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Abstract
Mixed-criticality (MC) scheduling is necessary for many safety-critical real-time embedded
systems, as a failure of high-criticality jobs could lead to fatal accidents. With the emergence
of software technologies in software-defined vehicles in the automotive and avionics
industries, studying Mixed-Criticaly (MC) systems is essential to their safety standards,
similar to ISO26262. The real-time operation of MC systems makes it an inherently online
problem, such that the scheduler is only aware of the jobs that are currently released at any
point in time and has no knowledge of future jobs. Due to the overhead cost of preemption,
this study focuses on enforcing non-preemption, which makes the problem NP-hard. The
literature presents solutions for offline models that allow the scheduler to know about all
jobs that are yet to be scheduled from time unit zero and also for systems that allow
preemption. Researchers also simplify the modeling of the dynamic elements of the problem,
e.g., varying-speed processors, by using simple assumptions that the processor's speed
doesn’t recover from degradation, which simplifies the problem but is not very realistic. To
the extent of our knowledge, we are the first to schedule dual-criticality systems upon
non-preemptive, varying-speed processors online. With plenty of researchers approaching
the schedulability of such systems with various objectives, our aim in this study is to shed
light on the promising nature of emergent machine learning technologies, specifically
Reinforcement Learning. We propose a somewhat unconventional approach, where we tackle
the modeling complexities using deep reinforcement learning, particularly suitable for
problems that generate a sequence of decisions in dynamic environments. Our customized
Ape-X model is capable of successfully scheduling sets of jobs of size 50 with an average
accuracy of 95% in comparison to other Reinforcement learning algorithms benchmarks
conducted, e.g., Augmented Random Search, Proximal Policy Optimization, and Deep Q
Networks. Sensitivity analysis shows that training the model with randomized parameters
yields a stable performance that is relatively robust to some changes in the generated
instances. As part of our future work, we also introduced a simple preemptive version of our
system and showed its potential, which reached an average accuracy of 96%. We hope that
our study and results motivate the scheduling community to explore the adoption of this
effective approach as a promising potential for other dynamic scheduling problems. Thus,
we also introduce our recommendations on modeling variants of the problem and discuss
possible future extensions.
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Chapter 1

Introduction

1.1 Overview

In real-time embedded systems, many researchers look into improving the throughput
and performance of systems to perform the tasks more efficiently and work is also
conducted on guaranteeing the schedulability of the running tasks with different
criticalities. The reason is that real-time embedded systems have stringent non-functional
costs, weight, and energy requirements. These requirements can be modeled via a
defined level of criticality1 for any of the jobs (or tasks2) that need to run in a given
system. This model gave rise to the study of mixed-criticality (MC) systems, where jobs
of different criticality levels are consolidated into a shared hardware platform (Barhorst,
2009; Burns& Davis, 2016, Sakr N. et al., 2021). Additionally, these systems may operate
on processors that are subject to temporary failure that affects their speed. The
development of mixed-criticality (safety-critical) systems is most frequently seen in
automotive and avionics, where the system is heavily regulated, especially with the
progression of self-driving cars and software-defined vehicles. The design of MC
systems is regulated by industrial safety standards that strictly enforce different
requirements on each criticality level (Draskovic, Huang, and Thiele, 2016). Different
industries have various definitions and standards for criticality levels, but the
fundamental concept remains the same. ISO26262 is one example that defines a risk
classification system for creating safe software within vehicles. The classification system
defines four criticality levels that are labeled according to different factors and
consequences, starting from level A (Low-risk tasks such as brake lights malfunctioning)
up to level D (High-risk tasks such as failure of electric steering) (Alhaj Ali, 2017).
Another example is DO178B, which has five criticality levels with the highest level A is
considered catastrophic in the case of failures and the lowest level E is considered
harmless with no effect (Johnson, 1998). Authorities have to verify the safety standards of
the system and that it abides to relevant rules and safety guarantees. The mixed-criticality
system is responsible for handling the execution of jobs of different criticalities while
ensuring the system does not pose any risk to humans. All these examples and
constraints formulate an interesting dynamic scheduling problem for safety-critical

2 We use the terms jobs and tasks interchangeably.

1 We distinguish between priority attribution and criticality management: Priority gives an
order in which jobs shall run, whereas criticality defines the level of assurance that a job (or
system component) would run despite the system's state. For instance, in an attempt to
avoid a car crash, camera sensors are allowed to overload the automotive system with
caution messages.
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real-time embedded systems.
1.2 Background

The literature encapsulates the details of MC systems in an abstract model from a realistic
problem, where a job is defined by four parameters: release time, processing time3, deadline,
and a criticality level, which ensures the level of guarantee at which a job would run
irrespective of the changing system state. This concept of criticality gives an interesting
dimension to MC systems scheduling, or MC scheduling, in short.

