates the necessity of understanding

the SEE effects in the reliability of ASIC design, especially in a highly radiative area like

nuclear plants or space[16]. Furthermore, circuits controlling people's lives, like hospitals

and transportation, must resist SET.

 This chapter will explain the SET’s physical causes and how it affects CMOS

devices. Then, modeling the SET effects will be explained in a circuit model and device

model.

28

2.1 SET Causes

In normal conditions, outer space has highly energetic rays. These rays comprise high-

energy particles (89% protons, 10% helium nuclei, and 1% other nuclei). These energetic

particles are called cosmic rays. When cosmic rays enter the earth’s atmosphere, it interacts

with atoms in the atmosphere producing highly energetic neutrons. These neutrons tend to

collide with other molecules in the atmospheric layers, but it reaches the earth's surface. So

the neutron flux, which is the number of neutrons per cm2 per hour, is high near the space

and low on the surface. The number of neutron fluxes is exponentially increasing when the

attitude is increasing. For example, Table 2 represents the neutron flux recorded in New

York City[5]. This is why, at high altitudes, airplanes are more exposed to SETs than

computers.

Table 2 Influence of attitude in neutron flux in New York[18]

Attitude (feet) Neutron flux (
𝒏

𝒄𝒎𝟐𝒉
) Neutron flux relative to the

sea-level

0 14 1

1000 18.2 1.3

2000 23.4 1.7

3000 29.9 2.1

4000 37.9 2.7

5000 47.6 3.4

10000 134.6 9.6

12500 212.5 15.2

15000 322.6 23

17500 472.4 33.7

20000 668.5 47.8

22500 916.7 65.5

25000 1220.9 87.2

30000 2001.1 142.9

29

These neutrons have no charge, but it is very energetic. So they can collide with the

molecules in the die, causing energetic ions to flow. These ions can cause a charge

distribution, producing an electron-hole current when a neutron hits near the gate of a

transistor. For example, FIGURE 10 represents an energetic neutron hitting near the device

gate, causing charge imbalance and creating electron-hole pairs in the substrate. These

electron-hole pairs cause the depletion region to deform, causing a funneling current spike

in the depletion region, which leads to diffusion current, which can cause the device to work

in an unwanted manner.

FIGURE 10 An energetic neutron hits an NMOS Device

 Another possible source of SET is the alpha particles. Alpha particles are mainly

produced from materials adjacent to a chip, solder, and packaging materials. Alpha particles are

driven from the Back End Of Line (BEOL) metalization and packaging material. FIGURE 11

30

represents the typical packaging used in CMOS, as shown lead solder and plastic packaging are

used, which could emit alpha particles. For example, Lead (Pb-210), which is an isotope from

stable Pb and used in packaging, is chemically indistinguishable from normal Pb, but Pb-210 is

a huge contributor to alpha particle generation in CMOS. So, some engineers suggest avoiding

using lead in CMOS fabrication. However, lead-free solder does not guarantee a chip that does

not have alpha particles. For example, tin (Sn), used as a replacement for lead, has alpha

particles component as it has impurities that are generated during refining. In fact, IBM found

that Sn emits as many alpha particles as Pb or higher. There are continuous efforts to have as

low alpha-emitting solder as possible. The typical alpha emission rates are 5-50
𝒏

𝒄𝒎𝟐𝒉
[19].

Another source of alpha particles can be packing material such as underfill, overmolds, organic

packages, and ceramic packages could be a source of alpha-particle. The typical range of typical

alpha emission rates is 1-5
𝒏

𝒄𝒎𝟐𝒉
. [19].

FIGURE 11 Packaging in CMOS circuit[20]

These alpha particles cause direct ionization in the active device and cause hole-electronic

pair, which causes the depletion region to deform, causing a funneling current spike in the

depletion region and leading to the diffusion current similar to neutron particles, as seen in

FIGURE 12.

31

FIGURE 12 A charged alpha particle hits an active device[20]

2.2 SET Modeling

As seen in the previous section, SET causes undesired currents to flow in the affected node,

which changes the voltage of the affected node due to the trapped charges in the substrate.

If the change is big enough, it can cause the logical voltage of the node to flip. This node-

flipped voltage can cause the fault to propagate through standard cells in a typical IC in a

way similar to stuck-at fault but for a limited time. This fault is called Single Event Upset

(SEU), happening when the fault of the output of the gate is flipped from 0 to 1 or from 1 to

0 as seen in FIGURE 13. When SET happens in the NMOS device while it is OFF, a current

𝐼𝑠𝑒𝑡 follows across the terminal (as if NMOS was ON), causing current from the load. So that

the charge across the capacitor of the output load decreases, leading to decreasing the

voltage across the capacitor. If the 𝐼𝑠𝑒𝑡was big enough, it could take enough charges across

the capacitor to flip the logic from 1 to 0. This amount of charge is called the critical charge

𝑄𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. So, this causes the SEU to propagate from input to output. This operation can

32

happen throughout the circuit until it reaches the observable output[21].

FIGURE 13 SET propagation to output in inverter[21]

SET modeling can be divided into:

1- Device modeling.

2- Circuit macro modeling.

3- Circuit micro modeling.

4- Mixed mode Simulation.

2.2.1 SET Device modeling

Device modeling is the most accurate method to model SET. It is based on TCAD simulation.

The device is drawn in TCAD, which will have all the characteristics of the device, like doping

concentration, gate length, the shape of the device, the material used, etc. In addition,

information about the neutron particle's energy and position must be known. For example, in

[22], Katunin et al. simulated the effect of SET on a logical element of matching on the

Spaced Transistor Groups Digital Integrated Circuit Elements (STG DICE), which is a way in

which transistors are arranged in groups with empty spaces in between as shown in

FIGURE 14. The SET was injected in different positions, and the SET of 20–60

33

MeV×cm2/mg was simulated. Then for input 0101 the output was recorded.

FIGURE 14 STG DICE TCAD Simulation[22]

FIGURE 15 represents the simulation of the output when the input was 0101, and the

output was expected to be 1 when the SET source had 20-60 MeV×cm2/mg. As expected, it

is noticed that the output voltage amplitude and pulse width increase with particle energy.

FIGURE 15 Output of STG when changing the location and the energy of the hitting particles[22]

34

2.2.2 SET Macro Modeling (Gate-Level)

The macro modeling is the simplest form to model SET as it is based on injecting current

between different gates without modifying the gate structure or the gate terminals, as seen

in FIGURE 16. Because of its simplicity of implementation using TCAD simulation, it is the

most common model to use.

FIGURE 16 SET Macro modeling [21]

2.2.3 SET Micro Modeling (Transistor-Level)

The micro-modeling of SET is the transistor-level model. It simulates the actual SET by a current

source; for example, if SET hits the drain of a transistor, it means that there are electron-hole pairs

resulting in funneling current in the substrate. So, a current source between the drain and

substrate is added to model this phenomenon, as seen in FIGURE 17 [21]. Unfortunately, this

needs editing in the transistor models, which is restricted mostly to foundries.

FIGURE 17 Micro-Modeling of SET[21]

35

2.2.4 Mixed Mode Simulation

The mixed signal mode depends on simulating the SET on the needed device using TCAD

simulation and the rest of the design in SPICE. For example, in [23], Dodd made a mixed

simulation between the SPICE simulator and TCAD simulator called Davinci, as seen in FIGURE

18. A SET strike with linear energy transfer (LET) varies from 1-30 Mev-cm2/mg and is simulated

to find the critical particle energy that will cause SET at the output, as seen in FIGURE 19 for

bulk and Silicon On Insulator (SOI). The main problem with this method is that it requires

doping, device material, and fabrication parameters, which is a foundry secret.

FIGURE 18 Mixed-level simulation of 10 cascaded inverters[23]

FIGURE 19 Mixed model simulation between 3D NMos and SPICE Simulation[23]

36

The struck drain voltage was recorded for both SOI and bulk process. It was found that the

more energy the ions have, the more amplitude and pulse-width time they will cause. In

addition, It was found that SOI is more resistant to SOI than bulk, especially the amplitude,

as seen in FIGURE 20 [23]. Moreover, as seen in the next section, this experiment shows how

the SET should be represented in SPICE.

FIGURE 20 Stuck Drain voltage for different LET[23]

Then, the propagation of the effect of the SET was recorded to see the effect of cascading, as

shown in FIGURE 21. It was found that cascaded inverters help in shielding the effect in SET.

And for the 10 cascaded inverters, after 7 Mev-cm2/mg, the effect of SET appears at the

37

observable output causing logical fault[23].

FIGURE 21 Effect of Propagation through gates [23]

2.3 SET Pulse Models

There are two methods to model the SET:

1- The current pulse model that is used micro and macro modeling.

2- The voltage pulse modeling that can be used in macro modeling instead of the current

source.

38

2.3.1 Current source model

Double-Exponential Current Model is the most commonly used model for the SET current

source. It was developed by [24] as follows

 𝐼𝑆𝐸𝑇(𝑡) = 𝐼0(𝑒
𝛼𝑡 − 𝑒−𝛽𝑡) (5)

Where 𝐼0 is the amplitude of the pulse height, and 𝛼 is the reciprocal of the fall time of the

junction in FIGURE 22. And 𝛽 is the reciprocal of the time constant for establishing the ion

track.

 𝛽 =
𝑘𝜀0𝜀𝑟
𝑞𝜇𝑁𝐷

 (6)

Where 𝑘 in the Boltzmann universal constant, 𝑁𝐷 is the donor dopant concentration, 𝜀0𝜀𝑟 is

the permittivity of the junction, 𝜇 is the electron mobility, and 𝑞 is the single-electron

charge.

FIGURE 22 Double-Exponential Current Model [24]

39

2.3.2 Double Sinusoidal Voltage Pulse

 As shown in the previous section, the SET causes the drain voltage to be like an

imperfect square wave, as shown in FIGURE 23. This idea was proposed by [25].

FIGURE 23 Double sinusoidal Voltage Pulse[25]

Equation (7) represents the Double Sinusoidal Voltage Pulse where A is the maximum

voltage value, and the pulse width is when 𝑉(𝑡) =
𝐴

2
. Parameters 𝑡0, 𝑡1, 𝑡2, 𝑡3 𝑎𝑛𝑑 𝜔 are

parameters to define the SET shape.

𝑉(𝑡) =

{

0 𝑡 ≤ 𝑡0
𝐴

2
(sin (𝜔(𝑡 − 𝑡0) −

𝜋

2
) + 1) 𝑡0 ≤ 𝑡 ≤ 𝑡1

𝐴 𝑡2 ≤ 𝑡 ≤ 𝑡3
𝐴

2
(sin (𝜔(𝑡 − 𝑡2) +

𝜋

2
) + 1) 𝑡2 ≤ 𝑡 ≤ 𝑡3

0 𝑡3 ≤ 𝑡

 (7)

40

Chapter 3

Characterization and SET Modeling for

Standard Cell

This chapter illustrates how standard cells are characterized, which indicates how the

amplitude and pulse width propagating from the input of the gate to its output can be

predicted. Furthermore, the generated method is used to calculate the probability of SEU

happening for each standard cell in chapter 5. If the output has the logic flipped, it is called

SEU. If not, then the out will be resistant to particle hit. The characterization was done using

the Double Sinusoidal Voltage Pulse and macro modeling of each standard cell.

The simulation was done for XFAB® XH018 technology, but the same methodology can be

applied to any technology. Firstly the Double Sinusoidal Voltage Pulse was performed at the

input of the gates, and the input voltage (𝑉𝑖𝑛), input pulse width (𝑡𝑤𝑖𝑛) output voltage

(𝑉𝑜𝑢𝑡) and output pulse width (𝑡𝑤𝑜𝑢𝑡) were recorded. The circuit design was as FIGURE 24.

Then, swapping 𝑉𝑖𝑛 and 𝑡𝑤𝑖𝑛 was done and the 𝑉𝑜𝑢𝑡 and 𝑡𝑤𝑜𝑢𝑡values were recorded

accordingly. Finally, prediction models were done using [26] and [27] to best fit to predict

any 𝑉𝑖𝑛 and 𝑇𝑊𝑖𝑛.

FIGURE 24 Standcell characterization testbench[27]

41

Fault Modeling

This chapter will discuss two models of the output voltage (𝑉𝑜𝑢𝑡) and output pulse width

(𝑡𝑤𝑜𝑢𝑡) in terms of the input voltage (𝑉𝑖𝑛) and pulse width. (𝑡𝑤𝑖𝑛).

3.1 Analytical Model

The first model is an analytical model developed in [26]. The model describes the

relationship between the output voltage and input voltages as a sigmoid surface as follows

𝑉𝑜𝑢𝑡
𝑉𝑑𝑑

=
1

1 + 𝑒−𝑘(𝑉𝑖𝑛−𝑉0)
 (8)

Where 𝑘 and 𝑉0 determine the shape of the sigmoid surface and can be found as follows:

 𝑘 = 𝑐 (1 − 𝑒−
𝑡𝑤𝑖𝑛
𝑇) (9)

 𝑉0 = 𝑉𝐷𝐶 (1 + (
𝑡𝑑1
𝑡𝑤𝑖𝑛

)
𝛼

) (10)

Where 𝑉𝐷𝐶 is the voltage value where the input voltage is the same as the output voltage.

The other coefficients 𝑐, 𝛼, 𝑇, 𝑡𝑑1 are the fitting parameters obtained by fitting the sigmoid

surface. These parameters differ between each standard cell gate.

Equation (11) predicts the output pulse width (𝑡𝑤𝑜𝑢𝑡)) in terms of the input voltage (𝑉𝑖𝑛)

and pulse width. (𝑡𝑤𝑖𝑛) as follows:

 𝑡𝑤𝑜𝑢𝑡 = 𝑎 𝑡𝑤𝑖𝑛 + 𝑡0 𝑒
−𝑡𝑤𝑖𝑛
𝑡𝑖 + 𝑏 (11)

Where a and b can be found as follows:

42

 𝑎 = 𝑎0 + 𝑎1. 𝑉𝑖𝑛 (12)

 𝑏 = 𝑏0 + 𝑏1. 𝑉𝑖𝑛 (13)

Where 𝑎0 , 𝑎1 , 𝑏0 , 𝑏1 are fitting parameters. Typical plots of the voltage and pulse width as

seen in FIGURE 25 [26].

FIGURE 25 Voltage and pulse width transfer function[26]

So for each new technology, simulation must be done using gate-level simulation like

Cadence Virtuoso. The model of FIGURE 24 is used, and the value of capacitance is assumed

to be a minimum-size inverter which provides the worst-case scenario as increasing the

capacitance value will attenuate the SET effect. Then input voltage and pulse width values

are swept, and output voltage and pulse width are recorded. Finally, best-fitting techniques

are used to get each standard cell's parameter values. So, for each new input voltage and

pulse width, the model of [26] can predict the output voltage and pulse width.

43

3.2 Cubic Interpolation Model

A new numerical model was done by [27]. In his model, after simulating every standard

cell using Cadence Virtuoso using ocean script by sweeping the input voltage and pulse

width, the data is given to MATLAB, and data fitting was done using cubic interpolation as

it gives smooth interpolation with minimal error. Finally, all the standard cell models are

saved as a library that can be used to predict the output pulse width and voltage.

 In general, cubic interpolation gives more accurate results than [26]. In [27]’s work, a

comparison between the two models was made foe Xfab 65nm technology. For example,

FIGURE 26 indicates the difference between models [26] and [27]. While [26] smooths the

surface and gives an analytical prediction for output voltage and pulse width, it has more

error than [27].

44

FIGURE 26 Pulse output width from NO2HDSVTX4 cell characterization. (a) simulation result, (b) model
from [26], and (c) cubic interpolation.[27]

45

Chapter 4

ASIC Circuit Probability of Error and

Worst Case Vector

This chapter illustrates how a complete ASIC combinational circuit is characterized, which

indicates how the probability of error is propagated from inputs to observable outputs

based on the probability of error of each standard cell. Then, the overall probability is

calculated using the two methods. The first method is developed in [29] by Krishnaswamy.

The second method is the novel method developed in this thesis.

In order to find the probability of error of a certain ASIC circuit, both methods used the

same probabilistic transfer matrix (PTM) and ideal transfer matrix (ITM) to express the

probability of error in a standard cell and the truth table of the standard cell.

4.1 PTM and ITM

The probability Transfer Matrix (PTM) was first used in the context of conditional

probability theory [30]. This idea used a simple matrix-based method to convey the

probability of error corresponding with each input. The PTM essentially offers a practical

method for expressing conditional probabilities as matrices, making analyzing complex

systems easier, especially in digital circuits and information theory. The PTM's capacity to

express the probability of error for each input is one of its main features. It is possible to get

insights into conditional probabilities by displaying them in a matrix format. PTM

dimension is 2𝑁 X 2𝑀 where N and M are the numbers of inputs and output, respectively,

each element of the PTM represents the conditional probability for a certain output

represented by that column number, given that a certain input, represented by row number,

has occurred (𝑃𝑇𝑀𝑖,𝑘 = 𝑃(𝑜𝑢𝑡 = 𝑘 − 1 |𝑖𝑛𝑝𝑢𝑡 = 𝑖 − 1). The Ideal Transfer Matrix (ITM) uses

the same fundamental idea as the PTM but presupposes that each standard cell has a 0%

probability of fault. The ITM may be used to determine a system's ideal performance. ITM is

directly related to the truth table of each standard cell, as the P(1) column is the truth table

46

of the standard cell, whereas P(0) is complementary to the truth table. For example, equation

(14) represents the ITM and PTM of the 2-input AND gate. The element (1,1) represents the

conditional probability that the output is 0 given that the input is 0,0 (𝑃𝑇𝑀11 = 𝑃(𝑜𝑢𝑡 =

0 |𝑖𝑛𝑝𝑢𝑡 = 0,0)[31]. PTM can be done easily by first getting the ITM from the truth table,

then replacing each zero with 𝑝 and one with 1 − 𝑝 where 𝑝 is probability of error that will

be explained in chapter 5. Table 3 represents the PTM and ITM of the commonly used

standard cells.

 [

1
1
1

0
0
0

0 1

] [

(1 − 𝑝)
(1 − 𝑝)
(1 − 𝑝)

𝑝
𝑝
𝑝

𝑝 (1 − 𝑝)

] (14)

Table 3 PTM and ITM for famous commonly used cell

Standard Cell ITM PTM

2-Input AND [

1
1
1

0
0
0

0 1

] [

1 − 𝑝
1 − 𝑝
1 − 𝑝

𝑝
𝑝
𝑝

𝑝 1 − 𝑝

]

2-Input NAND [

0
0
0

1
1
1

1 0

] [

𝑝
𝑝
𝑝

1 − 𝑝
1 − 𝑝
1 − 𝑝

1 − 𝑝 𝑝

]

2-Input OR [

1
0
0

0
1
1

0 1

] [

1 − 𝑝
𝑝
𝑝

𝑝
1 − 𝑝
1 − 𝑝

𝑝 1 − 𝑝

]

2-Input NOR [

0
1
1

1
0
0

1 0

] [

𝑝
1 − 𝑝
1 − 𝑝

1 − 𝑝
𝑝
𝑝

1 − 𝑝 𝑝

]

2-Input XOR [

1
0
0

0
1
1

1 0

] [

1 − 𝑝
𝑝
𝑝

𝑝
1 − 𝑝
1 − 𝑝

1 − 𝑝 𝑝

]

2-Input XNOR [

0
1
1

1
0
0

0 1

] [

𝑝
1 − 𝑝
1 − 𝑝

1 − 𝑝
𝑝
𝑝

𝑝 1 − 𝑝

]

Buffer [
1 0
0 1

] [
1 − 𝑝 𝑝
𝑝 1 − 𝑝

]

Inverter [
0 1
1 0

] [
𝑝 1 − 𝑝

1 − 𝑝 𝑝
]

47

So, In the current work, a MATLAB code was built to analyze buffer, inverter, N-input

AND, N-input OR, N-input XOR, N-input NAND, N-input NOR, and N-input XNOR for

XFAB® XH018 technology. FIGURE 27 represents the proposed PTM generation flow used

in MATLAB in this work. Firstly, normal random input vectors for each standard cell used

in the design are generated. Then each cell is characterized to get the probability of error.

Then, ITM was generated by the truth table for each cell. Finally, PTM is generated from

ITM and this standard cell's corresponding probability of error.

FIGURE 27 PTM generation flow for each standard cell

It is worth noting that Krishnaswamy’s method requires some special ITM to be calculated.

These special ITMs are for fanout and wire swapping, as shown in FIGURE 28 [29]. In addition,

gerenic fanout detection and wire swapping method were done to get the ITM for these special

ITM.

FIGURE 28 special ITM for wire swapping and fanout.[29]

48

4.2 Krishnaswamy’s Method

 Krishnasway depends on the PTM algebra, which uses the PTM and ITM for each

standard cell. Then, using matrix operation, the accumulative PTM and ITM for ASIC circuit.

4.2.1 PTM and ITM Algebra

In order to calculate the full circuit PTM and ITM, The pre-characterized PTM/ITM will be

used. If two cells 𝑔1, 𝑔2 with PTM 𝑃1𝑎𝑛𝑑 𝑃2 are in series, their combined PTM will be 𝑃1 𝑃2 as

equation (15) indicates.

 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃1 𝑃2 (15)

For example, if two buffers are cascaded as in FIGURE 29. The total PTM of the system will be

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃1 𝑃2 = [
0.82 0.18
0.18 0.82

]

FIGURE 29 Cascaded buffer PTM example

This makes sense as increasing the depth of a path makes it more probable to get hit by

SET, increasing the probability of error.

On the other hand, if the cells were parallel, their combined PTM or ITM would be 𝑃1⊗

𝑃2 where ⊗ represents the Kronecker tensor product[29] as (16) indicates.. The Kronecker

tensor product combines two matrices to form a larger matrix representing the transfer matrix

for a composite system consisting of multiple subsystems.

 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃1⊗𝑃2 (16)

 For example, FIGURE 30 indicates the PTM calculation for 2-Input AND in parallel with 2-

49

Input OR. The resultant matrix is now 16x4, as excepted, as the system has 4 inputs and 2

outputs.

FIGURE 30 Example of PTM calculation of 2 parallel gates

In order to calculate a complete combinational circuit, Krishnasway proposed that the PTM and

ITM of each standard cell, wire-swapping, and fanout will be calculated first. Then, the circuit

will be divided into levels; each level will be composed of a parallel element that has ITM or

PTM. Then, for each level, the resultant PTM or ITM will be calculated using equation (16).

Then each level will be composed of cascaded subsystems, so the overall PTM or ITM of the

system will be calculated by equation (15). For example, FIGURE 31 represents a complex

system. The first step is to detect the fanout and swapped wires, get their ITMs, treat them as

standard cells, and get the PTM and ITM of standard cells. Then, a partitioning algorithm must

be done to get cells that are in parallel. Then, for each level, PTM and ITM are calculated by

parallel rule. Finally, a cascaded rule will be implied to get the whole circuit ITM and PTM.

50

FIGURE 31 A completed combinational circuit PTM calculated example[31]

As seen before, the algorithm needs special ITM calculation of generic fanout and wire-

swapping in a circuit. In addition, matrix multiplication and manipulation are big

computational problems for big circuits.

4.2.2 Circuit Fidelity

Circuit fidelity is used to evaluate the reliability of a circuit. It measures the similarity

between an ITM and a corresponding PTM of a certain system. Therefore, it is a measure of the

reliability of the circuit. It can be done by element multiplication (dot product) of M and J

equation (17) states, where 𝑀, 𝐽 are the PTM and ITM of the whole circuit, respectively, and 𝐯 is

a row vector that represents the probability of input. For example, if the circuit in FIGURE 31

has only 000 and 111 as input with the same probability, the v will be [0.5 0 0 0 0 0 0 0.5] [31].

𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦(𝑣,𝑀, 𝐽) = ‖𝐯(𝑀.∗ 𝐽)‖ (17)

Perr = 1 − ‖𝐯(𝑀.∗ 𝐽)‖ (18)

51

In order to calculate the probability of error of a certain input, it will be 1-fidelity, as indicated

in (18).

4.2.3 Algorithm Implementation

In order to implement the previous algorithm, a gate-level Verilog parser was implemented.

The code parses the gate-level netlist three times. The 1st time is to get the circuit hierarchy, get

the standard cells used in the design, and characterize them. The second time is to manipulate

the fanout and treat them as a dummy gate with ITM only. Finally, the third time is to make

sure of the circuit hierarchy with fanout and wire-swapping. Each gate and node is considered

an object with ITM, PTM, and level properties.

The first time, the first gate’s output node is assumed to be in level 0, so the gate will be

in its previous level (level -1), and its input will be in level -2. A normal node, which is not a

fanout of swapped, will have PTM and ITM of identity, whereas the gate will have ITM and

PTM characterized by the code. Characterization parameters were as follows; It is assumed

that the average amplitude of the SET input is 0.9 V (which is half of VDD), with a deviation of

0.1 V. Additionally, the average width of the SET input is 300 ps with a deviation of 100 ps. In

addition, the critical voltage and pulse width are 0.9 V and 300 ps, respectively. Then, any new

gate parsed will have a new level based on its connection until a full circuit hierarchy is

known. For example, if a new gate is connected to the output of the 1st gate, the gate object will

have (level =2) and so on. If a gate is connected to nodes that do not level property as the input

nodes are not connect to any of the previous objects, it is assumed to be in level 0, so the gate

will be in its previous level (level -1), and its input will be in level -2. This assumption will be

verified and corrected in the last round of parsing. FIGURE 32 represents the flowchart of the

parser.

52

FIGURE 32 The first round of the parser flow chart

 In the second round of parsing, fanouts are detected. So dummy objects are added with

the knowledge of the hierarchy. For example, if a dummy object is added to level -5, all the

objects in -5 or below level will be reduced by 1. Furthermore, the fanout object will be in level -

5 parallel with dummy objects representing a dummy node (with ITM of PTM of identity).

Finally, in the final round of parsing, the new hierarchy is checked, and it is ensured that the

inputs of any gate in the design are on the same level and the levels are consistent.

53

After parsing the circuit, some circuit manipulation is done in order to order the objects

according to level and prepare ITM and PTM calculations. Finally, PTM and ITM calculations

are done for each level by tensor product as they are parallel, and the PTM and ITM of the

system will be the product of all levels of PTM and ITM. Finally, to get the circuit fidelity, all

the input vectors are assumed to have the same probability of error. So, the fidelity (F) as a

matrix will be as equation (19).

𝐹(𝑀, 𝐽) = 𝑀.∗ 𝐽

(19)

4.2.4 Algorithm Validation

As mentioned before, ITM represents the truth table of the circuit. So, a testbench for these

circuits was built using SystemVerilog for serval gate-level netlists. A random input vector

was tested for the SystemVerilog code (which is the golden model) and the MATLAB code.

Then, the output vector of the SystemVerilog was compared to the ITM from MATLAB. A

perfect match between the two codes was achieved. As the ITM calculation is the same for

PTM, PTM and ITM calculation was verified.

4.2.5 Worst-Case Vector Exploration

The worst case vector is the input vector with the most likely to occur. So, the probability

of error of input vectors will be found, and the most likely input vector that can cause SEU

will be considered the worst-case vector. Alternatively, the algorithm could get the vectors

that will have the lowest fidelity, as equation (20) indicates where V is in binary, M is the

PTM, and J is the ITM of the circuit. So the worst-case vector will be the index that will have

the lowest fidelity noting that the index of the matrix starts with zero.

𝑉 = arg𝑚𝑖𝑛‖(𝑀.∗ 𝐽)‖

(20)

For example, if all gates in the circuit in FIGURE 31 have a probability of error of 0.1, then

54

𝐹(𝑀, 𝐽) = 𝑀.∗ 𝐽 =

[

0.756
0

0.756

0
0.756
0

0
0

0.705
0

0.705

0.756
0.705
0

0.705
0]

So the worst case vector can be 000, 001, 010, 011 with a probability of error 0.244.

Finally, a MATLAB code was written to get the worst-case vector and the code was tested

for ISCAS85 benchmark circuits.

55

Chapter 5

Standard Cell Probability of Error

In soft error, the SEU is not like a stuck-at error as it has a probability of occurrence in each

environment. Previously, the standard cell probability did not account for logical masking

and depended on the probability of the strike [31]. However, this chapter proposes a new

method to obtain the probability of error in each standard cell is modeled that can be used

for PTM analysis based on the normal distribution of SET voltage and pulse width. In

addition, the new proposed method account for logical masking for each standard cell.

Previously, the input voltage and pulse width of SET are assumed to be deterministic.

However, the input voltage and pulse width are not deterministic as they change according

to the particle energy and the hit‘s physical position. So, the Double Sinusoidal Voltage

Pulse is modified as the model's amplitude was assumed to have a normal distribution with

a known mean 𝑉𝑚𝑒𝑎𝑛 and standard division 𝜎𝑉. In addition, the model's pulse width was

assumed to have a normal distribution with a known mean 𝑡𝑤𝑚𝑒𝑎𝑛 and standard division

𝜎𝑡𝑤 as seen in FIGURE 33.

FIGURE 33 Voltage and pulse width normal distribution

So, the vector of input voltages and pulse widths that are normally distributed were

generated using MATLAB. Then, for each input vector, the 𝑉𝑜𝑢𝑡 and 𝑡𝑤𝑜𝑢𝑡 are calculated

using [27] and then recorded. If these 𝑉𝑜𝑢𝑡, and 𝑡𝑤𝑜𝑢𝑡 is larger than the critical voltage and

pulse width 𝑉𝑐𝑟, 𝑡𝑤𝑐𝑟 respectively, the input voltage will be recorded. Finally, the error

probability will be the number of critical inputs that caused SET error over the total number

56

of input vectors

 𝑃𝑆𝐸𝑇 =
𝑁𝑜 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑁𝑜 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
 (21)

𝑃𝑆𝐸𝑇 will be very pessimistic as it does not account for logical masking. Logical masking is

when the input of a logic gate that has no logical fault propagates, as seen in FIGURE 34. For

example, when one of the AND inputs is zero, the output will be zero regardless if there is a

SET in any of its other inputs [28].

FIGURE 34 Illustration of logical masking[28]

So, to account for logical masking and get more accurate results, this thesis proposes including

the probability that there is no logical masking.

5.1 AND gate probability of error

For a 2-input AND gate with A and B terminals as input, it is assumed that all the input

has equal probability. Table 4 illustrates the calculation of the probability of error of the 2-

AND gate. The proposed model considers all the possible transitions of inputs and only take

care of the one that will cause the SET to propagate.

57

Table 4 AND gate probability of error calculation

For 2-input AND, SET will only happen if SET causes the input to go from A to go from 0

to 1 while B is constant at 1 or vice versa. In addition, multiple event-transient can happen if

A, B are switched at the same time with a probability of 𝑃𝑆𝐸𝑇
2 as the SET will be assumed

independent. Furthermore, a closed-form expression was introduced N-input AND gate, the

multiple events transients will be as (22).

 𝑃𝐴𝑁𝐷 𝑁 = 2 ∗∑
(𝑁
𝑘
)𝑃𝑆𝐸𝑇

𝑘

22𝑁

𝑀

𝑘=1

 (22)

Where 𝑀 is the number of event-transient wanted to take into consideration, and N is the

number of input terminals. M could take any value from 1 to N. In the current work, Single

event transient was only. So 𝑀 = 1 is used, and equation (22) will be reduced to (23).

 𝑃𝐴𝑁𝐷 𝑁 =
𝑁 ∗ 𝑃𝑆𝐸𝑇
22𝑁−1

 (23)

A B out SET Prob of input

0→0 0→0 0→0 No 1/16

0→1 0→0 0→0 No 1/16

0→0 0→1 0→0 No 1/16

0→1 0→1 0→1 YES 1/16

0→0 1→1 0→0 No 1/16

0→1 1→1 0→1 YES 1/16

0→0 1→0 0→0 NO 1/16

0→1 1→0 0→0 NO 1/16

1→1 0→0 0→0 No 1/16

1→1 0→1 0→1 YES 1/16

1→0 0→0 0→0 NO 1/16

1→0 0→1 0→0 NO 1/16

1→1 1→1 1→1 NO 1/16

1→1 1→0 1→0 YES 1/16

1→0 1→1 1→0 YES 1/16

1→0 1→0 1→0 YES 1/16

58

5.2 NAND gate probability of error

For a 2- input NAND gate with A,B terminals as input, it is assumed that all the input has

equal probability. Table 5 illustrates the calculation of the error probability of 2-NAND gate.

Table 5 NAND gate probability of error calculation

For 2-input NAND will have the same error probability formula as AND gate, and

equations (22) and (23) will still be valid.

5.3 OR gate probability of error

For a 2- input OR gate with A,B terminals as input, it is assumed that all the input has

equal probability. Table 6 illustrates the calculation of the probability of error of 2-OR gate.

The proposed model considers all the possible transitions of inputs and only take care of the

one that will cause the SET to propagate.

A B out SET Prob of input

0→0 0→0 1→1 No 1/16

0→1 0→0 1→1 No 1/16

0→0 0→1 1→1 No 1/16

0→1 0→1 1→0 YES 1/16

0→0 1→1 1→1 No 1/16

0→1 1→1 1→0 YES 1/16

0→0 1→0 1→1 NO 1/16

0→1 1→0 1→1 NO 1/16

1→1 0→0 1→1 No 1/16

1→1 0→1 1→0 YES 1/16

1→0 0→0 1→1 NO 1/16

1→0 0→1 1→1 NO 1/16

1→1 1→1 0→0 NO 1/16

1→1 1→0 0→1 YES 1/16

1→0 1→1 0→1 YES 1/16

1→0 1→0 0→1 YES 1/16

59

Table 6 2-input OR gate probability of error calculation

For 2-input OR will have the same error probability formula as AND and NAND gate, and

equations (22) and (23) will still be valid.

5.4 NOR gate probability of error

For a 2- input NOR gate with A,B terminals as input, it is assumed that all the input has

equal probability. Table 7 illustrates the calculation of the probability of error of 2-NOR gate.

The proposed model considers all the possible transitions of inputs and only take care of the

one that will cause the SET to propagate.

A B Out SET Prob of input

0→0 0→0 0→0 NO 1/16

0→1 0→0 0→1 YES 1/16

0→0 0→1 0→1 YES 1/16

0→1 0→1 0→1 YES 1/16

0→0 1→1 1→1 NO 1/16

0→1 1→1 1→1 NO 1/16

0→0 1→0 1→0 YES 1/16

0→1 1→0 1→0 NO 1/16

1→1 0→0 1→1 NO 1/16

1→1 0→1 1→1 NO 1/16

1→0 0→0 1→0 YES 1/16

1→0 0→1 1→1 NO 1/16

1→1 1→1 1→1 NO 1/16

1→1 1→0 1→1 NO 1/16

1→0 1→1 1→1 NO 1/16

1→0 1→0 1→0 YES 1/16

60

Table 7 2-input NOR gate probability of error calculation

For 2-input NOR will have the same error probability formula as AND, NAND and OR

gate, and equations (22) and (23) will still be valid.

5.5 Buffer gate probability of error

A buffer gate only has 1 terminal, so the SET at the input will propagate to the output. So

the probability of error of the buffer gate will be the same as the calculated SET.

 𝑃𝐵𝑢𝑓𝑓𝑒𝑟 = PSET (24)

5.6 Inverter gate probability of error

An inverter gate only has 1 terminal, so the SET at the input will propagate to the output

without logical masking. So the probability of error of the inverter gate will be the same as

the calculated SET.

 𝑃𝐼𝑁𝑉 = PSET (25)

A B out SET Prob of input

0→0 0→0 1→1 NO 1/16

0→1 0→0 1→0 YES 1/16

0→0 0→1 1→0 YES 1/16

0→1 0→1 1→0 YES 1/16

0→0 1→1 0→0 NO 1/16

0→1 1→1 0→0 NO 1/16

0→0 1→0 0→1 YES 1/16

0→1 1→0 0→0 NO 1/16

1→1 0→0 0→0 NO 1/16

1→1 0→1 0→0 NO 1/16

1→0 0→0 0→1 YES 1/16

1→0 0→1 0→0 NO 1/16

1→1 1→1 0→0 NO 1/16

1→1 1→0 0→0 NO 1/16

1→0 1→1 0→0 NO 1/16

1→0 1→0 0→1 YES 1/16

61

5.7 XOR gate probability of error

For a 2- input XOR gate with A,B terminals as input, it is assumed that all the input has

equal probability. Table 8 illustrates the calculation of the probability of error of 2-XOR gate.