MC scheduling is a challenging dynamic problem, as MC systems usually assume several
modes of operation during run-time (usually as many as criticality levels). For instance, a
dual criticality system operating on a varying-speed processor can operate in (1) normal
mode or lapse into (2) degradation mode if the processor is subject to disturbance (e.g., heat,
high supply voltage, or disturbed clock frequency) causing its speed to drop, i.e., the
processor degrades.

In real-time systems, it cannot be predetermined if, when, or for how long the processor
would degrade. In many applications, the consequences of missing a deadline vary in
severity from one job to another (Sakr N. et al., 2021). Failing to meet a deadline for a car
electronic steering task could be lethal, while failing to meet a deadline for an entertainment
system task can be overlooked. Therefore, MC jobs are scheduled so that deadlines are met
to the degree that the assumptions of the model are guaranteed to hold (Vestal, 2007). Hence,
under speed stochasticity, it is common to guarantee the running of higher criticality jobs by
their deadlines, sometimes even at the cost of not running lower criticality jobs. These
guarantees make the schedulability of such systems challenging and unconventional.

The literature is rich with works that discuss the schedulability of MC systems under
various objectives and conditions (S. Baruah, Easwaran,& Guo, 2016; S. Baruah & Guo,
2013b, 2014; De Niz, Lakshmanan, & Rajkumar, 2009; Gu, Guan, Deng, & Yi, 2013; Guo &
Baruah, 2015,2014; Mollison, Erickson, Anderson, Baruah, & Scoredos, 2010). Researchers
address simple models of MC schedulability in an offline context, such that the scheduler is
aware of all jobs that will be executed during an instance from time unit zero. In particular,
Baruah and Guo propose a Linear Programming (LP) to preemptively schedule
dual-criticality jobs on a varying-speed processor in an offline context  (S. Baruah and Guo,
2013b). Meanwhile, Agarwal and Baruah discuss the intractable online nature of MC
scheduling, which is a more complex model of the problem in a way that the scheduler is not
aware of all jobs that will be released in the future (Agarwal and Baruah, 2018). We agree
with the researchers that the problem is inherently online, where it makes sense not to have
prior knowledge of future job arrivals - as is the case with real-time scheduling of embedded
systems. We, therefore, focus on an online, dynamic scheduling problem with an imposed
non-preemption constraint (S. Baruah and Guo, 2013b; Sakr N. et al., 2021). In fact,

3 The job processing time models the worst-case execution time (WCET) of a task in real-time
systems.
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scheduling MC systems non-preemptively (even without degradation) is NP-hard and,
therefore, challenging  (Lenstra, Kan, & Brucker, 1977). However, we believe that real-time
embedded systems operate in preferably optimized environments, where it may be
impractical to carry preemption overhead costs. For example, systems with mechanical
actuators, such as conveyor belts in factories, are very costly to preempt. We, therefore,
believe in the value of addressing this complex aspect.

1.3 Problem Statement

Following the framework in (Sakr N. et al., 2021), our problem is defined as follows: With
the inherent online nature of real-time mixed-criticality systems, the scheduling of such
systems under non-preemptive constraints on a varying-speed uniprocessor poses an
NP-hard problem. An unconventional approach is devised using deep reinforcement
learning (DRL) to tackle such a problem. In this work, we study online dual criticality
scheduling on a varying-speed uniprocessor. While we believe that these characteristics
model the nature of real-time embedded systems in a better way, they add a lot of
complexity to the scheduling strategy and general intractability of the problem. We,
therefore, devise a somewhat unconventional approach, where we address this complexity
by devising different deep reinforcement learning (deep RL or DRL) approaches to tackle
our problem.

With the emergence of intelligent methods such as reinforcement learning (RL) and more
advanced deep reinforcement learning (DRL), many researchers adopted these methods to
discover new perspectives on traditional problems (Aydin & ̈Oztemel, 2000; Shyalika,
Silva, & Karunananda, 2020; Sutton & Barto, 1998; Zhang & Dietterich, 1995). RL models
are particularly suitable for problems with a sequence of decisions in dynamic
environments. Therefore, we believe that RL and DRL approaches have excellent potential
in modeling and approximating the solution to our problem.