The proposed model considers all the possible input transitions and only takes care of the

one that will cause the SET to propagate.

Table 8 2-input XOR gate probability of error calculation

For 2-input XOR, SET will only propagate if a single-event transient happens when A is

inverted from B. So odd number of single events transient must happen for N-input XOR so

that the SET will propagate. So, the closed-form expression was introduced N-input XOR

gate and the multiple events transients will be as (26) (22).

 𝑃𝑋𝑂𝑅 𝑁 = 2
𝑁 ∗∑

(𝑁
2𝑘−1

)𝑃𝑆𝐸𝑇
2𝑘−1

22𝑁

𝑀

𝑘=1

 (26)

Where 𝑀 is the number of event-transient wanted to take into consideration, and N is the

number of input terminals. M could take any value from 1 to 𝑁 − 1. In the current work,

Single event transient was only. So 𝑀 = 1 is used, and equation (26) will be reduced to (27)

A B out SET Prob of input

0→0 0→0 0→0 NO 1/16

0→1 0→0 0→1 YES 1/16

0→0 0→1 0→1 YES 1/16

0→1 0→1 0→0 NO 1/16

0→0 1→1 1→1 NO 1/16

0→1 1→1 1→0 YES 1/16

0→0 1→0 1→0 YES 1/16

0→1 1→0 1→1 NO 1/16

1→1 0→0 1→1 NO 1/16

1→1 0→1 1→0 YES 1/16

1→0 0→0 1→0 YES 1/16

1→0 0→1 1→1 NO 1/16

1→1 1→1 0→0 NO 1/16

1→1 1→0 0→1 YES 1/16

1→0 1→1 0→1 YES 1/16

1→0 1→0 0→0 NO 1/16

62

 𝑃𝑋𝑂𝑅 𝑁 =
𝑁 ∗ 𝑃𝑆𝐸𝑇
2𝑁

 (27)

5.8 XNOR gate probability of error

For a 2- input XNOR gate with A,B terminals as input, it is assumed that all the input has

equal probability. Table 9 illustrates the calculation of the probability of error of 2-XNOR

gate. The proposed model considers all the possible transitions of inputs and only take care

of the one that will cause the SET to propagate.

Table 9 2-input XNOR gate probability of error calculation

For 2-input XNOR, SET will only propagate if a single-event transient happens when A is

inverted from B same as XOR. So, the closed-form expression was introduced N-input

XNOR gate, and the multiple events transients will be the same as XOR as (26) and (27).

5.9 Proposed Method Significance

The proposed method is a very simple methodology to get the probability of error based

on the normal distribution of the SET voltage and pulse width. This assumption is physical,

A B out SET Prob of input

0→0 0→0 1→1 NO 1/16

0→1 0→0 1→0 YES 1/16

0→0 0→1 1→0 YES 1/16

0→1 0→1 1→1 NO 1/16

0→0 1→1 0→0 NO 1/16

0→1 1→1 0→1 YES 1/16

0→0 1→0 0→1 YES 1/16

0→1 1→0 0→0 NO 1/16

1→1 0→0 0→0 NO 1/16

1→1 0→1 0→1 YES 1/16

1→0 0→0 0→1 YES 1/16

1→0 0→1 0→0 NO 1/16

1→1 1→1 1→1 NO 1/16

1→1 1→0 1→0 YES 1/16

1→0 1→1 1→0 YES 1/16

1→0 1→0 1→1 NO 1/16

63

as the voltage and pulse width depend on the location of the particle hit near the gate. In

addition, the energy of SET is not deterministic and can vary. So, the proposed method can

help in getting the standard cell probability of error without the need for characterization. In

addition, the proposed method accounts for logical masking, which gives a more realistic

value for the probability of error for each standard cell. Moreover, a closed formula for the

probability of error for different standard cells with N number of pins has been obtained.

These formulas are valid for multiple event transient environments.

64

Chapter 6

New Probabilistic Circuit Testing

Algorithm

A novel probabilistic circuit testing algorithm is presented based on the ITM, and PTM

explained before. The presented algorithm does not depend on special ITM like the fanout

and wire-swapping. Furthermore, it does not require matrix multiplication and tensor

product. This method overcomes the limitation of the Krishnaswamy method for big

circuits. This algorithm will allow the testing of large circuits with a huge number of inputs

and outputs in a feasible time. This requires a new model for the circuit node and a new

way to calculate the probability of error at the output of each gate. Then, the propagation of

the probability of error from input to output will be done using the proposed algorithm.

6.1 New Node Model

Previously, any digital node in a circuit could take 0 or 1 only. This is a well-known

concept that is applied in all electronics EDA tools. In the proposed work, it is suggested

that any node can take both values with a probability. So, now any node will have

[𝑝(0) 𝑝(1)], which is called stimulus probability in our thesis. So if the node is ideal and the

circuit is error-free, 0 in the old concept is mapped to [1 0] as this means that 𝑝(0) = 1, and 1

in the old concept is mapped to [0 1] as this means that 𝑝(1) = 1. This new proposal will

give a new degree of freedom for a faulty node as it can easily express the probability of

error at a given node in terms of probability.

6.2 Probability of Stimulus at Standard Cell's Outputs

This thesis introduces a new method for determining the probability of a stimulus for each

output of a standard cell, which is crucial for the recently introduced node model. To

achieve this, the PTM of each standard cell and utilize a conditional probability model is

65

used, as described by equations (28) and (29), to determine the probability of a stimulus for

the cell's output.

Here, N represents the number of inputs, and k is in binary. 𝑃[𝑘] is the product of the

probabilities of each of the cell's inputs since inputs are assumed independent. For example,

in a 2-input gate with terminals A and B, 𝑃[𝑖𝑛𝑝𝑢𝑡 = 11] = 𝑃[𝐴 = 1] ∗ 𝑃[𝐵 = 1]. Moreover,

𝑃[𝑜𝑢𝑡 = 0 |𝑖𝑛𝑝𝑢𝑡 = 𝑘] can be found in the first column of PTM and in the (k+1) row

(𝑃𝑇𝑀𝑘+1,1), while and 𝑃[𝑜𝑢𝑡 = 1 |𝑖𝑛𝑝𝑢𝑡 = 𝑘] can be found in the second column of PTM and

in the (k+1) row(𝑃𝑇𝑀𝑘+1,2).

 𝑃[𝑜𝑢𝑡 = 0] = ∑ 𝑃[𝑜𝑢𝑡 = 0 |𝑖𝑛𝑝𝑢𝑡 = 𝑘] ∗ 𝑃[𝑘]

𝑁−1

𝑘=0

 (28)

 𝑃[𝑜𝑢𝑡 = 1] = ∑ 𝑃[𝑜𝑢𝑡 = 1 |𝑖𝑛𝑝𝑢𝑡 = 𝑘] ∗ 𝑃[𝑘]

𝑁−1

𝑘=0

 (29)

For example, for a generic 2-input gate

𝑃[𝑜𝑢𝑡 = 0] = P[A = 0, B = 0] ∗ M1,1 + P[A = 1, B = 0] ∗ M2,1 + P[A = 0, B = 1] ∗ M3,1 + P[A

= 1, B = 1] ∗ M4,1

𝑃[𝑜𝑢𝑡 = 1] = P[A = 0, B = 0] ∗ M1,2 + P[A = 1, B = 0] ∗ M2,2 + P[A = 0, B = 1] ∗ M3,2 + P[A

= 1, B = 1] ∗ M4,2

Where M is the PTM of the standard cell

6.3 Propagation of Probability of Error

The proposed algorithm works in the same manner as any gate-simulating tool; the only

change is that the node will have stimulus probability [𝑝(0) 𝑝(1)], and instead of each gate

having a truth table, PTM will be used with each input stimulus of probability to get the

output stimulus probability. So, the algorithm must work for a certain input vector. In

addition, it assumes that the input is ideal (no error). Then, the input vector is converted to

66

the new node model. Afterward, the algorithm calculates the probability of a stimulus for

the cells connected to the circuit's input. This process is then repeated for the cells that are

connected to the new nodes until the primary outputs are reached. For example, FIGURE 35

represents the gate level netlist of C17 of ISCAS85. Initially, the stimulus probability for O[0]

and O[1] in gates 1 and 2 is examined, respectively. Subsequently, the existing stimulus

probability of nodes is used to calculate the stimulus probability for O[2] and O[3] in gates 4

and 3, respectively. Finally, the stimulus probability for O[4] and O[5] is determined in gates

5 and 6, which correspond to the primary outputs of C17.

FIGURE 35 Gate Level Netlist of C17 ISCAS85 Example

6.4 Worst-Case Vector Exploration

In order to find the worst-case vector, the algorithm can choose the worst-case pattern

according to different metrics:

6.4.1 Reconstructing ITM and PTM.

In this metric, PTM and ITM are reconstructed from their definition. 𝑃𝑇𝑀𝑖,𝑘 = 𝑃(𝑜𝑢𝑡 = 𝑘 −

1 |𝑖𝑛𝑝𝑢𝑡 = 𝑖 − 1), so for each input vector, the 𝑃(𝑜𝑢𝑡 = 𝑘 − 1) is calculated by the product of

the probability of their stimulus probability if all the nodes are assumed to be independent.

For example, if 𝑃𝑇𝑀13 is desired in the circuit in FIGURE 35, the input will be 00000, and

𝑃(𝑜𝑢𝑡 = 2) will be calculated which will be

 𝑃(𝑜[4] = 1, 𝑜[5] = 0) = 𝑃(𝑜[4] = 1) ∗ 𝑃(𝑜[5] = 0) and so on. In addition, the ITM will be

reconstructed in the same manner. Then, circuit fidelity will be calculated, and the worst-

case vector will be found in the same way as equation (20) in section 4.2.5. The main

problem of this method is for a huge circuit that has a huge number of outputs as it will take

time to get all PTM and ITM. For example, for the C7552 circuit that has 108 output, the size

67

of PTM for a single input vector will be 1x2108 which will be infeasible. In addition, in real

circuits, there will be dependencies, and some nodes will have the same input such as in

fanout cases. So, getting the output pattern probability of errors will be harder. So a new

metric that does not depend on the reconstructed PTM and ITM and depends only on the

node probability of error will be more useful for the proposed algorithm.

6.4.2 Second Norm

The new proposed metric that is used by the proposed flow is the two-norm. The two

norm measures the difference between the probability of the primary output's stimulus and

the ideal probability by calculating the Euclidean distance between the flawed outputs and

the error-free outputs. In order to accomplish this, two matrices named A and B are

generated with dimensions of M x 2, where M refers to the number of outputs. A is

constructed by stacking the stimulus probability of output of the faulty outputs, whereas B

is constructed by stacking the error-free output. Both matrices have two columns only,

where the first column denotes the probability of zero, and the second column denotes the

probability of one for each output. Subsequently, the two-norm of (A-B) is calculated, and

equation (30) is applied to document how the pattern influences the overall error for each

test vector. The test vector with the highest second norm is chosen as the worst-case vector.

 𝐸 = ‖𝐴 − 𝐵‖ (30)

Furthermore, a weight factor can be added if some outputs are more crucial in the circuit,

as equation (31) indicates. This can be applied to clock pins or important design pins.

 𝐸 = ‖𝐖. (𝐴 − 𝐵)‖ (31)

 In addition, the weight factor can be the mean ratio between input and output SET pulse

(𝛥) that was done in [32] by propagating the SET to primary outputs and then dividing it by

input SET for each test vector. In [32], the SET pulse width and voltage at the output were

calculated by the propagation of pulse width and voltage from a node under test to

observable output.

68

 Δ =
𝑚𝑒𝑎𝑛 ∫𝑆𝐸𝑇𝑜𝑢𝑡

𝑚𝑒𝑎𝑛 ∫𝑆𝐸𝑇𝑖𝑛
 (32)

The main problem of the proposed method is the exhaustive search by inserting all the

possible patterns. In order to face this issue, an automatic test pattern generation (ATPG)

tool was used to produce a limited number of test vectors with the best coverage ratio.

Specifically, Tessent FastScan is used to generate all the test patterns. From these patterns, a

limited number of vectors were selected to obtain the worst-case vector. FastScan considers

every node a potential faulty node and creates a series of test vectors to achieve maximum

coverage, representing the percentage of nodes tested. The generated test patterns produce a

statistical report indicating the total coverage of the entire set. In addition, FastScan creates a

separate file summarizing the status of each net in the circuit and whether it is detected or

not.

6.5 Algorithm Implementation

The same condition of cell characterization is applied in 4.2 . In addition, the parse used is

the same parser that is used in 4.2.3, but the algorithm doesn't need the fanout or wire-

swapping detection. So, The parser only parses once to know the circuit hierarchy. In

addition, the manipulation step is integrated with the parser. Then, the algorithm calculates

the stimulus probability for circuit output for a certain input. FIGURE 36 represents the

algorithm flow chart. Firstly, FastScan is used to generate all the input test patterns, then

MATLAB will be used to parse these test patterns and circuit hierarchy. Then, the stimulus

probability at the observable output is calculated for each test pattern. Then, the two-norm

will be used as the error metric. Finally, the pattern associated with the highest value of the

second norm will be considered the worst-case vector, as the weight factor in our work is

assumed to be all the same.

69

FIGURE 36 Novel algorithm flow chart

70

6.6 Algorithm Validation

In order to validate the new algorithm, two methods have been done. The first method is to

test random input vectors and compare the output of gate-level simulation using MATLAB

and SystemVerilog. The test has been done to check the error-free pattern at the output and

map [1 0] to 0 and [0 1] to 1. Then, the output pattern was compared to the output of the

SystemVerilog. The validation was done on different ISCAS85 circuits, and it was a 100%

match. The second method was done for a small circuit like C17 of ISCAS85 by

reconstructing the ITM from the new algorithm and comparing it to Krinshnaswamy’s ITM.

Both ways restarted in a perfect match. Since the algorithm uses the same steps for error-free

and faulty gates, the algorithm is validated. For example, for small circuit like C17 in

FIGURE 35, Table 10 represents a comparison between the SystemVerilog output and

MATLAB output. As stated previously, [1 0] is mapped to 0, and [0 1] is mapped to 1. So that the

output of MATLAB is the same as the SystemVerilog. This means the error-free algorithm matches

with SystemVerilog, which means the stimulus probability of the node is correct for faulty gates as

they use the same methodology.

Table 10 Comparison between MATLAB ideal circuit output VS SystemVerilog for C17

Input Patterns
SystemVerilog MATLAB

O[4] O[5] O[4] O[5]

0 1 1 1 1 0 0 [1 0] [1 0]

0 0 1 0 1 0 1 [1 0] [0 1]

1 0 0 1 1 0 1 [1 0] [0 1]

1 1 0 0 0 1 1 [0 1] [0 1]

1 0 1 0 0 1 0 [0 1] [1 0]

71

6.7 Results and Discussion

Table 11 illustrates the algorithms' worst-case test vectors time and value of the second

norm for the worst-case vector for different ISCAS85 benchmarks using XFAB® XH018

technology. A laptop with a 12th with 16 GB RAM and Gen Intel(R) Core(TM) i7-12700H

processor runs the MATLAB code for both algorithms. The small circuits produced the same

worst-case pattern using both algorithms. However, Krinshnaswamy’s method encountered

memory issues for large circuits and could not compute the worst-case test vector, while the

novel algorithm successfully produced results quickly. The standard cells' probability of

errors was calculated when the SET mean amplitude was 0.9 V, with a standard deviation of

0.1 V, and a mean width of 300 ps, with a standard deviation of 100 ps. Additionally, the

critical voltage and pulse width are 0.9 V and 300 ps, respectively.

Table 11 New Algorithm Computational Result Result

Benchmark

Circuit

No. Test

Vectors

No of

inputs

No of

outputs

No of Cells

Proposed Method

 Computational time Norm2

1 C17 5 5 2 6
0.0033 sec

0.070765

2 C432 120 36 7 116
0.37 sec

1.789386

3 C7552 282 207 108 990
11 sec

4.467548

4 C499 186 41 32 174 0.79 sec 1.259853

5 C1908 220 33 25 243 1.91 sec 2.285325

6 C880 134 60 26 252 1.24 sec 1.69

72

The worst case vector using the new methodology for C17 is 5h0F, and for C432 is

36hF5BA91293. In addition, for C7552, the worst-case vector is

207h5EE38D17FD8CF189EB8547793B3EEBFB3BEA65AABA0EB06FE044. For C499, there are

four worst-case vectors with the same Norm2 value; the vectors are as follows: 41h

0A25BBACB3C, 41h 132BBBA977C,41h 1FE9F2BBB1E, and 41h132BBBA96BE. For C1908, the

worst-case vector is 33h16DA901F6. Finally, For C880, the worst-case vector is

60hADFBC6C00F18A10.

The novel algorithm is faster as it doesn't need matrix multiplication or constructing a

huge matrix like Krinshnaswamy’s method. For example, for the C7552 circuit, the ITM or

PTM matrix size will be 2108 x 2207 which is infeasible. In addition, the new algorithm does

not need to identify the fanout or wire-swapping. For small circuits, the new algorithm is

10x faster than the Krishnaswamy algorithm and produces the same worst-case vector.

It is worth noting that FASTSCAN produces vectors that span the whole circuit faults and

nodes with maximum possible coverage, and the produced vectors are not equivalent. In

most cases, the first number of worst-case vectors can be equivalent. So that, first worst-case

vectors can be equivalent and not appear in FASTSCAN, but the worst-case one will be

there. So, for example, for the C17 circuit, FASTSCAN produces only five vectors. However,

they are not the top five vectors that have the highest probability of error. This can be

explained in terms of equivalent faults discussed earlier in 1.4 , as the top five vectors are

equivalent.

Table 12 represents the probability of error for patterns that came from FASTSCAN using

Krishnaswamy and the proposed methods. PTM of the C17 circuit was reconstructed as

done in 6.4.1. In most cases, the probability of error was the same, but some cases were

different when the output of the circuit was the same. This is because the reconstruction of

PTM is based on the assumption that the circuit outputs are independent of each other,

which is not true for most of the circuits. For example, for C17 in FIGURE 35, o[2] is input

for both NAND gates, so outputs are dependent on each other. So the reconstruction of the

PTM of the circuit is not valid in most cases. So, it is recommended that the norm2 metric is

used for our proposed method as it will overcome this issue.

73

Table 12 The output pattern probability of error for different input vectors for C17 using

Krishnaswamy method and the proposed method

If one level of dependency is removed, the results will be more close to each other. For

example, if the level of dependency at the output is removed by combining the 2 NAND

gates at the output by using PTM algebra like FIGURE 37. The PTM of the red block will be

(I ⊗ F2⊗ I)(NAND2⊗NAND2). Appling the same concept of conditional probability, the

new output probability of error at the output will be obtained as in Table 13.

FIGURE 37 Removing dependency at the output for C17

Input

Patterns

Output

Patterns Krishnaswamy Method
Proposed Method

0 1 1 1 1 0 0 0.0469 0.0691

0 0 1 0 1 0 1 0.0467 0.0466

1 0 0 1 1 0 1 0.0467 0.0466

1 1 0 0 0 1 1 0.0316 0.0464

1 0 1 0 0 1 0 0.0392 0.0391

74

Table 13 The output pattern probability of error for different input vectors for C17 using

Krishnaswamy method and the proposed method after removing one level of dependency.

The level of dependencies is caused by the fanout that causes some nodes to depend on

each other, so when the level of dependencies decreases, the probability of error gets closer

to each other. So, norm2 is the more convenient metric for our proposed method, as it gets

the probability of error of each node. On the other hand, Krishnaswamy’s method gets the

probability of each output vector.

6.8 Significance of The Proposed Algorithm

The proposed method provides a simple way to get each node stimulus probability in the

same manner as a normal gate simulator tool does. In addition, the new module makes

getting the probability of error of each node feasible rather than the output pattern

probability of error that is obtained from Krishnaswamy’s method. Furthermore, the new

model requires a new metric to get the worst-case vector which is based only on the

stimulus probability of output nodes. Furthermore, due to the simplicity of the operation,

the code is much faster (around 10x faster) and takes much less memory than

Input

Patterns

Output

Patterns Krishnaswamy Method Proposed Method

0 1 1 1 1 0 0 0.0469 0.054

0 0 1 0 1 0 1 0.0467 0.0467

1 0 0 1 1 0 1 0.0467 0.0467

1 1 0 0 0 1 1 0.0316 0.0316

1 0 1 0 0 1 0 0.0392 0.0392

75

Krishnaswamy’s method. So, analysis of big gates with many inputs and outputs is feasible.

Finally, both method gets similar worst-case vectors as the two methods for small circuits,

while for large circuits, which was infeasible using Krishnaswamy, it is now feasible using

the proposed method.

76

Chapter 7

Conclusion and Future Work

This work presents the different types of circuit faults. Then, soft circuits fault, particularly

SET, was discussed. The physical causes of SET were discussed. Then different electrical

models of SET characterization are discussed. In addition, this work presents a novel

method to find the probability of error for each standard cell. Furthermore, this thesis

proposed a new algorithm to calculate the error probability at the observable outputs and

the worst-case test vector in the ASIC circuit. The new model uses a realistic probability of

error of standard cells to account for logic masking. All technology standard cell circuits

were characterized and then used to characterize complete ASIC gate-level netlist using our

new methodology and Krishnaswamy’s method. The worst-case pattern is calculated using

both methods. The main difference between the proposed and Krishnasawmy methods is

that the proposed method gets the probability of error of every single node in the circuit,

while Krishnaswamy gets the probability of error for patterns in the observable outputs. The

flow aims to help circuit designers find the worst-case vector without performing real-time

simulations. It can also be performed either in the design or signoff phases. The designer

must aim to signoff with the smallest possible probability of error to avoid transient error as

possible, especially for circuits operated in radiative environments. The proposed algorithm

analyzes test vectors from the ATPG tool to obtain the worst—case test vector. The proposed

flow helps circuit designers immune their circuits to transient faults and guides them during

lab experiments because it is compatible with the typical ASIC development and

implementation flow. Furthermore, a worst-case vector is related to the worst SET energy, as

the worst-case power that the SET can inject, as SET is most likely to occur, means that the

energy has been transmitted from the input to the output.

To complete our work, a generic parser that can parse sequential circuits must be done and

that divides paths into combinational paths that the new method can work into.

77

Furthermore, a test chip must be fabricated to test the SET in the laboratory and verify the

worst-case vector.

78

References
[1] K.-T. Chueng, S. Dey, M. Rodgers, and K. Roy, “Test challenges for deep sub-micron
technologies,” in Proceedings of the 37th conference on Design automation - DAC ’00, Los Angeles,
California, United States: ACM Press, 2000, pp. 142–149. doi: 10.1145/337292.337353.
[2] C. Zhao, X. Bai, and S. Dey, “Evaluating Transient Error Effects in Digital Nanometer
Circuits,” IEEE Trans. Rel., vol. 56, no. 3, pp. 381–391, Sep. 2007, doi: 10.1109/TR.2007.903288.
[3] A. K. Stamper, T. L. McDevitt, and S. L. Luce, “Sub-0.25-micron interconnection scaling:
damascene copper versus subtractive aluminum,” in IEEE/SEMI 1998 IEEE/SEMI Advanced
Semiconductor Manufacturing Conference and Workshop (Cat. No.98CH36168), Boston, MA, USA:
IEEE, 1998, pp. 337–346. doi: 10.1109/ASMC.1998.731585.
[4] B. Straka, H. Manhaeve, J. Vanneuville, and M. Svajda, “A fully digital controlled off-
chip I/sub DDQ/ measurement unit,” in Proceedings Design, Automation and Test in Europe,
Paris, France: IEEE Comput. Soc, 1998, pp. 495–500. doi: 10.1109/DATE.1998.655904.
[5] J. F. Ziegler, “Terrestrial cosmic rays,” IBM J. Res. & Dev., vol. 40, no. 1, pp. 19–39, Jan.
1996, doi: 10.1147/rd.401.0019.
[6] D. Timothy J., “A white paper on the benefits of chipkill-correct ecc for pc server main
memory,” Dell1997AWP, 1997.
[7] D. Munteanu and J. L. Autran, “Terrestrial neutron-induced single events in GaN,”
Microelectronics Reliability, vol. 100–101, p. 113357, Sep. 2019, doi: 10.1016/j.microrel.2019.06.049.
[8] X. Chen, Q. Guo, H. Yuan, and Y. Guo, “A Single-Event Transient Radiation Hardened
Low-Dropout Regulator for LC Voltage-Controlled Oscillator,” Symmetry, vol. 14, no. 4, p. 788,
Apr. 2022, doi: 10.3390/sym14040788.
[9] K. Feng, S. Vora, R. Jiang, E. Rosenbaum, and S. Vasudevan, “Guilty As Charged:
Computational Reliability Threats Posed By Electrostatic Discharge-induced Soft Errors,” in
2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy: IEEE,
Mar. 2019, pp. 156–161. doi: 10.23919/DATE.2019.8715149.
[10] V. Ferlet-Cavrois, L. W. Massengill, and P. Gouker, “Single Event Transients in Digital
CMOS—A Review,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 1767–1790, Jun. 2013, doi:
10.1109/TNS.2013.2255624.
[11] A. A. Abou-Auf, “Total-Dose Worst-Case Test Vectors for Leakage Current Failure
Induced in Sequential Circuits of Cell-Based ASICs,” IEEE Trans. Nucl. Sci., vol. 56, no. 4, pp.
2189–2197, Aug. 2009, doi: 10.1109/TNS.2009.2019275.
[12] “Fault Modeling,” in Essentials of Electronic Testing for Digital, Memory and Mixed-Signal
VLSI Circuits, in Frontiers in Electronic Testing, vol. 17. Boston: Kluwer Academic Publishers,
2002, pp. 57–80. doi: 10.1007/0-306-47040-3_4.
[13] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed Algorithms to Compute
Tests to Detect and Distinguish Between Failures in Logic Circuits,” IEEE Trans. Electron.
Comput., vol. EC-16, no. 5, pp. 567–580, Oct. 1967, doi: 10.1109/PGEC.1967.264743.
[14] shankardas deepti Bharat, “ATPG methods and algorithms,” 2012. [Online]. Available:
https://www.slideshare.net/deeptishankardas/aptg-methods-and-algorithms
[15] P. Prinetto, M. Rebaudengo, and M. Sonza Reorda, “An automatic test pattern generator
for large sequential circuits based on Genetic Algorithms,” in Proceedings., International Test
Conference, Washington, DC, USA: Int. Test Conference, 1994, pp. 240–249. doi:
10.1109/TEST.1994.527955.
[16] R. C. Baumann, “Landmarks in Terrestrial Single-Event Effects.” NSREC Short Course,

79

2013. [Online]. Available: http://www-vlsi.es.kit.ac.jp/SERconf/2014/Baumanall.pdf
[17] A. Abubakr, A. Ibrahim, Y. Ismail, and H. Mostafa, “The Impact of Soft Errors on
Memristor-Based Memory,” in 2017 New Generation of CAS (NGCAS), Genova, Italy: IEEE, Sep.
2017, pp. 229–232. doi: 10.1109/NGCAS.2017.72.
[18] N. Michael, “Radiation Environments.” [Online]. Available:
https://www.iroctech.com/library/working-environments/
[19] D. F. Heidel et al., “Alpha-particle-induced upsets in advanced CMOS circuits and
technology,” IBM J. Res. & Dev., vol. 52, no. 3, pp. 225–232, May 2008, doi: 10.1147/rd.523.0225.
[20] M. Gordon and K. Rodbel, “Single-Event Upsets and Microelectronics.” 2015.
[21] M. Andjelkovic, A. Ilic, Z. Stamenkovic, M. Krstic, and R. Kraemer, “An overview of the
modeling and simulation of the single event transients at the circuit level,” in 2017 IEEE 30th
International Conference on Microelectronics (MIEL), Nis: IEEE, Oct. 2017, pp. 35–44. doi:
10.1109/MIEL.2017.8190065.
[22] Y. V. Katunin and V. Ya. Stenin, “TCAD simulation of single-event transients in the 65-
nm CMOS element of matching for a content-addressable memory,” in 2017 25th
Telecommunication Forum (TELFOR), Belgrade: IEEE, Nov. 2017, pp. 1–4. doi:
10.1109/TELFOR.2017.8249392.
[23] P. E. Dodd, M. R. Shaneyfelt, J. A. Felix, and J. R. Schwank, “Production and
propagation of single-event transients in high-speed digital logic ICs,” IEEE Trans. Nucl. Sci.,
vol. 51, no. 6, pp. 3278–3284, Dec. 2004, doi: 10.1109/TNS.2004.839172.
[24] G. C. Messenger, “Collection of Charge on Junction Nodes from Ion Tracks,” IEEE Trans.
Nucl. Sci., vol. 29, no. 6, pp. 2024–2031, Dec. 1982, doi: 10.1109/TNS.1982.4336490.
[25] S. Barcelo, X. Gili, S. A. Bota, and J. Segura, “An SET propagation EDA tool based on
analytical glitch propagation model,” in 2013 14th European Conference on Radiation and Its Effects
on Components and Systems (RADECS), Oxford, United Kingdom: IEEE, Sep. 2013, pp. 1–5. doi:
10.1109/RADECS.2013.6937388.
[26] X. Gili, S. Barcelo, S. A. Bota, and J. Segura, “Analytical modeling of Single Event
Transients propagation in combinational logic gates,” in 2011 12th European Conference on
Radiation and Its Effects on Components and Systems, Seville, Spain: IEEE, Sep. 2011, pp. 408–411.
doi: 10.1109/RADECS.2011.6131416.
[27] M. Ahmed, “Fault Modeling and Test Vector Generation for ASIC Devices Exposed to
Space Single Event Environment,” The American Univercity in Cairo, Cairo, 2021. [Online].
Available: https://fount.aucegypt.edu/etds/1645/
[28] C. Lazzari, G. Wirth, F. L. Kastensmidt, L. Anghel, and R. A. da L. Reis, “Asymmetric
transistor sizing targeting radiation-hardened circuits,” Electr Eng, vol. 94, no. 1, pp. 11–18, Mar.
2012, doi: 10.1007/s00202-011-0212-8.
[29] S. Krishnaswamy, I. L. Markov, and J. P. Hayes, “Logic Circuits Testing for Transient
Faults,” in European Test Symposium (ETS’05), Tallinn, Estonia: IEEE, 2005, pp. 102–107. doi:
10.1109/ETS.2005.27.
[30] K. N. Patel, I. L. Markov, and J. P. Hayes, “Evaluating Circuit Reliability Under
Probabilistic Gate-Level Fault Models,” Proceedings of the International Workshop on Logic
Synthesis (IWLS), May 2003.
[31] S. Krishnaswamy, I. L. Markov, and J. P. Hayes, Design, Analysis and Test of Logic Circuits
Under Uncertainty, vol. 115. in Lecture Notes in Electrical Engineering, vol. 115. Dordrecht:
Springer Netherlands, 2013. doi: 10.1007/978-90-481-9644-9.
[32] M. Wael, A. Ibrahim, M. Abdelaziz, A. Elsafty, and A. A. Abou-Auf, “Single Event

80

Transient Sensitivity Analysis and Worst-Case Test Vector Identification for ASICs,” in 2022
22th European Conference on Radiation and Its Effects on Components and Systems (RADECS),
Venice, Italy: IEEE, Oct. 2022, pp. 1–4.

81

Appendix 1
This appendix describes and lists the different scripts used throughout this work.

1) FastSCAN Code.

This code is used to find the input vectors that uncover all the circuit faults with maximum

coverage. All the patterns were saved in all.patterns, which will be used later.

system date
set system mode atpg
set fault type transition
add fault -all
create patterns -auto

report faults -all > all.fault_list
report statistics > all.stats
save patterns all.patterns - Ascii -replace

exit

2) MATLAB Code.

MATLAB was used to perform the modeling and find the probability of error at the circuit

output, then find the worst-case vector.

I. Top-Level

Use_pattern is used to control the usage of our new method if it is 1, 0 will use the

Krishmaswa,y method. 2 is used for both methods.

%%%LIB has 1 column is cell name, 2rd is P of fault, 3th is ITM
%%%4th is inputs, 5th are outputs
global Lib CKT;
v_in_mean=0.9;v_in_std=0.1;
tw_in_mean=300;tw_in_std=100;
 V_critical=0.9;
 Tw_critical=300;
 %Number_of_points_tw = 50;Number_of_points_v=10;
 models_dir='./models';
%%
%%%CKT has 1 column is cell name/node name,2nd is stage, 3th is ITM/PTM,4th
%%%is position, 5th is either 0 which is gate,1 which is input, 2 which is
%%%output,-1 is dummay gate , 6 is the number of repetion, 7 cell name, 8th
%%%prob of error
 use_pattern=1;

inputs=["N1" "N2" "N3" "N6" "N7"];
outputs = ["N22" "N23"];
CKT_name = "C:\Masters\Thesis\c17\syn_output\c17_syn.v";

82

pattern_file = "C:\Masters\Thesis\c17\all.patterns";

% CKT_name = "C:\Masters\Thesis\c432\syn_output\c432_syn.v";
% outputs = ["N223" "N329" "N370" "N421" "N430" "N431" "N432"];
% inputs= ["N1" "N4" "N8" "N11" "N14" "N17" "N21" "N24" "N27" "N30" "N34" "N37"
"N40" "N43" "N47" "N50" "N53" "N56" "N60" "N63" "N66" "N69" "N73" "N76" "N79" "N82"
"N86" "N89" "N92" "N95" "N99" "N102" "N105" "N108" "N112" "N115"];
% pattern_file = "C:\Masters\Thesis\c432\all.patterns";

% CKT_name = "C:\Masters\Thesis\c7552\syn_output\c7552_syn.v";
% outputs = ["N387" "N388" "N478" "N482" "N484" "N486" "N489" "N492" "N501" "N505"
"N507" "N509" "N511" "N513" "N515" "N517" "N519" "N535" "N537" "N539" "N541" "N543"
"N545" "N547" "N549" "N551" "N553" "N556" "N559" "N561" "N563" "N565" "N567" "N569"
"N571" "N573" "N582" "N643" "N707" "N813" "N881" "N882" "N883" "N884" "N885" "N889"
"N945" "N1110" "N1111" "N1112" "N1113" "N1114" "N1489" "N1490" "N1781" "N10025"
"N10101" "N10102" "N10103" "N10104" "N10109" "N10110" "N10111" "N10112" "N10350"
"N10351" "N10352" "N10353" "N10574" "N10575" "N10576" "N10628" "N10632" "N10641"
"N10704" "N10706" "N10711" "N10712" "N10713" "N10714" "N10715" "N10716" "N10717"
"N10718" "N10729" "N10759" "N10760" "N10761" "N10762" "N10763" "N10827" "N10837"
"N10838" "N10839" "N10840" "N10868" "N10869" "N10870" "N10871" "N10905" "N10906"
"N10907" "N10908" "N11333" "N11334" "N11340" "N11342" "N241_O"];
% inputs= ["N1" "N5" "N9" "N12" "N15" "N18" "N23" "N26" "N29" "N32" "N35" "N38"
"N41" "N44" "N47" "N50" "N53" "N54" "N55" "N56" "N57" "N58" "N59" "N60" "N61" "N62"
"N63" "N64" "N65" "N66" "N69" "N70" "N73" "N74" "N75" "N76" "N77" "N78" "N79" "N80"
"N81" "N82" "N83" "N84" "N85" "N86" "N87" "N88" "N89" "N94" "N97" "N100" "N103"
"N106" "N109" "N110" "N111" "N112" "N113" "N114" "N115" "N118" "N121" "N124" "N127"
"N130" "N133" "N134" "N135" "N138" "N141" "N144" "N147" "N150" "N151" "N152" "N153"
"N154" "N155" "N156" "N157" "N158" "N159" "N160" "N161" "N162" "N163" "N164" "N165"
"N166" "N167" "N168" "N169" "N170" "N171" "N172" "N173" "N174" "N175" "N176" "N177"
"N178" "N179" "N180" "N181" "N182" "N183" "N184" "N185" "N186" "N187" "N188" "N189"
"N190" "N191" "N192" "N193" "N194" "N195" "N196" "N197" "N198" "N199" "N200" "N201"
"N202" "N203" "N204" "N205" "N206" "N207" "N208" "N209" "N210" "N211" "N212" "N213"
"N214" "N215" "N216" "N217" "N218" "N219" "N220" "N221" "N222" "N223" "N224" "N225"
"N226" "N227" "N228" "N229" "N230" "N231" "N232" "N233" "N234" "N235" "N236" "N237"
"N238" "N239" "N240" "N242" "N245" "N248" "N251" "N254" "N257" "N260" "N263" "N267"
"N271" "N274" "N277" "N280" "N283" "N286" "N289" "N293" "N296" "N299" "N303" "N307"
"N310" "N313" "N316" "N319" "N322" "N325" "N328" "N331" "N334" "N337" "N340" "N343"
"N346" "N349" "N352" "N355" "N358" "N361" "N364" "N367" "N382" "N241_I"];
% pattern_file = "C:\Masters\Thesis\c7552\all.patterns";