1.4 Contribution

Our contribution in this paper can be summarized as follows:

● With the inherent online nature of the problem, we expand upon the work by (Sakr
N. et al,. 2021) by focusing on the online version while tackling both non-preemptive
and preemptive models for it and doing further sensitivity analysis on these models.
Existing works in the literature discuss offline solutions and the intractability of
online solutions, but to the best of our knowledge, no one developed an online
solution before.

● We take up and focus on the non-preemption challenge as we believe in the practical
need to find a scheduling policy that considers such inflexibilities, especially in
real-time embedded systems where preemption costs are rather high. We also discuss
a preemptive version of our problem as a basis for comparison and future work that
can be expanded beyond this paper.
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● We model the speed variation in a way closer to what happens in reality. In contrast,
previous work simplifies the model to assume that once degradation happens, it
remains throughout the rest of the time horizon.

● We propose a rather unconventional approach, as opposed to traditional scheduling
strategies, where we recommend leveraging DRL in mixed-criticality dynamic
scheduling problems. We design a custom environment to handle the problem
characteristics we tackle with a DRL model. We also consider different RL algorithms
and study their applicability and proficiency in the dynamic nature of MC
scheduling problems compared to our suggested model.

We hope that by showcasing this work and elaborating on our promising results, we provide
the research community with a novel, promising direction that may deem useful for
modeling and approximating further challenging open problems in dynamic
mixed-criticality scheduling.

1.5 Paper outline

This paper is structured as follows: Chapter 2 introduces related work on MC scheduling
problems and RL/DRL for scheduling problems. Chapter 3 describes our problem
formulation, notation, and RL framework. Chapter 4 presents the model design, and
Chapter 5 elaborates on implementation aspects and experimental results. Finally, we
conclude in Chapter 6 and discuss further modeling variations and extensions in Chapter 7.
This paper is also augmented with a few appendices that outline the details of instance
generation, implementation, and algorithms used to run our experiments.

12



Chapter 2

Literature review
2.1 Mixed-Criticality Scheduling

Barhorst produced a white paper that defines MC systems and explains the rationale
behind having an MC architecture: Many embedded systems can be referred to as
cyber-physical (CP) systems, which bind the physical world with a cyber system that
controls it. Some failures in CP systems can threaten human safety and cause fatalities,
while other functionalities of such systems might have little to no effect on the physical
environment. This explains why many CP systems have notions of different criticalities
depending on the executed jobs, which maps to our abstract model of MC systems
(Barhorst, 2009). Criticality standards are industry-based, and their definitions and
applications vary; however, the core concept of criticalities remains the same, which can
be seen in some field standards in ISO26262, IEC 61508, and DO-178B (Johnson, 1998;
Alhaj Ali, 2017).

As it became fundamental to balance component separation (for safety) and resource
sharing (for efficiency), MC scheduling has gained immense attention in the past fifteen
years. Vestal extends the standard fixed priority scheduling to the modified preemptive
fixed priority schedulability analysis algorithms and shows that neither rate-monotonic
nor deadline-monotonic priority assignment is optimal for scheduling MC systems
(Vestal, 2007). A year later, Baruah and Vestal conducted an analysis of the
scheduling-theoretic issues in the context of preemptive uniprocessor systems of
independent jobs and confirmed that earliest deadline first (EDF) scheduling is not optimal
and, in some cases, fails to schedule an MC system (S. Baruah & Vestal, 2008).

Further impetus to explore MC systems and solve its schedulability problem results in a
series of publications, most of which focus on single processor platforms and independent
jobs. Baruah et al. studied the scheduling of MC jobs in real-time systems (Baruah et al.,
2012). They present the corresponding model introduced in (S. Baruah, Li, & Stougie,
2010) and (S.K. Baruah, Li, & Stougie, 2010), then prove that deciding the schedulability of
a given MC system is NP-hard and analyze the performance of reservation-based and
priority-based scheduling. Further variations on work related to uniprocessor scheduling
of finite sets of MC jobs include minimizing makespan an (S. Baruah et al., 2016),
OCBP-scheduling (Own Criticality Based Priority) (Gu et al., 2013), utilization-based
scheduling (Bhuiyan, Sruti, Guo, & Yang, 2019), demand-bound function-based
schedulability (Guo et al. 2018), slack scheduling (De Niz et al., 2009), and more. Park and
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Kim developed a dynamic scheduling algorithm for certifiable restricted MC systems
(Park and Kim, 2011). The algorithm is based on EDF and outperforms OCBP scheduling
(Gu et al., 2013). Socci, Poplavko, Bensalem, and Bozga present the time-triggered
scheduling paradigm as a promising approach to single and multi-core processors (Socci
et al., 2015). Some researchers analyze having a multiple number of criticality
levels(Anderson, Baruah, & Brandenburg, 2009; Ekberg & Yi, 2014, 2016; Fleming, 2013;
Mollison et al., 2010), while a lot of literature invests in the more restricted dual-criticality
system, where only two modes are allowed: {HI} or {LO} (Alahmad & Gopalakrishnan,
2018; S.K. Baruah, Burns, & Davis, 2011; Burns & Baruah, 2011; Park & Kim, 2011). Without
loss of generality, our paper likewise considers the dual-criticality version.

More relevant to our study is the work by Baruah and Guo, who considers power issues
that could lead to a processor having variable speed. As a processor slows down, the
processing time of a job increases, which in turn influences scheduling decisions. We
study this model and describe it in detail in Chapter 3 (S. Baruah and Guo, 2013). The
authors show that EDF does not schedule the respective MC system as desired and
extends their work on MC scheduling upon varying-speed processors in (S. Baruah &
Guo, 2013a, 2014; Guo & Baruah, 2015, 2014). This speed variation lends the scheduling
problem its dynamic nature. To the extent of our knowledge, this dynamic scheduling
problem was only discussed in an offline context, although MC scheduling in real-time
systems is inherently online e (Agrawal & Baruah, 2018). Therefore, unlike previous work,
we focus on analyzing the system under non-preemption conditions and in an online
environment.

Scheduling MC systems non-preemptively (even without degradation) is NP-hard
(Lenstra et al., 1977). Likewise, many scheduling problems are instances of NP-hard or
NP-complete problems. This has encouraged some researchers to merge machine learning
(ML) approaches with the solution procedures of selected scheduling problems to provide
reasonable heuristics or approximations. The literature is replete with artificial neural
network (ANN) models for job shop and flow shop scheduling (Akyol, 2004; Li & Chen,
2009; Philipoom, Rees, & Wiegmann, 1994; Sabuncuoglu & Gurgun, 1996; Zhou,
Cherkassky, Baldwin, & Olson, 1991), as well as task scheduling (Agarwal, Jacob, & Pirkul,
2006; Gritzo, 1992). Akyol and Bayhan also provide a review of the ANN approach for
solving production scheduling problems (Akyol and Bayhan, 2007). We take a similar, yet
more contemporary, direction on the intractable problem at hand as we explore the
applicability of reinforcement learning (RL) and Deep RL to approximate it.

2.2 Reinforcement Learning and Deep Reinforcement Learning

Reinforcement learning (RL) is an autonomous self-teaching system that learns through
trial and error. RL is a sub-field of Artificial Intelligence that aims to train intelligent
agents to take reward-maximizing actions in dynamic environments. In particular, the
agent interacts with a dynamic environment receiving an observation of the state of the
environment and reacting correspondingly, choosing an action from a given action space.
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After an action is taken, it receives a positive or a negative reward using a reward
function. The agent aims to maximize the reward in an iteration of so-called episodes.
Each episode is a series of sequential decisions dependent on the problem's nature. The
ultimate goal of the agent is to self-learn the optimal policy that maximizes these rewards.
Although RL proved successful in many applications, it also showed many limitations in
complex problems and lacked scalability (Arulkumaran, Deisenroth, Brundage, &
Bharath, 2017). The popular techniques of deep learning (DL), with its wide variety of
approaches, including different neural network arrangements, adversarial networks, and
many others, proved to be capable of boosting the scalability and functionality of RL to
problems that were previously too complex or intractable (Arulkumaran et al., 2017;
Shyalika et al., 2020). The new combined field is known as Deep Reinforcement learning
(DRL). More details on how we use RL/DRL to model our problem are presented in
Sections 3.2 and 4.2.