%% core
if (use_pattern==1)

Parse_CKT_pattern(CKT_name,models_dir,outputs,v_in_mean,v_in_std,V_critical,tw_in_m
ean,tw_in_std,Tw_critical);
 Cal_Worst_case_pattern2(pattern_file,inputs,outputs)
elseif(use_pattern==0)
 [all_gates_name,all_gates_name_no_in,all_gates_name_no_out]=
Parse_CKT5(CKT_name,models_dir,outputs,v_in_mean,v_in_std,V_critical,tw_in_mean,tw_
in_std,Tw_critical);

maniplate_CKT3(all_gates_name,all_gates_name_no_in,all_gates_name_no_out,outputs);
 Cal_Worst_case(inputs,outputs);
else

83

 %% debug

Parse_CKT_pattern(CKT_name,models_dir,outputs,v_in_mean,v_in_std,V_critical,tw_in_m
ean,tw_in_std,Tw_critical);
 Cal_Worst_case_pattern2(pattern_file,inputs,outputs)
 [all_gates_name,all_gates_name_no_in,all_gates_name_no_out]=
Parse_CKT5(CKT_name,models_dir,outputs,v_in_mean,v_in_std,V_critical,tw_in_mean,tw_
in_std,Tw_critical);

maniplate_CKT3(all_gates_name,all_gates_name_no_in,all_gates_name_no_out,outputs);
 Cal_Worst_case(inputs,outputs);
end

II. Parse CKT for Krinshnaswamy’s method

For Krinshnawamy’s method, the code parse the gate level 3 times

function [all_gates_name,all_gates_name_no_in,all_gates_name_no_out]=
Parse_CKT5(CKT_name,models_dir,outputs,v_in_mean,v_in_std,V_critical,tw_in_mean,tw_in
_std,Tw_critical)
global Lib CKT;
Lib=cell(0,0);
MyFolderInfo = dir([models_dir,'/*_model.mat']);
for jj=1:size(MyFolderInfo,1)
load([models_dir,'/',MyFolderInfo(jj).name]);
cell_name = string(erase(MyFolderInfo(jj).name,'_model.mat'));
Lib{jj,1}=cell_name;
end
first_parse=0;gates_position_in=[];gates_aranged=strings(0,0);
for parse_counter=1:3
if (parse_counter==1)
 first_parse=1;
else
 first_parse=0;
end
CKT =cell(1,4);

%%%%

fid = fopen(CKT_name);
my_line = fgetl(fid);
intial_stage=0;
%for i=1:length(outputs)
 % CKT{1}(i)=outputs(i);
 % CKT{2}(i)= intial_stage;
 %CKT{3}(i)={eye(2)};
 %CKT{4}(i)= i; %% 1 is the bottom, 2 is higher
%end
%counter=length(outputs)+1;

%%StD cells names
STD_names=strings(1,size(Lib,1));
for i=1:size(Lib,1)

84

 STD_names(1,i)= Lib{i,1};
end
counter=1;
repetion=1;
dummy_counter=0;
all_gates_name=[];all_gates_inputs={};all_gates_outputs={};gates_total_number=1;
all_gates_name_no_in=[];
all_gates_name_no_out=[];
while ischar(my_line)
 % Search for the input of the gate
 my_line = regexprep(my_line,"\("," ");
 my_line = regexprep(my_line,"\)"," ");
 my_line = regexprep(my_line,",","");
 Line_spiltted= split(my_line);

 if(length(Line_spiltted)>2)
 index_in_lib= find(STD_names==Line_spiltted{2});
 if (index_in_lib)
 %match_IN = regexp(my_line,'// /(\w*)\s+(\w*)','tokens');
 if (size(Lib(index_in_lib,:),2)==1)||(isempty((Lib{index_in_lib,2})))

charcell(Lib{index_in_lib,1},v_in_mean,v_in_std,V_critical,tw_in_mean,tw_in_std,Tw_cr
itical,index_in_lib);
 end
 %checking gate is connected to output
 Outputs_gate= Line_spiltted(rem(find(Line_spiltted ==
Lib{index_in_lib,4}),length(Line_spiltted))+1);
 Inputs_gate =Line_spiltted(rem(find(Line_spiltted ==
Lib{index_in_lib,5}),length(Line_spiltted))+1);
 index_output= find (outputs == (Line_spiltted{(find(Line_spiltted ==
Lib{index_in_lib,4}))+1}));
 %% saving inputs and outputs of gate %%19/11
 dummy_input=[];dummy_output=[];
 for i=1:length(Inputs_gate)
 dummy_input=[dummy_input " " Inputs_gate{i}];
 end
 for i=1:length(Outputs_gate)
 dummy_output=[dummy_output " " Outputs_gate{i}];
 end
 all_gates_inputs{gates_total_number}=dummy_input;
 all_gates_outputs{gates_total_number}=dummy_output;

 gates_total_number=gates_total_number+1;

 %%
 All_nodes=strings(1,size(CKT,1));
 if(size(CKT,1) >1)
 for i=1:size(CKT,1)
 All_nodes(1,i)= CKT{i,1};
 end
 end
 out_index= find(Outputs_gate==All_nodes);
 [~,in_index_all]
=ind2sub(size(Inputs_gate==All_nodes),find(Inputs_gate==All_nodes));

85

 %%for maniplate_CKT.m
 all_gates_name=[all_gates_name " " string(Line_spiltted{3})] ;
 all_gates_name_no_in=[all_gates_name_no_in length(Inputs_gate)];
 all_gates_name_no_out=[all_gates_name_no_out length(Outputs_gate)];
 %%
%my_line
 % saving gates
 if (counter == 1) ||
((~isempty(Outputs_gate==outputs))&&isempty(out_index)&&isempty(find(Inputs_gate==All
_nodes)))
 CKT{counter,1}=string(Line_spiltted{3});
 CKT{counter,2}=intial_stage-1;
 CKT{counter,3}= Lib{index_in_lib,3};
 CKT{counter,8}= Lib{index_in_lib,2};
 CKT{counter,5}= 0;
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 if(~isempty(find(gates_aranged==CKT{counter,7})))
 Position= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 Position=1;
 end
 CKT{counter,4}= Position; %% position is high
 counter=counter+1;
 Position_in=Position;
 Position_out=Position;
 for i=1:length(Inputs_gate)
 CKT{counter,1}=Inputs_gate(i);
 CKT{counter,2}=intial_stage-2;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_in; %% position is high
 CKT{counter,5}= 1;
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_in=Position_in+1; %% each input is in different position
 end
 for i=1:length(Outputs_gate)
 CKT{counter,1}=Outputs_gate(i);
 CKT{counter,2}=intial_stage;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_out; %% position is high
 CKT{counter,5}= 2; %% output
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_out=Position_out+1;
 end
 elseif (out_index)
 stage_temp= CKT{out_index,2};
 %%19/11
% cell=CKT{out_index,7}(1);
% cell_input=find(all_gates_name==cell)/2;
% if ~isempty(cell_input)

86

% other_inputs=
all_gates_inputs{cell_input}(find((all_gates_inputs{cell_input}~=Outputs_gate)&
all_gates_inputs{cell_input}~= " "));
% gate_connected_other_inputs=[];
% other_inputs_index= find(other_inputs==All_nodes);
% for j=1:length(other_inputs)
% index_dummy = find(CKT{other_inputs_index(j),7} == cell)
% if (CKT{other_inputs_index(j),4}(index_dummy)
<CKT{out_index,4}(index_dummy))
% for i=1:length(all_gates_name)
% if ~isempty(all_gates_outputs{i}==other_inputs)
% Position_temp=Position_temp+all_gates_name_no_in(i);
% end
% end
% end
% end
% end
 %%
 CKT{out_index,5} = [CKT{out_index,5} 2]; %it is now output
 CKT{counter,1}=string(Line_spiltted{3});
 CKT{counter,2}=stage_temp-1;
 CKT{counter,3}= Lib{index_in_lib,3};
 CKT{counter,8}= Lib{index_in_lib,2};
 CKT{counter,5}= 0;
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 if(~isempty(find(gates_aranged==CKT{counter,7})))
 Position_temp= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 Position_temp= min(CKT{out_index,4});% min of position
 end
 Position_in=Position_temp;
 CKT{counter,4}= Position_temp; %% position is high
 counter=counter+1;

%% add dummy cell to other inputs if not connected to cell

cell_name =CKT{out_index,7};

 inout=zeros(1,size(CKT,1));

 for i =1:size(CKT,1)
 if ((~isempty(find(CKT{i,5}==1)))&(isempty(find(CKT{i,5}==2))))
 inout(i)=1;
 end
 end
%index_dummy_cell=find(nodes_cell&(inout==1));
if (first_parse)
 index_dummy_cell=[];
else
index_dummy_cell=find((inout==1));
end

for i=1:length(index_dummy_cell)

87

 %%insert dummy cell
 if (length(CKT{index_dummy_cell(i),4})>1)
 dummy=CKT{index_dummy_cell(i),7}(1);
 else
 dummy= CKT{index_dummy_cell(i),7};
 end
 CKT{counter,1}= dummy+ "_dummy"+dummy_counter;
 CKT{counter,2}=CKT{index_dummy_cell(i),2}-1;
 CKT{counter,3}= eye(2);
 CKT{counter,5}= -1;
 CKT{counter,6}= 1;
 CKT{counter,7}= dummy + "_dummy"+dummy_counter ;
 if(~isempty(find(gates_aranged==CKT{counter,7})))
 CKT{counter,4}= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 CKT{counter,4}= CKT{index_dummy_cell(i),4}(1); %% position is high
 end
 counter=counter+1;
 %%update inputs
 CKT{counter,1}= CKT{index_dummy_cell(i),1};
 CKT{counter,2}=CKT{index_dummy_cell(i),2}-2;
 CKT{counter,3}= eye(2);

 CKT{counter,5}= CKT{index_dummy_cell(i),5};
 CKT{counter,6}= 1;
 CKT{counter,7}= dummy + "_dummy"+dummy_counter ;
 if(~isempty(find(gates_aranged==CKT{counter,7})))
 CKT{counter,4}= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 CKT{counter,4}= CKT{index_dummy_cell(i),4}(1); %% position is high
 end
 counter=counter+1;

 CKT{index_dummy_cell(i),1}=CKT{index_dummy_cell(i),1}+ "_dummy"+dummy_counter
;
 CKT{index_dummy_cell(i),2}=CKT{index_dummy_cell(i),2};
 CKT{index_dummy_cell(i),3}=CKT{index_dummy_cell(i),3};
 CKT{index_dummy_cell(i),6}=CKT{index_dummy_cell(i),6};
 CKT{index_dummy_cell(i),5}=[1 2];
 dummy_counter=dummy_counter+1;
end
%% update inputs
 All_nodes=strings(1,size(CKT,1));
 if(size(CKT,1) >1)
 for i=1:size(CKT,1)
 All_nodes(1,i)= CKT{i,1};

 end
 end
 for i=1:length(Inputs_gate)
 index_in= find((Inputs_gate(i)==All_nodes));
 if (isempty(index_in))
 CKT{counter,1}=Inputs_gate(i);
 CKT{counter,2}=stage_temp-2;

88

 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_in; %% position is high
 CKT{counter,5}= 1;
 CKT{counter,6}=repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_in=Position_in+1;
 else %%% update reption and stage
 CKT{index_in,6} =CKT{index_in,6}+1;
 if (CKT{index_in,2}>(stage_temp-2))
 CKT{index_in,2}=(stage_temp-2);
 end
 temp=zeros(2,2*CKT{index_in,6});temp(1,1)=1;temp(end,end)=1;
 CKT{index_in,3}=temp;
 CKT{index_in,4} = [CKT{index_in,4} Position_in];
 CKT{index_in,7} = [CKT{index_in,7} " " string(Line_spiltted{3})];
 Position_in =Position_in+1;
 end
 end
 elseif (~isempty(in_index_all))
 %in_index_all=[];
 pos_temp=zeros(size(in_index_all));
for j=1:length(in_index_all)
 pos_temp(j) = CKT{in_index_all(j),2};
end
[dummy_temp in_index_index]=min(pos_temp);
in_index=in_index_all(in_index_index);
 stage_temp= CKT{in_index,2};
 %% 19/11

%Position_temp=all_gates_name_no_in(find(all_gates_name==CKT{in_index,7})/2)+max(CKT{
in_index,4});
 %%
 CKT{in_index,5} = [CKT{in_index,5} 1]; %it is now input
 CKT{counter,1}=string(Line_spiltted{3});
 CKT{counter,2}=stage_temp+1;
 CKT{counter,3}= Lib{index_in_lib,3};
 CKT{counter,8}= Lib{index_in_lib,2};
 CKT{counter,5}= 0;
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});

 if(~isempty(find(gates_aranged==CKT{counter,7})))
 Position_temp= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 Position_temp= CKT{in_index,4}+1;
 end
 Position_in=Position_temp;
 CKT{counter,4}= Position_temp; %% position is high
 Position_out=Position_temp;
 counter=counter+1;

%%add dummy cell to other inputs if not connected to cell
cell_name =CKT{in_index,7};

89

 inout=zeros(1,size(CKT,1));

 for i =1:size(CKT,1)
 if ((~isempty(find(CKT{i,5}==2)))&(isempty(find(CKT{i,5}==1))))
 inout(i)=1;
 end
 end
if (first_parse)
 index_dummy_cell=[];
else
 index_dummy_cell=[];
%index_dummy_cell=find((inout==1));
end

for i=1:length(index_dummy_cell)
 CKT{counter,1}= cell_name+ "_dummy";
 CKT{counter,2}=CKT{index_dummy_cell(i),2}+1;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= CKT{index_dummy_cell(i),4}; %% position is high
 CKT{counter,5}= -1;
 CKT{counter,6}= 1;
 CKT{counter,7}= CKT{index_dummy_cell(i),7} + "_dummy" ;
 counter=counter+1;
 CKT{counter,1}= CKT{index_dummy_cell(i),1};
 CKT{counter,2}=CKT{index_dummy_cell(i),2}+2;
 CKT{counter,3}= CKT{index_dummy_cell(i),3};
 CKT{counter,4}= CKT{index_dummy_cell(i),4}; %% position is high
 CKT{counter,5}= CKT{index_dummy_cell(i),5};
 CKT{counter,6}= CKT{index_dummy_cell(i),6};
 CKT{counter,7}= CKT{index_dummy_cell(i),7} + "_dummy" ;
 counter=counter+1;

 CKT{index_dummy_cell(i),1}=CKT{index_dummy_cell(i),1}+ "_dummy" ;
 CKT{index_dummy_cell(i),2}=CKT{index_dummy_cell(i),2};
 CKT{index_dummy_cell(i),3}=eye(2);
 CKT{index_dummy_cell(i),6}=1;
end
%%
 for i=1:length(Inputs_gate)
 index_in_other= find((Inputs_gate(i)==All_nodes));
 if (isempty(index_in_other))
 CKT{counter,1}=Inputs_gate(i);
 CKT{counter,2}=stage_temp;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_in; %% position is high
 CKT{counter,5}= 1;
 CKT{counter,6}=repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_in=Position_in+1;
 else %%% update reption and stage
 CKT{index_in_other,6} =CKT{index_in_other,6}+1;
 if (CKT{index_in_other,2}>(stage_temp))

90

 CKT{index_in_other,2}=(stage_temp);
 end
 temp=zeros(2,2*CKT{index_in_other,6});temp(1,1)=1;temp(end,end)=1;
 CKT{index_in_other,3}=temp;
 CKT{index_in_other,4} = [CKT{index_in_other,4} Position_in];
 CKT{index_in_other,7} = [CKT{index_in_other,7} " "
string(Line_spiltted{3})];
 Position_in =Position_in+1;
 end
 end
 for i=1:length(Outputs_gate)
 index_out= find((Outputs_gate(i)==All_nodes));
 if (isempty(index_out))
 CKT{counter,1}=Outputs_gate(i);
 CKT{counter,2}=stage_temp+2;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_out; %% position is high
 CKT{counter,5}= 2;
 CKT{counter,6}=repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_out=Position_out+1;
 else %%% update reption and stage
 CKT{index_out,6} =CKT{index_out,6}+1;
 if (CKT{index_out,2}>(stage_temp))
 CKT{index_out,2}=(stage_temp);
 end
 temp=zeros(2,2*CKT{index_out,6});temp(1,1)=1;temp(end,end)=1;
 CKT{index_out,3}=temp;
 CKT{index_out,4} = [CKT{index_out,4} Position_in];
 Position_out =Position_out+1;
 end
 end

 else
 fprintf("Case is not considered");
 end

 %%%%%%%%%% to be continued dealing with nodes
 end
 end
 my_line = fgetl(fid);
end
%% maniplate CKT

j=1;nodes_reptead=[];nodes_reptead_index=[];nodes_reptead_gates={};nodes_reptead_posi
tion={};
stages =[]; gates_aranged=strings(0,0);gates_no_in=[];gates_no_out=[];
for i=1:length(CKT)
 overwrite=0;
 if(length(CKT{i,4})>1)
 nodes_reptead= [nodes_reptead CKT{i,1}];