In principle, dynamic scheduling RL techniques belong to two major categories;
Model-Free and Model-based techniques. Model-free techniques can be further divided
into on-policy and off-policy and Model-based into Learn Model and Model Given. In the
modern day, some techniques combine both model-free, and model-based algorithms,
such as Dyna-Q (Shyalika et al., 2020). Model-free techniques rely on trial and error
experiences to reach an optimal (max reward) policy. They do not pre-assess the
environment's dynamics but rather rely more on acting to learn. Model-free off-policy
techniques (Value-Iteration methods) use the Bellman Equation to find the optimal action
and policy (Sutton & Barto, 1998). Popular off-policy techniques in dynamic scheduling
are Q-learning, Deep Q-Networks, and Monte Carlo Methods. On the other hand,
Model-free on-policy techniques (Policy-based Methods) greedily find better policies
acquired from improved previous policies, and its most popular technique is PPO
(Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017). Model-based techniques use
transition and reward functions in the environment to estimate the optimal policy
(Shyalika et al., 2020; Sutton & Barto, 1998). Other techniques exist that do not fall under a
specific paradigm, such as MARWIL and Augmented Random Search (Wang et al., 2018;
Mania, Guy, & Recht, 2018).

RL and DRL are suitable for developing dynamic strategies because the agent's goal is to
learn a reward-maximizing policy over time while maintaining the state of the
environment and coping with uncertainties. Moreover, the agent has no ``right answer''
like in supervised learning but instead learns from the consequences of its actions.
Therefore, RL and DRL techniques are conceptually well-suited for dynamic scheduling
problems, in general, and for modeling online MC scheduling problems, in particular
(Shyalika et al., 2020). It is also worth noting that it is essential to understand the basic
parts of the RL learning process, which is mainly defined using the Markov Decision
Process (MDP), which is further explained in Section 3.2.

In the scheduling literature, Zhang and Dietterich (1995) apply RL methods to learn
domain-specific heuristics for job shop scheduling. Aydin and ̈Oztemel (2000) use RL
agents for the dynamic version of the problem. Shyalika conducts a review comparing
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different techniques of RL and DRL in the field of dynamic task scheduling. Kong and Wo
(2005) proposes a Q-learning approach to tackle dynamic single-machine scheduling
problems with random arrivals and processing times. Bouazza, Sallez, and Beldjilali
(2017); Shahrabi, Adibi, and Mahootchi (2017) also tackle job-shop scheduling problems
with different objectives using Q-learning approaches and policies. Further work related
to DRL solutions for scheduling problems includes a combination of graph convolutional
networks with actor-critic algorithms for heterogeneous dynamic scheduling (Grinsztajn,
Beaumont, Jeannot, & Preux, 2021), which was capable of competing with state-of-the-art
offline scheduling algorithms such as HEFT. Luo develops a deep Q-Network (An
evolution of traditional RL Q-learning); this DRL technique utilizes neural networks for
flexible job shop scheduling, thereby outperforming composite and well-known
dispatching rules (Luo, 2020). These examples show that RL techniques have great
potential to compete with state-of-the-art offline methods. It also shows that the majority
of the RL/DRL literature focuses on dynamic job-shop and task scheduling without much
advancement in the MC scheduling field. This is why in this work, we are motivated to
explore the benefit of leveraging deep RL to design a dynamic online scheduling policy
for dual-criticality systems that operate on a varying-speed processor with
non-preemptive constraints. Following the path defined in the most recent work by (Sakr
N. et al,. 2021) in the abstract introduces mixed-criticality scheduling under offline and
online contexts with preliminary results using deep reinforcement learning, our work
shifts towards the online version of the problem. We extend our problem by tackling both
non-preemptive and preemptive models of the online problem. In addition, we add
different RL benchmark algorithms and introduce a more detailed analysis of the system
and performance of the RL agent and its flexibility and robustness.
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Chapter 3

Methodology
An MC instance is a set of MC jobs J that are schedulable on a varying-speed processor.
Following Lemma 1 in (S. Baruah & Guo, 2013b), J is schedulable if the earliest deadline first
(EDF) policy schedules all jobs on a speed-1 processor and all HI jobs on a speed-vmin

processor. That is, there is a degradation bound vmin, below which J would no longer be
schedulable. Finally, a correct schedule runs all jobs by their deadlines as long as v=1 and
guarantees all HI jobs meet their deadlines regardless of speed. It is worth emphasizing that,
under degradation, no rate-monotonic or deadline-monotonic priority assignment is optimal
for scheduling MC systems (Vestal, 2007). In particular, EDF does not work for our problem.
Our objective is to study how different DRL algorithms behave when they are trained to
schedule MC job instances. Figure 1 summarises the architecture of our system.