91

 nodes_reptead_position(j)={CKT{i,4}};
 nodes_reptead_index=[nodes_reptead_index i];
 nodes_reptead_gates(j)= {CKT{i,7}};
 j=j+1;
 end
 %% arrange the cells in CKT stages
 stage_index=find(stages==CKT{i,2});
 if (isempty(stage_index)&(CKT{i,5}<1))
 stages=[stages CKT{i,2}];
 stage_index=length(stages);
 end
 if (CKT{i,5}<1)

 if (~isempty((find(all_gates_name == CKT{i,7}))))
 if (CKT{i,4}<=size(gates_no_in,1))&(stage_index <=
size(gates_no_in,2))&(gates_no_in(CKT{i,4},stage_index)~=0)
 overwrite=1;
 old_row_in=zeros(1,size(gates_no_in,2));old_row_out=old_row_in;

old_row_in(stage_index)=gates_no_in(CKT{i,4},stage_index);old_row_out(stage_index)=ga
tes_no_out(CKT{i,4},stage_index);

gates_no_in(CKT{i,4},stage_index)=all_gates_name_no_in((find(all_gates_name ==
CKT{i,7}))/2);
 gates_no_out(CKT{i,4},stage_index)=
all_gates_name_no_out((find(all_gates_name == CKT{i,7}))/2);

gates_no_in=[gates_no_in(1:CKT{i,4},:);old_row_in;gates_no_in(CKT{i,4}+1:end,:)];

gates_no_out=[gates_no_out(1:CKT{i,4},:);old_row_out;gates_no_out(CKT{i,4}+1:end,:)];
 else

gates_no_in(CKT{i,4},stage_index)=all_gates_name_no_in((find(all_gates_name ==
CKT{i,7}))/2);
 gates_no_out(CKT{i,4},stage_index)=
all_gates_name_no_out((find(all_gates_name == CKT{i,7}))/2);
 end
 else
 %dummy_gate
 if (CKT{i,4}<=size(gates_no_in,1))&(stage_index <=
size(gates_no_in,2))&(gates_no_in(CKT{i,4},stage_index)~=0)
 overwrite=2;
 old_row_in=zeros(1,size(gates_no_in,2));old_row_out=old_row_in;

old_row_in(stage_index)=gates_no_in(CKT{i,4},stage_index);old_row_out(stage_index)=ga
tes_no_out(CKT{i,4},stage_index);
 gates_no_in(CKT{i,4},stage_index)=1;
 gates_no_out(CKT{i,4},stage_index)=1;

gates_no_in=[gates_no_in(1:CKT{i,4},:);old_row_in;gates_no_in(CKT{i,4}+1:end,:)];

gates_no_out=[gates_no_out(1:CKT{i,4},:);old_row_out;gates_no_out(CKT{i,4}+1:end,:)];
 else
 gates_no_in(CKT{i,4},stage_index)=1;

92

 gates_no_out(CKT{i,4},stage_index)=1;
 end
 end
 if (overwrite)
 old_row=strings(1,size(gates_no_in,2));
 old_row(stage_index)=gates_aranged(CKT{i,4},stage_index);
 gates_aranged(CKT{i,4},stage_index)=CKT{i,7};

gates_aranged=[gates_aranged(1:CKT{i,4},:);old_row;gates_aranged(CKT{i,4}+1:end,:)];
 else
 gates_aranged(CKT{i,4},stage_index)=CKT{i,7};
 end
 end
end
gates_position_in=zeros(size(gates_aranged));
gates_position_in(1,:)=1;
for i=2:size(gates_aranged,1)

 gates_position_in(i,:)=sum(gates_no_in(1:i-1,:),1)+1;

end
end
end

III. Parse CKT for new method method

In this parser, the code parse once as swapping and fanout is no longer needed. In

addition, the manipulation of the circuit is added

%%%LIB has 1 column is cell name, 2rd is P of fault, 3th is ITM
%%%4th is inputs, 5th are outputs
% clearvars -except Lib
function []=
Parse_CKT_pattern(CKT_name,models_dir,outputs,v_in_mean,v_in_std,V_critical,tw_in_mea
n,tw_in_std,Tw_critical)
global Lib CKT;
Lib=cell(0,0);
assign_counter=0;
MyFolderInfo = dir([models_dir,'/*_model.mat']);
for jj=1:size(MyFolderInfo,1)
load([models_dir,'/',MyFolderInfo(jj).name]);
cell_name = string(erase(MyFolderInfo(jj).name,'_model.mat'));
Lib{jj,1}=cell_name;
end
Lib{end+1,1}="assign";Lib{end,2}=0;Lib{end,3}=eye(2);Lib{end,4}=".Q";Lib{end,5}=".A";

first_parse=0;gates_position_in=[];gates_aranged=strings(0,0);

93

for parse_counter=1:1
if (parse_counter==1)
 first_parse=1;
else
 first_parse=0;
end
CKT =cell(1,4);

%%%%

fid = fopen(CKT_name);
my_line = fgetl(fid);
intial_stage=0;
%for i=1:length(outputs)
 % CKT{1}(i)=outputs(i);
 % CKT{2}(i)= intial_stage;
 %CKT{3}(i)={eye(2)};
 %CKT{4}(i)= i; %% 1 is the bottom, 2 is higher
%end
%counter=length(outputs)+1;

%%StD cells names
STD_names=strings(1,size(Lib,1));
for i=1:size(Lib,1)
 STD_names(1,i)= Lib{i,1};
end
counter=1;
repetion=1;
dummy_counter=0;
all_gates_name=[];all_gates_inputs={};all_gates_outputs={};gates_total_number=1;
all_gates_name_no_in=[];
all_gates_name_no_out=[];
while ischar(my_line)
 % Search for the input of the gate
 my_line = regexprep(my_line,"\("," ");
 my_line = regexprep(my_line,"\)"," ");
 my_line = regexprep(my_line,",","");
 my_line = regexprep(my_line,";","");
 Line_spiltted= split(my_line);

 if(length(Line_spiltted)>2)
 index_in_lib= find(STD_names==Line_spiltted{2});
 if(index_in_lib==(size(Lib,1)))
 dummy= Line_spiltted;
 Line_spiltted{3}=['asssign_dummy',num2str(assign_counter),'_gate'];
 Line_spiltted{4}='.A';Line_spiltted{5}=dummy{5};
 Line_spiltted{6}='.Q';Line_spiltted{7}=dummy{3};
 assign_counter=assign_counter+1;
 clearvars dummy;
% my_line = fgetl(fid);

94

% continue
 end
 if (index_in_lib)
 %match_IN = regexp(my_line,'// /(\w*)\s+(\w*)','tokens');
 if (size(Lib(index_in_lib,:),2)==1)||(isempty((Lib{index_in_lib,2})))
 if(index_in_lib~=(size(Lib,1)))

charcell(Lib{index_in_lib,1},v_in_mean,v_in_std,V_critical,tw_in_mean,tw_in_std,Tw_cr
itical,index_in_lib);
 end
 end
 %checking gate is connected to output
 Outputs_gate= Line_spiltted(rem(find(Line_spiltted ==
Lib{index_in_lib,4}),length(Line_spiltted))+1);
 Inputs_gate =Line_spiltted(rem(find(Line_spiltted ==
Lib{index_in_lib,5}),length(Line_spiltted))+1);
 index_output= find (outputs == (Line_spiltted{(find(Line_spiltted ==
Lib{index_in_lib,4}))+1}));
 %% saving inputs and outputs of gate %%19/11
 dummy_input=[];dummy_output=[];
 for i=1:length(Inputs_gate)
 dummy_input=[dummy_input " " Inputs_gate{i}];
 end
 for i=1:length(Outputs_gate)
 dummy_output=[dummy_output " " Outputs_gate{i}];
 end
 all_gates_inputs{gates_total_number}=dummy_input;
 all_gates_outputs{gates_total_number}=dummy_output;

 gates_total_number=gates_total_number+1;

 %%
 All_nodes=strings(1,size(CKT,1));
 if(size(CKT,1) >1)
 for i=1:size(CKT,1)
 All_nodes(1,i)= CKT{i,1};
 end
 end
 out_index= find(Outputs_gate==All_nodes);
 [~,in_index_all]
=ind2sub(size(Inputs_gate==All_nodes),find(Inputs_gate==All_nodes));
 %%for maniplate_CKT.m
 all_gates_name=[all_gates_name " " string(Line_spiltted{3})] ;
 all_gates_name_no_in=[all_gates_name_no_in length(Inputs_gate)];
 all_gates_name_no_out=[all_gates_name_no_out length(Outputs_gate)];
 %%
%my_line
 % saving gates
 if (counter == 1) ||
((~isempty(Outputs_gate==outputs))&&isempty(out_index)&&isempty(find(Inputs_gate==All
_nodes)))
 CKT{counter,1}=string(Line_spiltted{3});
 CKT{counter,2}=intial_stage-1;
 CKT{counter,3}= Lib{index_in_lib,3};

95

 CKT{counter,8}= Lib{index_in_lib,2};
 CKT{counter,9}=string(Inputs_gate);
 CKT{counter,10}=string(Outputs_gate);
 CKT{counter,5}= 0;
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 if(~isempty(find(gates_aranged==CKT{counter,7})))
 Position= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 Position=1;
 end
 CKT{counter,4}= Position; %% position is high
 counter=counter+1;
 Position_in=Position;
 Position_out=Position;
 for i=1:length(Inputs_gate)
 CKT{counter,1}=Inputs_gate(i);
 CKT{counter,2}=intial_stage-2;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_in; %% position is high
 CKT{counter,5}= 1;
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_in=Position_in+1; %% each input is in different position
 end
 for i=1:length(Outputs_gate)
 CKT{counter,1}=Outputs_gate(i);
 CKT{counter,2}=intial_stage;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_out; %% position is high
 CKT{counter,5}= 2; %% output
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_out=Position_out+1;
 end
 elseif (out_index)
 stage_temp= CKT{out_index,2};
 %%19/11
% cell=CKT{out_index,7}(1);
% cell_input=find(all_gates_name==cell)/2;
% if ~isempty(cell_input)
% other_inputs=
all_gates_inputs{cell_input}(find((all_gates_inputs{cell_input}~=Outputs_gate)&
all_gates_inputs{cell_input}~= " "));
% gate_connected_other_inputs=[];
% other_inputs_index= find(other_inputs==All_nodes);
% for j=1:length(other_inputs)
% index_dummy = find(CKT{other_inputs_index(j),7} == cell)
% if (CKT{other_inputs_index(j),4}(index_dummy)
<CKT{out_index,4}(index_dummy))
% for i=1:length(all_gates_name)
% if ~isempty(all_gates_outputs{i}==other_inputs)

96

% Position_temp=Position_temp+all_gates_name_no_in(i);
% end
% end
% end
% end
% end
 %%
 CKT{out_index,5} = [CKT{out_index,5} 2]; %it is now output
 CKT{counter,1}=string(Line_spiltted{3});
 CKT{counter,2}=stage_temp-1;
 CKT{counter,3}= Lib{index_in_lib,3};
 CKT{counter,8}= Lib{index_in_lib,2};
 CKT{counter,9}=string(Inputs_gate);
 CKT{counter,10}=string(Outputs_gate);
 CKT{counter,5}= 0;
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 if(~isempty(find(gates_aranged==CKT{counter,7})))
 Position_temp= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 Position_temp= min(CKT{out_index,4});% min of position
 end
 Position_in=Position_temp;
 CKT{counter,4}= Position_temp; %% position is high
 counter=counter+1;

%% add dummy cell to other inputs if not connected to cell

cell_name =CKT{out_index,7};

 inout=zeros(1,size(CKT,1));

 for i =1:size(CKT,1)
 if ((~isempty(find(CKT{i,5}==1)))&(isempty(find(CKT{i,5}==2))))
 inout(i)=1;
 end
 end
%index_dummy_cell=find(nodes_cell&(inout==1));
if (first_parse)
 index_dummy_cell=[];
else
index_dummy_cell=find((inout==1));
end

for i=1:length(index_dummy_cell)
 %%insert dummy cell
 if (length(CKT{index_dummy_cell(i),4})>1)
 dummy=CKT{index_dummy_cell(i),7}(1);
 else
 dummy= CKT{index_dummy_cell(i),7};
 end
 CKT{counter,1}= dummy+ "_dummy"+dummy_counter;
 CKT{counter,2}=CKT{index_dummy_cell(i),2}-1;
 CKT{counter,3}= eye(2);

97

 CKT{counter,5}= -1;
 CKT{counter,6}= 1;
 CKT{counter,7}= dummy + "_dummy"+dummy_counter ;
 if(~isempty(find(gates_aranged==CKT{counter,7})))
 CKT{counter,4}= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 CKT{counter,4}= CKT{index_dummy_cell(i),4}(1); %% position is high
 end
 counter=counter+1;
 %%update inputs
 CKT{counter,1}= CKT{index_dummy_cell(i),1};
 CKT{counter,2}=CKT{index_dummy_cell(i),2}-2;
 CKT{counter,3}= eye(2);

 CKT{counter,5}= CKT{index_dummy_cell(i),5};
 CKT{counter,6}= 1;
 CKT{counter,7}= dummy + "_dummy"+dummy_counter ;
 if(~isempty(find(gates_aranged==CKT{counter,7})))
 CKT{counter,4}= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 CKT{counter,4}= CKT{index_dummy_cell(i),4}(1); %% position is high
 end
 counter=counter+1;

 CKT{index_dummy_cell(i),1}=CKT{index_dummy_cell(i),1}+ "_dummy"+dummy_counter
;
 CKT{index_dummy_cell(i),2}=CKT{index_dummy_cell(i),2};
 CKT{index_dummy_cell(i),3}=CKT{index_dummy_cell(i),3};
 CKT{index_dummy_cell(i),6}=CKT{index_dummy_cell(i),6};
 CKT{index_dummy_cell(i),5}=[1 2];
 dummy_counter=dummy_counter+1;
end
%% update inputs
 All_nodes=strings(1,size(CKT,1));
 if(size(CKT,1) >1)
 for i=1:size(CKT,1)
 All_nodes(1,i)= CKT{i,1};

 end
 end
 for i=1:length(Inputs_gate)
 index_in= find((Inputs_gate(i)==All_nodes));
 if (isempty(index_in))
 CKT{counter,1}=Inputs_gate(i);
 CKT{counter,2}=stage_temp-2;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_in; %% position is high
 CKT{counter,5}= 1;
 CKT{counter,6}=repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_in=Position_in+1;
 else %%% update reption and stage
 CKT{index_in,6} =CKT{index_in,6}+1;

98

 if (CKT{index_in,2}>(stage_temp-2))
 CKT{index_in,2}=(stage_temp-2);
 end
 temp=zeros(2,2*CKT{index_in,6});temp(1,1)=1;temp(end,end)=1;
 CKT{index_in,3}=temp;
 CKT{index_in,4} = [CKT{index_in,4} Position_in];
 CKT{index_in,7} = [CKT{index_in,7} " " string(Line_spiltted{3})];
 Position_in =Position_in+1;
 end
 end
 elseif (~isempty(in_index_all))
 %in_index_all=[];
 pos_temp=zeros(size(in_index_all));
for j=1:length(in_index_all)
 pos_temp(j) = CKT{in_index_all(j),2};
end
[dummy_temp in_index_index]=min(pos_temp);
in_index=in_index_all(in_index_index);
 stage_temp= CKT{in_index,2};
 %% 19/11

%Position_temp=all_gates_name_no_in(find(all_gates_name==CKT{in_index,7})/2)+max(CKT{
in_index,4});
 %%
 CKT{in_index,5} = [CKT{in_index,5} 1]; %it is now input
 CKT{counter,1}=string(Line_spiltted{3});
 CKT{counter,2}=stage_temp+1;
 CKT{counter,3}= Lib{index_in_lib,3};
 CKT{counter,8}= Lib{index_in_lib,2};
 CKT{counter,9}=string(Inputs_gate);
 CKT{counter,10}=string(Outputs_gate);
 CKT{counter,5}= 0;
 CKT{counter,6}= repetion;
 CKT{counter,7}=string(Line_spiltted{3});

 if(~isempty(find(gates_aranged==CKT{counter,7})))
 Position_temp= gates_position_in(find(gates_aranged==CKT{counter,7}));
 else
 Position_temp= min(CKT{in_index,4})+1;
 end
 Position_in=Position_temp;
 CKT{counter,4}= Position_temp; %% position is high
 Position_out=Position_temp;
 counter=counter+1;

%%add dummy cell to other inputs if not connected to cell
cell_name =CKT{in_index,7};

 inout=zeros(1,size(CKT,1));

 for i =1:size(CKT,1)
 if ((~isempty(find(CKT{i,5}==2)))&(isempty(find(CKT{i,5}==1))))
 inout(i)=1;
 end

99

 end
if (first_parse)
 index_dummy_cell=[];
else
 index_dummy_cell=[];
%index_dummy_cell=find((inout==1));
end

for i=1:length(index_dummy_cell)
 CKT{counter,1}= cell_name+ "_dummy";
 CKT{counter,2}=CKT{index_dummy_cell(i),2}+1;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= CKT{index_dummy_cell(i),4}; %% position is high
 CKT{counter,5}= -1;
 CKT{counter,6}= 1;
 CKT{counter,7}= CKT{index_dummy_cell(i),7} + "_dummy" ;
 counter=counter+1;
 CKT{counter,1}= CKT{index_dummy_cell(i),1};
 CKT{counter,2}=CKT{index_dummy_cell(i),2}+2;
 CKT{counter,3}= CKT{index_dummy_cell(i),3};
 CKT{counter,4}= CKT{index_dummy_cell(i),4}; %% position is high
 CKT{counter,5}= CKT{index_dummy_cell(i),5};
 CKT{counter,6}= CKT{index_dummy_cell(i),6};
 CKT{counter,7}= CKT{index_dummy_cell(i),7} + "_dummy" ;
 counter=counter+1;

 CKT{index_dummy_cell(i),1}=CKT{index_dummy_cell(i),1}+ "_dummy" ;
 CKT{index_dummy_cell(i),2}=CKT{index_dummy_cell(i),2};
 CKT{index_dummy_cell(i),3}=eye(2);
 CKT{index_dummy_cell(i),6}=1;
end
%%
 for i=1:length(Inputs_gate)
 index_in_other= find((Inputs_gate(i)==All_nodes));
 if (isempty(index_in_other))
 CKT{counter,1}=Inputs_gate(i);
 CKT{counter,2}=stage_temp;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_in; %% position is high
 CKT{counter,5}= 1;
 CKT{counter,6}=repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_in=Position_in+1;
 else %%% update reption and stage
 CKT{index_in_other,6} =CKT{index_in_other,6}+1;
 if (CKT{index_in_other,2}>(stage_temp))
 CKT{index_in_other,2}=(stage_temp);
 end
 temp=zeros(2,2*CKT{index_in_other,6});temp(1,1)=1;temp(end,end)=1;
 CKT{index_in_other,3}=temp;
 CKT{index_in_other,4} = [CKT{index_in_other,4} Position_in];
 CKT{index_in_other,7} = [CKT{index_in_other,7} " "
string(Line_spiltted{3})];

100

 Position_in =Position_in+1;
 end
 end
 for i=1:length(Outputs_gate)
 index_out= find((Outputs_gate(i)==All_nodes));
 if (isempty(index_out))
 CKT{counter,1}=Outputs_gate(i);
 CKT{counter,2}=stage_temp+2;
 CKT{counter,3}= eye(2);
 CKT{counter,4}= Position_out; %% position is high
 CKT{counter,5}= 2;
 CKT{counter,6}=repetion;
 CKT{counter,7}=string(Line_spiltted{3});
 counter=counter+1;
 Position_out=Position_out+1;
 else %%% update reption and stage
 CKT{index_out,6} =CKT{index_out,6}+1;
 if (CKT{index_out,2}>(stage_temp))
 CKT{index_out,2}=(stage_temp);
 end
 temp=zeros(2,2*CKT{index_out,6});temp(1,1)=1;temp(end,end)=1;
 CKT{index_out,3}=temp;
 CKT{index_out,4} = [CKT{index_out,4} Position_in];
 Position_out =Position_out+1;
 end
 end

 else
 fprintf("Case is not considered");
 end

 %%%%%%%%%% to be continued dealing with nodes
 end
 end
 my_line = fgetl(fid);
end
%% maniplate CKT

j=1;nodes_reptead=[];nodes_reptead_index=[];nodes_reptead_gates={};nodes_reptead_posi
tion={};
stages =[]; gates_aranged=strings(0,0);gates_no_in=[];gates_no_out=[];
for i=1:length(CKT)
 overwrite=0;
 if(length(CKT{i,4})>1)
 nodes_reptead= [nodes_reptead CKT{i,1}];
 nodes_reptead_position(j)={CKT{i,4}};
 nodes_reptead_index=[nodes_reptead_index i];
 nodes_reptead_gates(j)= {CKT{i,7}};
 j=j+1;
 end
 %% arrange the cells in CKT stages
 stage_index=find(stages==CKT{i,2});

101

 if (isempty(stage_index)&(CKT{i,5}<1))
 stages=[stages CKT{i,2}];
 stage_index=length(stages);
 end
 if (CKT{i,5}<1)

 if (~isempty((find(all_gates_name == CKT{i,7}))))
 if (CKT{i,4}<=size(gates_no_in,1))&(stage_index <=
size(gates_no_in,2))&(gates_no_in(CKT{i,4},stage_index)~=0)
 overwrite=1;
 old_row_in=zeros(1,size(gates_no_in,2));old_row_out=old_row_in;

old_row_in(stage_index)=gates_no_in(CKT{i,4},stage_index);old_row_out(stage_index)=ga
tes_no_out(CKT{i,4},stage_index);

gates_no_in(CKT{i,4},stage_index)=all_gates_name_no_in((find(all_gates_name ==
CKT{i,7}))/2);
 gates_no_out(CKT{i,4},stage_index)=
all_gates_name_no_out((find(all_gates_name == CKT{i,7}))/2);

gates_no_in=[gates_no_in(1:CKT{i,4},:);old_row_in;gates_no_in(CKT{i,4}+1:end,:)];

gates_no_out=[gates_no_out(1:CKT{i,4},:);old_row_out;gates_no_out(CKT{i,4}+1:end,:)];
 else

gates_no_in(CKT{i,4},stage_index)=all_gates_name_no_in((find(all_gates_name ==
CKT{i,7}))/2);
 gates_no_out(CKT{i,4},stage_index)=
all_gates_name_no_out((find(all_gates_name == CKT{i,7}))/2);
 end
 else
 %dummy_gate
 if (CKT{i,4}<=size(gates_no_in,1))&(stage_index <=
size(gates_no_in,2))&(gates_no_in(CKT{i,4},stage_index)~=0)
 overwrite=2;
 old_row_in=zeros(1,size(gates_no_in,2));old_row_out=old_row_in;

old_row_in(stage_index)=gates_no_in(CKT{i,4},stage_index);old_row_out(stage_index)=ga
tes_no_out(CKT{i,4},stage_index);
 gates_no_in(CKT{i,4},stage_index)=1;
 gates_no_out(CKT{i,4},stage_index)=1;

gates_no_in=[gates_no_in(1:CKT{i,4},:);old_row_in;gates_no_in(CKT{i,4}+1:end,:)];

gates_no_out=[gates_no_out(1:CKT{i,4},:);old_row_out;gates_no_out(CKT{i,4}+1:end,:)];
 else
 gates_no_in(CKT{i,4},stage_index)=1;
 gates_no_out(CKT{i,4},stage_index)=1;
 end
 end
 if (overwrite)
 old_row=strings(1,size(gates_no_in,2));
 old_row(stage_index)=gates_aranged(CKT{i,4},stage_index);
 gates_aranged(CKT{i,4},stage_index)=CKT{i,7};

102

gates_aranged=[gates_aranged(1:CKT{i,4},:);old_row;gates_aranged(CKT{i,4}+1:end,:)];
 else
 gates_aranged(CKT{i,4},stage_index)=CKT{i,7};
 end
 end
end
gates_position_in=zeros(size(gates_aranged));
gates_position_in(1,:)=1;
for i=2:size(gates_aranged,1)

 gates_position_in(i,:)=sum(gates_no_in(1:i-1,:),1)+1;

end
end
end

IV. Characterize Cell

In this function, the characterization of cell is done to get the probability of error, ITM and

PTM of the circuit.

function [] =
charcell(cell_name,v_in_mean,v_in_std,V_critical,tw_in_mean,tw_in_std,Tw_critical,Lib
_counter)
rng('default') % For reproducibility
 single_Event=1;

global Lib
Number_of_points_tw=50;
Number_of_points_v=10;
load(['./models/'+cell_name+'_model.mat']);
cell_name_char=char(cell_name);
%% Maximum tw_in is 600, Maximum v_in is 1.8

%assume indpendace of the inputs

 tw_in_v=normrnd(tw_in_mean,tw_in_std,[Number_of_points_tw 1]);
 v_in_v=normrnd(v_in_mean,v_in_std,[Number_of_points_v 1]);

 v_th=1.8;
 tw_th=600;
 P=0;
for i=1:length(v_in_v)
 for j=1:length(tw_in_v)
 tw_out = tw_model1(tw_in_v(j),v_in_v(i));
 v_out = v_model1(tw_in_v(j),v_in_v(i));

103

 if (tw_out>Tw_critical) && (v_out >V_critical)
 P=P+1;
 end
 end
end
P=P/(length(v_in_v))/length(tw_in_v);
%% AND CELLS
if (string(cell_name_char(1:3)) == 'AND')
 Lib{Lib_counter,1}=cell_name;
 temp=zeros(2^(str2double(cell_name_char(4))),1);
 temp(end)=1;
 Lib{Lib_counter,3}=[~temp temp];
 Lib{Lib_counter,4} = [".Q"];
 No_of_inputs=str2double(cell_name_char(4));
 No_of_prob = 2^(No_of_inputs*2);
 P_t=0;
 % SET can happen for each node or no node at all, SET will cause error and no
logical masking for 0->1 1 and 0 ->1 1 with prob P and 0->1 o->1 with prob P^2
 % for AND P_t=sum(P^iii*nCiii /No_of_prob)
 %%prob of the out switch from 0->1
 if (single_Event==1)
 end_counter=1;
 else
 end_counter=No_of_inputs;
 end
 for iii=1:end_counter
 P_t=P_t+P^(iii)*nchoosek(No_of_inputs,iii)/No_of_prob;
 end
 %%prob of the out switch from 1->0 (same for 0->1 for and)
 P_t=2*P_t;
 Lib{Lib_counter,2}=P_t;
 if (str2double(cell_name_char(4)) == 2)
 Lib{Lib_counter,5} = [".A" ".B"];
 elseif (str2double(cell_name_char(4)) == 3)
 Lib{Lib_counter,5} = [".A" ".B" ".C"];
 elseif (str2double(cell_name_char(4)) == 4)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D"];
 elseif (str2double(cell_name_char(4)) == 5)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E"];
 elseif (str2double(cell_name_char(4)) == 5)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E" ".F"];
 else
 error("No of input is not in the code please add it")
 end

elseif (string(cell_name_char(1:2)) == 'NA')
 Lib{Lib_counter,1}=cell_name;
 temp=zeros(2^(str2double(cell_name_char(3))),1);
 temp(end)=1;
 Lib{Lib_counter,3}=[temp ~temp];
 Lib{Lib_counter,4} = [".Q"];
 No_of_inputs=str2double(cell_name_char(3));
 No_of_prob = 2^(No_of_inputs*2);

104

 % SET can happen for each node or no node at all, SET will cause error and no
logical masking for 0->1 1 and 0 ->1 1 with prob P and 0->1 o->1 with prob P^2
 % for NAND P_t=sum(P^iii*nCiii /No_of_prob)
 %%prob of the out switch from 0->1
 P_t=0;
 if (single_Event==1)
 end_counter=1;
 else
 end_counter=No_of_inputs;
 end
 for iii=1:end_counter
 P_t=P_t+P^(iii)*nchoosek(No_of_inputs,iii)/No_of_prob;
 end
 %%prob of the out switch from 1->0 (same for 0->1 for nand)
 P_t=2*P_t;
 Lib{Lib_counter,2}=P_t;
 if (str2double(cell_name_char(3)) == 2)
 Lib{Lib_counter,5} = [".A" ".B"];
 elseif (str2double(cell_name_char(3)) == 3)
 Lib{Lib_counter,5} = [".A" ".B" ".C"];
 elseif (str2double(cell_name_char(3)) == 4)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D"];
 elseif (str2double(cell_name_char(3)) == 5)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E"];
 elseif (str2double(cell_name_char(3)) == 6)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E" ".F"];
 else
 error("No of input is not in the code please add it")
 end

%% OR NOR cells
elseif (string(cell_name_char(1:2)) == 'OR')
 Lib{Lib_counter,1}=cell_name;
 temp=ones(2^(str2double(cell_name_char(3))),1);
 temp(1)=0;
 Lib{Lib_counter,3}=[~temp temp];
 Lib{Lib_counter,4} = [".Q"];
 No_of_inputs=str2double(cell_name_char(3));
 No_of_prob = 2^(No_of_inputs*2);
 P_t=0;
 % SET can happen for each node or no node at all, SET will cause error and no
logical masking for 0->1 1 and 0 ->1 1 with prob P and 0->1 o->1 with prob P^2
 % for OR P_t=sum(P^iii*nCiii /No_of_prob)
 %%prob of the out switch from 1->0
 if (single_Event==1)
 end_counter=1;
 else
 end_counter=No_of_inputs;
 end
 for iii=1:end_counter
 P_t=P_t+P^(iii)*nchoosek(No_of_inputs,iii)/No_of_prob;
 end
 %%prob of the out switch from 1->0 (same for 0->1 for and)
 P_t=2*P_t;

105

 Lib{Lib_counter,2}=P_t;
 if (str2double(cell_name_char(3)) == 2)
 Lib{Lib_counter,5} = [".A" ".B"];
 elseif (str2double(cell_name_char(3)) == 3)
 Lib{Lib_counter,5} = [".A" ".B" ".C"];
 elseif (str2double(cell_name_char(3)) == 4)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D"];
 elseif (str2double(cell_name_char(3)) == 5)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E"];
 elseif (str2double(cell_name_char(3)) == 6)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E" ".F"];
 else
 error("No of input is not in the code please add it")
 end

%%
elseif (string(cell_name_char(1:2)) == 'NO')
 Lib{Lib_counter,1}=cell_name;
 temp=ones(2^(str2double(cell_name_char(3))),1);
 temp(1)=0;
 Lib{Lib_counter,3}=[temp ~temp];
 Lib{Lib_counter,4} = [".Q"];
 No_of_inputs=str2double(cell_name_char(3));
 No_of_prob = 2^(No_of_inputs*2);
 P_t=0;
 % SET can happen for each node or no node at all, SET will cause error and no
logical masking for 0->1 1 and 0 ->1 1 with prob P and 0->1 o->1 with prob P^2
 % for OR P_t=sum(P^iii*nCiii /No_of_prob)
 %%prob of the out switch from 1->0
 if (single_Event==1)
 end_counter=1;
 else
 end_counter=No_of_inputs;
 end
 for iii=1:end_counter
 P_t=P_t+P^(iii)*nchoosek(No_of_inputs,iii)/No_of_prob;
 end
 %%prob of the out switch from 1->0 (same for 0->1 for and)
 P_t=2*P_t;
 Lib{Lib_counter,2}=P_t;
 if (str2double(cell_name_char(3)) == 2)
 Lib{Lib_counter,5} = [".A" ".B"];
 elseif (str2double(cell_name_char(3)) == 3)
 Lib{Lib_counter,5} = [".A" ".B" ".C"];
 elseif (str2double(cell_name_char(3)) == 4)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D"];
 elseif (str2double(cell_name_char(3)) == 5)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E"];
 elseif (str2double(cell_name_char(3)) == 6)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E" ".F"];
 else
 error("No of input is not in the code please add it")
 end

106

%% XOR
elseif (string(cell_name_char(1:2)) == 'EO')
 Lib{Lib_counter,1}=cell_name;
 No_of_inputs=str2double(cell_name_char(3));

 N= 0: 2^(No_of_inputs)-1;
 B=de2bi(N,'left-msb');
 temp=B(:,1);
 for i=1:No_of_inputs-1
 temp=xor(temp,B(:,i+1));
 end
 Lib{Lib_counter,3}=[~temp temp];
 Lib{Lib_counter,4} = [".Q"];
 No_of_prob = 2^(No_of_inputs*2);
 P_t=0;
 % SET can happen for each node or no node at all, SET will cause error and no
logical masking for 0->1 1 and 0 ->1 1 with prob P and 0->1 o->1 with prob P^2
 %%prob of the out switch from 1->0
 if (single_Event==1)
 end_counter=1;
 else
 end_counter=No_of_inputs;
 end

 for iii=1:2:end_counter
 P_t=P_t+P^(iii)*nchoosek(No_of_inputs,iii)/No_of_prob;
 end
 P_t=(2^No_of_inputs)*P_t;
 Lib{Lib_counter,2}=P_t;
 if (str2double(cell_name_char(3)) == 2)
 Lib{Lib_counter,5} = [".A" ".B"];
 elseif (str2double(cell_name_char(3)) == 3)
 Lib{Lib_counter,5} = [".A" ".B" ".C"];
 elseif (str2double(cell_name_char(3)) == 4)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D"];
 elseif (str2double(cell_name_char(3)) == 5)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E"];
 elseif (str2double(cell_name_char(3)) == 6)
 Lib{Lib_counter,5} = [".A" ".B" ".C" ".D" ".E" ".F"];
 else
 error("No of input is not in the code please add it")
 end
elseif (string(cell_name_char(1:2)) == 'IN')
 Lib{Lib_counter,1}=cell_name;
 Lib{Lib_counter,2}=P;
 Lib{Lib_counter,3}= [0 1;1 0];
 Lib{Lib_counter,4} = [".Q"];
 Lib{Lib_counter,5} = [".A"];
 elseif (string(cell_name_char(1:2)) == 'BU')
 Lib{Lib_counter,1}=cell_name;
 Lib{Lib_counter,2}=P;
 Lib{Lib_counter,3}= eye(2);
 Lib{Lib_counter,4} = [".Q"];
 Lib{Lib_counter,5} = [".A"];

107

else
 error("This cell is not characterized, please add it to the code")
end
end

V. Manipulation of Circuit

In this function, the circuit is manipulated to sort the circuit according to level and get the

ITM of the swapping wire.

function
[]=maniplate_CKT3(all_gates_name,all_gates_name_no_in,all_gates_name_no_out,outputs)
global CKT
clearvars -except CKT all_gates_name all_gates_name_no_in all_gates_name_no_out
outputs

j=1;nodes_reptead=[];nodes_reptead_index=[];nodes_reptead_gates={};nodes_reptead_posi
tion={};
stages =[]; gates_aranged=strings(0,0);gates_no_in=[];gates_no_out=[];
stage_array=[]; max_stage=[];nodes_reptead_stage=[];
for i=1:length(CKT)
 if(length(CKT{i,4})>1)
 nodes_reptead= [nodes_reptead CKT{i,1}];
 nodes_reptead_position(j)={CKT{i,4}};
 nodes_reptead_index=[nodes_reptead_index i];
 nodes_reptead_gates(j)= {CKT{i,7}};
 nodes_reptead_stage(j)=CKT{i,2};
 j=j+1;
 end
 %% arrange the cells in CKT stages
 stage_index=find(stages==CKT{i,2});
 if (isempty(stage_index)&(CKT{i,5}<1))
 stages=[stages CKT{i,2}];
 stage_index=length(stages);
 end
 if (CKT{i,5}<=0)
 gates_aranged(CKT{i,4},stage_index)=CKT{i,7};
 if (~isempty((find(all_gates_name == CKT{i,7}))))

gates_no_in(CKT{i,4},stage_index)=all_gates_name_no_in((find(all_gates_name ==
CKT{i,7}))/2);
 gates_no_out(CKT{i,4},stage_index)=
all_gates_name_no_out((find(all_gates_name == CKT{i,7}))/2);
 else
 %dummy_gate
 gates_no_in(CKT{i,4},stage_index)=1;
 gates_no_out(CKT{i,4},stage_index)=1;
 end
 end
 %%

108

 stage_index=find(stage_array==CKT{i,2});
 if (isempty(stage_index))
 stage_array=[stage_array CKT{i,2}];
 stage_index=length(stage_array);
 max_stage=[max_stage max(CKT{i,4})];
 end
 if (max(CKT{i,4})> max_stage(stage_index))
 max_stage(stage_index)= max(CKT{i,4});
 end
end