3.1 Scheduling Formulation and Notation

The system functionalities or tasks are modeled by a set of n independent jobs J. Without
loss of generality, we will consider a dual criticality system, where each job j in J is
characterized by its release time rj, deadline dj, processing time pj and criticality level χj in

{HI,LO}. A speed-v processor runs a job j in time units. The run-time horizon considered𝑝𝑗
𝑣

for scheduling all jobs is [minj {rj }, maxj {dj }].

The dynamic system assumes two modes of operation: normal mode (v=1) and degradation
mode (v<1). We assume a self-monitoring system that immediately knows when
degradation occurs during runtime. The degradation is observed only when it takes place
and not predetermined apriori.

Our objective is to leverage DRL techniques to correctly schedule dual-criticality jobs on a
non-preemptive, varying-speed processor in an online environment where future job arrivals
are not known.

While our research is inspired by the work of (S. Baruah and Guo, 2013b), it is essential to
emphasize that our model is fundamentally different as we attempt to model our problem in
a way that considers more practical aspects of the problem. We, therefore, cannot adopt the
exact system conditions or utilize any previous results as a benchmark. To provide a clear
contrast, we summarize the differences between the work of Baruah and Guo as follows:
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● We study the online version to capture the inherent nature of this problem, whereas
their work is solely offline.

● They allow preemption and discuss that non-preemptive scheduling is NP-hard. We
focus on the non-preemptive version of the problem as we believe it avoids
impractical preemption costs that their solution can suffer from in real systems.
Additionally, we also discuss a preemptive version of the problem to gain insight
into how RL performs in both versions.

● They use an LP (with fractional solutions) to find the schedule that tolerates the
minimum speed of degradation that can happen. This LP operates offline. We, on the
other hand, leverage an RL agent to schedule jobs correctly online using a discretized
time horizon.

● They assume that once a processor degrades, it never recovers. In our case, we find
this simplification restricting. Therefore, we model degradation more flexibly in a
way closer to reality, i.e., processors can reset back to normal modes of operation
after periods of degradation.

3.2 Reinforcement Learning Framework

As previously discussed, RL agents can be trained to make sequential decisions that
maximize their rewards and are particularly suitable for dynamic problems. In our case, we
will attempt to use RL agents to make scheduling decisions that result in correct schedules
for a given MC instance J.

We start by modeling this sequential decision-making process as a Markov decision process
(MDP), where at each timestep t, an RL agent receives an observation ot from a state space S.
In particular, the observation is a buffer Bt⊆ J of jobs released for scheduling and the
processor speed vt. Given Bt and vt, the agent takes a corresponding action at from a defined
action space A. The action implies the selection of the index of the job to be scheduled at t.
This action is tightly connected to a transition probability described by the function P =
p(ot+1|at, ot). After a job is selected, the agent is (later) rewarded or penalized (i.e., negative
reward) using a reward function r(at,ot). MDP environments store a value V representing
rewards of different states to each other and are calculated based on value function V(s),
which is dependent on state s. The value function equation

at state s is the average rewards offered by all𝑉π(𝑠) =
𝑎
∑ π(𝑎|𝑜

𝑡
) 

(𝑜
𝑡+1

∈𝑆)
∑

𝑟∈𝑅
∑ 𝑃(𝑟 + γ𝑉(𝑜

𝑡+1
))

possible actions at this state s according to policy 𝝅, in which actions give certain
probabilities p of transitioning from state s to s' with the future reward of (r + γV (ot+1)). The
Q-learning approach expands a similar value function into the Q function, which checks the
contribution of every action to the optimal policy and finds the best course of action. The Q
function can be seen as V*(s) = maxa Q*(a,s), which is applied to all possible actions a at state
s to find the highest Q value.

The agent aims to maximize the reward in an episode by maximizing the findings from the
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value function. We consider one episode a series of decisions until all jobs in J either run
(and complete by the deadline) or expire (cannot meet the deadline). We discuss the choices
of the parameters and functions of this model in Chapter 4. Details of our custom scheduling
environment are elaborated in Appendix B.