%% Make sure that all the outputs are in the last stage and observable
output_stage=max(stage_array);
for kk=1:length(CKT)

 if(~isempty(find(outputs==CKT{kk,1}))&&(CKT{kk,2}~=output_stage))
 output_name= outputs(find(outputs==CKT{kk,1}));
 pos=CKT{kk,4}(1);
 CKT{kk,1}=[CKT{kk,1} + "_dummynet"];
 current_stage=CKT{kk,2};
 stage_max=max_stage(stage_array==CKT{kk,2});
 for j=1:length(CKT)
 if(CKT{j,2}<=current_stage)
 CKT{j,2}=CKT{j,2}-1;
 end
 end
 for j=1:length(stage_array)
 if (stage_array(j)<output_stage && stage_array(j)>current_stage)
 CKT{end+1,1}=[output_name+ "_dummynet_stage"+j];
 CKT{end,2}=stage_array(j);
 CKT{end,3}=eye(2);
 CKT{end,4}=max_stage(j)+1;
 end
 end
 for j=1:stage_max
 CKT{end+1,1}=[output_name+ "_dummynet"+j];
 if(j==pos)
 CKT{end,3}=[1 0 0 0 ; 0 0 0 1];
 CKT{end,4}=[j,stage_max+1];
 else
 CKT{end,3}=eye(2);
 CKT{end,4}=j;
 end
 CKT{end,2}=current_stage;
 end
 CKT{end+1,1}=output_name;
 CKT{end,2}=output_stage;
 CKT{end,3}=eye(2);
 CKT{end,4}=max_stage(stage_array==output_stage)+1;

j=1;nodes_reptead=[];nodes_reptead_index=[];nodes_reptead_gates={};nodes_reptead_posi
tion={};
stages =[]; gates_aranged=strings(0,0);gates_no_in=[];gates_no_out=[];

109

stage_array=[]; max_stage=[];nodes_reptead_stage=[];
for i=1:length(CKT)
 if(length(CKT{i,4})>1)
 nodes_reptead= [nodes_reptead CKT{i,1}];
 nodes_reptead_position(j)={CKT{i,4}};
 nodes_reptead_index=[nodes_reptead_index i];
 nodes_reptead_gates(j)= {CKT{i,7}};
 nodes_reptead_stage(j)=CKT{i,2};
 j=j+1;
 end
 %% arrange the cells in CKT stages
 stage_index=find(stages==CKT{i,2});
 if (isempty(stage_index)&(CKT{i,5}<1))
 stages=[stages CKT{i,2}];
 stage_index=length(stages);
 end
 if (CKT{i,5}<=0)
 gates_aranged(CKT{i,4},stage_index)=CKT{i,7};
 if (~isempty((find(all_gates_name == CKT{i,7}))))

gates_no_in(CKT{i,4},stage_index)=all_gates_name_no_in((find(all_gates_name ==
CKT{i,7}))/2);
 gates_no_out(CKT{i,4},stage_index)=
all_gates_name_no_out((find(all_gates_name == CKT{i,7}))/2);
 else
 %dummy_gate
 gates_no_in(CKT{i,4},stage_index)=1;
 gates_no_out(CKT{i,4},stage_index)=1;
 end
 end
 %%
 stage_index=find(stage_array==CKT{i,2});
 if (isempty(stage_index))
 stage_array=[stage_array CKT{i,2}];
 stage_index=length(stage_array);
 max_stage=[max_stage max(CKT{i,4})];
 end
 if (max(CKT{i,4})> max_stage(stage_index))
 max_stage(stage_index)= max(CKT{i,4});
 end
end

 end
end
%%

for i=1:length(nodes_reptead)
 stage_index= find(stage_array== nodes_reptead_stage(i));
 No_element_in_stage=max_stage(stage_index);
 temp_ITM=speye(2^No_element_in_stage);
 node_interchange=sort(cell2mat(nodes_reptead_position(i)));
 N=(1:2^No_element_in_stage)-1;
 %node_interchange(1)+1 as the swap is between the repeated node and the

110

 %other node
 b = de2bi(N,'left-msb');
 b_new=[b(:,1:node_interchange(2)) b(:,node_interchange(1)+1)
b(:,node_interchange(2)+1:end)];
 b_new(:,node_interchange(1)+1)=[];
 N_new=bi2de(b_new,'left-msb')+1;
 %temp_ITM(N_new,:)=eye(2^No_element_in_stage);
 temp_ITM(:,N_new)=speye(2^No_element_in_stage);

 for j=1:length(CKT)
 if(CKT{j,2}<=nodes_reptead_stage(i))
 CKT{j,2}=CKT{j,2}-1;
 end
 end
 CKT{length(CKT)+1,2} = nodes_reptead_stage(i);
 CKT{length(CKT),3} = temp_ITM;
 CKT{length(CKT),4} = 1;
 CKT{length(CKT),1} = nodes_reptead(i)+'_swaped';
 for j=1:length(stage_array)
 if (stage_array(j)<=nodes_reptead_stage(i))
 stage_array(j)=stage_array(j)-1;
 end
 end
 stage_array(length(stage_array)+1)=nodes_reptead_stage(i);
 max_stage(length(stage_array))=1;
 current_stage=nodes_reptead_stage(i);
 for j=1:length(nodes_reptead_stage)
 if (nodes_reptead_stage(j)<=current_stage)
 nodes_reptead_stage(j)=nodes_reptead_stage(j)-1;
 end
 end
end
%% get cells position
% gates=[];gates_pos=[];gates_no_in=[];gates_no_out=[];
% for i=1:length(nodes_reptead_gates)
% updated_gates=[];
% for j=1:length(nodes_reptead_gates{i})
% if ((nodes_reptead_gates{i}(j) ~= " ") >0)
% gates = [gates nodes_reptead_gates{i}(j)];
% updated_gates=[updated_gates nodes_reptead_gates{i}(j)];
% end
% end
% nodes_reptead_gates{i}=updated_gates;
% end
% for j=1:length(gates)
% for i=1:length(CKT)
% if((CKT{i,1})== gates(j))
% gates_pos=[gates_pos CKT{i,4}];
% continue
% end
% end
% gates_no_in = [gates_no_in all_gates_name_no_in((find(all_gates_name ==
gates(j)))/2)];

111

% gates_no_out = [gates_no_out all_gates_name_no_out((find(all_gates_name ==
gates(j)))/2)];
% end
end

VI. Calculate The Worst Case using Krishnawamy’s method

In this function, the worst-case vector using Krinshnawamy’s method

%% calculate ITM/PTM
function []=Cal_Worst_case(inputs,outputs)
global CKT
tic
Result_ITM=1;Result_PTM=1;
ALL_CKT_STAGES=zeros(1,size(CKT,1));
for i=1:size(CKT,1)
 ALL_CKT_STAGES(i)=CKT{i,2};
end
[ALL_CKT_STAGES,index_sorted]=sort(ALL_CKT_STAGES);
CKT_2=CKT(index_sorted,:);
unique_stages=sort(unique(ALL_CKT_STAGES));
counter=1;kron_result_ITM=cell(1,length(unique_stages));
kron_result_PTM=kron_result_ITM;
output_sorted=strings(0);input_sorted=output_sorted;

for i=min(unique_stages):max(unique_stages)

 min_index= find(ALL_CKT_STAGES==i,1,'first'); %%1st index
 max_index= find(ALL_CKT_STAGES==i,1,'last'); %%last index
 SUB_CKT= CKT_2(min_index:max_index,:);
 ALL_SUBCKT_STAGES=zeros(1,size(SUB_CKT,1));
 if(i== min(unique_stages))
 input_sorted=strings(size(SUB_CKT,1),1);
 elseif(i== max(unique_stages))
 output_sorted=strings(size(SUB_CKT,1),1);
 end
 for j=1:size(SUB_CKT,1)
 ALL_SUBCKT_STAGES(j)=min(SUB_CKT{j,4});
 end
 [ALL_SUBCKT_STAGES,index_sorted]=sort(ALL_SUBCKT_STAGES);
 SUB_CKT=SUB_CKT(index_sorted,:);
 CKT_2(min_index:max_index,:)=SUB_CKT;
 kron_result_ITM{counter}=sparse(1);
 kron_result_PTM{counter}=sparse(1);
 for j=1:size(SUB_CKT,1)
 kron_result_ITM{counter} = kron(kron_result_ITM{counter},sparse(SUB_CKT{j,3}));
 matrix_temp=SUB_CKT{j,3};
 if ~(isempty(SUB_CKT{j,8}))
 matrix_temp(matrix_temp==0)= SUB_CKT{j,8};
 matrix_temp(matrix_temp==1)= 1-SUB_CKT{j,8};
 end

112

 kron_result_PTM{counter} =
kron(kron_result_PTM{counter},sparse(matrix_temp));

 if(i== min(unique_stages))
 input_sorted(j)=SUB_CKT{j,1};
 elseif(i== max(unique_stages))
 output_sorted(j)=SUB_CKT{j,1};
 end

 end
 Result_ITM=Result_ITM*kron_result_ITM{counter};
 Result_PTM=Result_PTM*kron_result_PTM{counter};
 counter=counter+1;

end
%% Compute fidelity
fidelity = Result_ITM .* Result_PTM;
fidelity_min=min(fidelity(fidelity>0));
[x_min ~] = find(fidelity == fidelity_min);

error= 1-fidelity_min;
x_min= x_min-1;
Worst_vector=de2bi(x_min,'left-msb');

sorting=zeros(length(inputs),1);
Worst_vector_new=Worst_vector;
for i = 1: length(inputs)
 sorting(i)=find(inputs ==input_sorted(i));
 Worst_vector_new(:,sorting(i))=Worst_vector(:,i);
end

for i=1:size(Worst_vector,1)
% fprintf('Worst case vector for inputs: [')
% fprintf('%s ', input_sorted);
% fprintf('] with prob of error,%d \n', error);
% fprintf('is [')
% fprintf('%g ', Worst_vector(i,:));
% fprintf(']\n');
fprintf('Worst case vector for inputs: [')
fprintf('%s ', inputs);
fprintf('] with prob of error,%d \n', error);
fprintf('is [')
fprintf('%g ', Worst_vector_new(i,:));
fprintf(']\n');
end
toc
end

113

VII. Calculate The Worst Case using patterns

In this function, the worst-case vector is extracted among patterns that are generated from

FastScan. Norm method is a variable that controls the usage of the proposed new metric.

 %% calculate ITM/PTM
function []=Cal_Worst_case_pattern2(pattern_file,inputs,outputs)
global CKT;
norm2_method=1;
tic
% b=1:2^length(inputs);b=b-1;Patterns=de2bi(b,'left-msb');Coverage='100%';
% Patterns= [0 1 1 1 1; 1 1 1 1 1];
% Patterns= zeros(1,length(inputs));
 [Patterns,Coverage]= read_patterns(pattern_file);
 if (~norm2_method)
 ITM_Results=zeros(size(Patterns,1),2^length(outputs));PTM_Results=ITM_Results;
 end
norm2=zeros(size(Patterns,1),1);
for jjj=1:size(Patterns,1)
 Pattern=Patterns(jjj,:);
nodes=inputs;
nodes_prob=cell(length(nodes),1);
for i=1:length(nodes)
 if (Pattern(i)==0)
 nodes_prob{i}=[1 0];
 else
 nodes_prob{i}=[0 1];
 end
end
%%

ALL_CKT_STAGES=zeros(1,size(CKT,1));
for i=1:size(CKT,1)
 ALL_CKT_STAGES(i)=CKT{i,2};
end
[ALL_CKT_STAGES,index_sorted]=sort(ALL_CKT_STAGES);
CKT_2=CKT(index_sorted,:);
unique_stages=sort(unique(ALL_CKT_STAGES));
counter=1;kron_result_ITM=cell(1,length(unique_stages));
kron_result_PTM=kron_result_ITM;
output_sorted=strings(0);input_sorted=output_sorted;

for i=min(unique_stages):max(unique_stages)

 min_index= find(ALL_CKT_STAGES==i,1,'first'); %%1st index
 max_index= find(ALL_CKT_STAGES==i,1,'last'); %%last index
 SUB_CKT= CKT_2(min_index:max_index,:);
 ALL_SUBCKT_STAGES=zeros(1,size(SUB_CKT,1));
 if(i== min(unique_stages))

114

 input_sorted=strings(size(SUB_CKT,1),1);
 elseif(i== max(unique_stages))
 output_sorted=strings(size(SUB_CKT,1),1);
 end
 for j=1:size(SUB_CKT,1)
 ALL_SUBCKT_STAGES(j)=min(SUB_CKT{j,4});
 end
 [ALL_SUBCKT_STAGES,index_sorted]=sort(ALL_SUBCKT_STAGES);
 SUB_CKT=SUB_CKT(index_sorted,:);
 CKT_2(min_index:max_index,:)=SUB_CKT;
 %kron_result_ITM{counter}=sparse(1);
 %kron_result_PTM{counter}=sparse(1);
 for j=1:size(SUB_CKT,1)
 %kron_result_ITM{counter} =
kron(kron_result_ITM{counter},sparse(SUB_CKT{j,3}));
 %kron_result_PTM{counter} =
kron(kron_result_PTM{counter},sparse(matrix_temp));

 if(i== min(unique_stages))
 input_sorted(j)=SUB_CKT{j,1};
 elseif(i== max(unique_stages))
 output_sorted(j)=SUB_CKT{j,1};
 end

 end
 %Result_ITM=Result_ITM*kron_result_ITM{counter};
 %Result_PTM=Result_PTM*kron_result_PTM{counter};
 counter=counter+1;
end
%%

PTM_nodes=nodes_prob;
ITM_nodes=nodes_prob;
for i=min(unique_stages):max(unique_stages)
 min_index= find(ALL_CKT_STAGES==i,1,'first'); %%1st index
 max_index= find(ALL_CKT_STAGES==i,1,'last'); %%last index
 SUB_CKT= CKT_2(min_index:max_index,:);
 for j=1:size(SUB_CKT,1)
 if (SUB_CKT{j,5}==0)
 if(length(SUB_CKT{j,9})==1)
 1;
 end
 PTM_nodes_in=zeros(length(SUB_CKT{j,9}),2);ITM_nodes_in=PTM_nodes_in;
 for k=1:length(SUB_CKT{j,9})
 Pattern_index= find(SUB_CKT{j,9}(k)==nodes);
 if (isempty(Pattern_index))
 1
 end
 ITM_nodes_in(k,:)=ITM_nodes{Pattern_index,:};
 PTM_nodes_in(k,:)=PTM_nodes{Pattern_index,:};
 end
 nodes(end+1)=SUB_CKT{j,10};
 ITM_nodes{end+1}= cal_prob_cell2(ITM_nodes_in,SUB_CKT{j,3});
 matrix_temp=double(SUB_CKT{j,3});

115

 if ~(isempty(SUB_CKT{j,8}))
% SUB_CKT{j,8}=0.01;
 matrix_temp(matrix_temp==0)= SUB_CKT{j,8};
 matrix_temp(matrix_temp==1)= 1-SUB_CKT{j,8};
 end
 PTM_nodes{end+1}= cal_prob_cell2(PTM_nodes_in,matrix_temp);
 end
 end

end

PTM_nodes_out=zeros(length(outputs),2);ITM_nodes_out=PTM_nodes_out;

for k=1:length(outputs)
 out_index= find(outputs(k)==nodes);
 if (isempty(out_index))
 1
 end
 ITM_nodes_out(k,:)=ITM_nodes{out_index,:};
 PTM_nodes_out(k,:)=PTM_nodes{out_index,:};
end
if (~norm2_method)
 ITM_Results(jjj,:)= cal_PTM_cell(ITM_nodes_out)';
 PTM_Results(jjj,:)= cal_PTM_cell(PTM_nodes_out)';
else
 norm2(jjj)=norm(ITM_nodes_out - PTM_nodes_out,2);
end
end

if (~norm2_method)
 fidelity = ITM_Results .* PTM_Results;
 fidelity_min=min(fidelity(fidelity>0));
 error= 1-fidelity_min;
 [x_min ~] = find(fidelity == fidelity_min);
 Pattern=Patterns(x_min,:);
else
 [dummy x_max] =max(norm2);
 [x_max ~] = find(norm2 == (norm2(x_max)));
 Pattern=Patterns(x_max,:);
 error=norm2(x_max);
end

% x_max-x_min

for i=1:size(Pattern,1)
fprintf('Worst case vector for inputs: [')
fprintf('%s ', inputs);
if (~norm2_method)
 fprintf('] with prob of error,%d \n', error);

116

else
 fprintf('] with norm2 of error,%d \n', error);
end

fprintf('is [')
fprintf('%g ', Pattern(i,:));
fprintf('] with coverage %s \n',Coverage);

end
toc
end

VIII. Calculate Output Probability

In this function, the output probability of the cell is calculated using our new method

function output_prob= cal_prob_cell2(input_prob,PTM)
% in this function we assume that each cell have only one output
%input_pro is [p(0) p(1)] for each input
N=1:size(PTM,1);
 b = de2bi(N-1,'left-msb')+1;
 Prob_of_input=ones(size(PTM,1),1);
 for i=1:size(b,1)

 for j=1:size(input_prob,1)
 Prob_of_input(i)=Prob_of_input(i)*input_prob(j,b(i,j));
 end
 end
output_prob=0;
for i=1:size(PTM,1)

output_prob=output_prob+PTM(i,:)*Prob_of_input(i);

end

end

IX. Calculate the PTM of the circuit

In this function, the PTM and ITM can be calculated from stimulus probability

function Prob_of_output= cal_PTM_cell(output_prob)
% in this function we assume that each cell have only one output
%input_pro is [p(0) p(1)] for each input
N=1:(2^size(output_prob,1));

117

 b = de2bi(N-1,'left-msb')+1;
 Prob_of_output=ones(2^size(output_prob,1),1);
 for i=1:size(b,1)

 for j=1:size(output_prob,1)
 Prob_of_output(i)=Prob_of_output(i)*output_prob(j,b(i,j));
 end
 end

% Prob_of_output=1;
% for i=1:size(output_prob,1)
%
% Prob_of_output = kron(Prob_of_output,output_prob(i,:));
% end
% end

	Stochastic Worst-Case Test Vectors for ASIC Devices in Single Event Environment
	Recommended Citation
	APA Citation
	MLA Citation

	Channel Feedback in FDD Massive MIMO Systems with Multiple-Antenna Users