Figure 1: Brief representation of the process starting with the data processing phase, which
handles data generation based on the work by Baruah and Guo (S. Baruah and Guo,

2013b) and is followed by the data preparation phase that handles the discretization and
filtration of data explained in Chapter 4. Data for training is generated dynamically, while

data for testing is arranged into fixed datasets for a fair evaluation. The training phase
combines Custom Gym Environment with RLLIB initialization based on the choice of the

algorithms, which are listed in section Chapter 5. The agent's model is saved and only
restored during the Testing phase, which loads the testing data and evaluates our

algorithms. The evaluation framework is explained thoroughly in section 5.3.
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Chapter 4

Model Design

We expand upon the foundation by (Sakr N. et al., 2021) to use RL/DRL agents for
scheduling MC systems online with the non-preemption constraint. Hence, we have no
previous benchmarks for the problem. We modify the workload generation in (S. Baruah and
Guo, 2013b) to fit the data generation module in our problem.

4.1 Input Modeling

This section highlights the notation of the parameters needed to understand the rest of the
paper. However, the exact details of workload generation, discretization, and filtration are
encapsulated in Appendix A so as not to break the flow of the paper. We shall, therefore,
only highlight what is needed for the subsequent sections.

● Job Parameters: Each generated job j is identified by its tuple rj, dj, pj, and χj and
monitored using five status parameters computed at every time step t. Two of these
parameters are the job’s remaining processing time (ρt

j) and its laxity (lt
j), computed

as (dj - ρt
j).

● Workload Generation: To generate an MC instance of a schedulable job set J, we use
some parameters to regulate the workload and its complexity in scheduling. Two of
these parameters are highlighted here and used for sensitivity analysis in Chapter 5:
The expected percentage of LO jobs in J, denoted by γ, and the total load of J,
denoted by μ and computed as the normalized sum of all processing times in J.

● Environment Parameters: To ensure the design of a well-controlled environment that
properly mimics the behavior of real-time systems, we set some input parameters
that specify the degradation chance ω and the minimum allowed degradation speed
vJ

min, which is unique to every instance J. Both of these parameters are developed in
Section 4.3.

Finally, we design a scaling and filtration process to guarantee the integrality and
schedulability of any generated workload. See all further details in Appendix A.
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4.2 Online Environment Modeling

Online scheduling mimics real-time scheduling, as future job arrivals are generally not
known a priori. At any given time t, the agent is able to observe Bt. In particular, it is able to
see χj, ρt

j, and lt
j for each job in the buffer. The agent can also observe the processor speed vt,

i.e., monitor when a degradation happens and identify the speed. Thus, to define the full
state space, we need to model degradation and find a proper representation for the buffer.
The details on degradation modeling are encapsulated in Section 4.3. We now describe the
buffer modeling.

The RL algorithms we use expect a constant-sized state space. This constraint introduces a
modeling challenge because the number of released jobs (that the buffer is expected to hold)
may change over time, while the buffer size needs to remain fixed. Our remedy is to let the
agent observe a fixed buffer size (independent of the job instance) and do the following
modifications: If the number of released jobs so far is greater than |Bt|, we only add the jobs
with the least laxities4 to the buffer. Otherwise, we add all jobs plus several dummy jobs5

that would bring the buffer size to |Bt|. To be added to Bt, a job must have been released (rj ≤
t) and have enough time to complete (lt

j >= t). As such, all dynamic features of our system
are captured. The size of the buffer |Bt| in our system is designed to be 10. The value is
based on the assumption that the system would not usually have more than ten jobs
overlapping simultaneously, and it would give enough choices to the agent to learn from if
less than ten jobs are present. When the agent takes action, it selects a job from the buffer to
be scheduled. Hence, the action space is a discrete list of indices corresponding to the jobs in
the buffer Bt.

The reward system in the online environment depends on the processor mode (normal or
degraded) and the laxity rank ψ of buffer jobs, computed as the order of the job when the
buffer is sorted according to the job laxities. For example, in a buffer with five jobs, the job
with the highest laxity has a laxity rank of 5, and the job with the lowest laxity would rank 1.
Figure 4 illustrates a decision tree to help visualize the reward system along with the
resulting reward values based on each action (job selection), and Section 4.4 elaborates
further on the tree.

4.3 Degradation Modeling

The LP developed by (S. Baruah and Guo, 2013b) solves for the minimum degradation
speed, beyond which the set J would no longer be schedulable. We denote this minimum
threshold by vJ

min and emphasize that it is unique to every instance J.

Inspired by the LP objective function, we observe that vJ
min needs to be an input parameter to

5 To avoid scheduling dummy jobs, we label them as expired and set their criticality to LO.

4 The laxity of a job gives early warnings on expiry. When lt
j ≤ t, this means that even if the agent

schedules job j at time t, the time would not be sufficient for it to be complete before dj. Thus, the
agent is penalized for choosing such jobs.
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the system to ensure that we maintain a proper and “fair” training environment for the
agent, where J remains schedulable during runtime. Since the LP operates offline under
preemption, we cannot use it to define vJ

min for our instances. On the one hand, our models
are expected to tolerate lower thresholds than those produced by the LP because we do not
assume that degradation continues once it takes place. On the other hand, restricting the
model to non-preemption may restrict us to higher thresholds compared to the LP solution.
Both effects are not guaranteed to produce a consistent final result, i.e., our vJ

min may be
higher or lower than the LP solution produced by (S. Baruah and Guo, 2013b). Hence, we
cannot use the LP to set this parameter. Instead, we approximate vJ

min empirically through an
iterative process for the training phase described in Appendix A.

As mentioned in Section 4.1, our input parameter ω specifies the degradation chance. That is,
if ω = 0.4, then there is a 40% chance for the processor to degrade at each time step. The
degradation in our environment is modeled following a two-stage process at every time step
t:

1. Draw a uniform random number p from U (0, 1). If p < ω, the processor degrades.
Otherwise, it doesn’t

2. If the processor degrades, vt is drawn from U (vJ
min , 1). Otherwise, vt is 1.

Figures 2 and 3 demonstrate the effect of ω on speed behavior over a series of 10,000
experiments: We can identify patterns of more frequent spikes as ω increases. We can also
see that this modeling approach allowed us to resemble real-life processor behavior where
degradation may happen randomly, at any point in time, and in sudden spikes, where the
speed drops temporarily and then goes back to 1.

Figure 2: Speed behavior vs time
when ω = 0.15 over a series of
10,000 experiments for a job
instance with an average vJ

min of
0.5.
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Figure 3: Speed behavior vs time
when ω = 0.8 over a series of
10,000 experiments for a job
instance with an average vJ

min of
0.5.

4.4 Reward Modeling

In reinforcement learning, the reward function basically defines the objective of the agent. It
draws a map for each taken action and state in the environment and links it to a numerical
value, a reward (or punishment for a negative value). The goal of the agent is to maximize
the total reward during the entire runtime of each independent iteration. The reward
function is defined based on the context of the problem to highlight the positive or negative
events in which the agent is judged upon (Yunior F. et al., 2015). The numerical values of
reward functions are defined based on the context of the problem. Different researchers
approach the design of the reward function relative to the nature of their problem aiming to
reach the objective or goal of their problem. In our case, we aim to maximize the agent’s
reward based on the priority of the job it schedules. The reward function in our model is
designed to help the agent train to schedule jobs correctly. The reward function prioritizes
high-criticality jobs slightly over low-criticality jobs at normal speed by rewarding the agent
for scheduling high jobs, with no effect on scheduling low-criticality jobs.

We use a numerical value C to test the sensitivity of the biases towards high criticality jobs.
The value C is tested for values [1,5,10,30] and the results in Section 5.4 show that the reward
function is consistent with the objective of our agent maintaining an average above 95% of
completion. On the other hand, during degradation, the agent is heavily punished for
choosing low-criticality jobs over high-criticality jobs (if they exist in the buffer) and better
rewarded for choosing high-criticality jobs. All experiments in Chapter 5 are done with
constant value C=5.
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Figure 4: Sensitivity of Agent vs Reward constant C in the reward function.

Figure 5: Reward process decision tree visualizing the agent's reward function at a given
time t.

Figure 4 shows our reward function in a decision tree shape to help visualize the process and
how it affects the agent. The agent's action is to select a job to be scheduled, and the reward
is applied based on the choice. Initially, if no jobs are available in the buffer and it is filled
with dummy jobs, the reward is zero, and the agent moves on in time. If available jobs exist,
choosing a dummy job is penalized with -25 to disallow the agent from picking dummy jobs
over released jobs. Choosing a previously executed or starved job is also penalized with -10

24



to disallow the agent from picking them. If the agent picks a correct job, but it is the only
available job in the buffer, the agent is rewarded with a small value of 5. If there is more than
one job in the buffer and all jobs in the buffer are either of high criticality only or vice versa,
the agent is rewarded with the laxity rank of the job in the buffer. Suppose there are both
high and low-criticality jobs in the buffer. In that case, the reward depends on the processor
mode, the number of available high and low jobs, and the criticality of the chosen job.
Suppose the processor is operating in normal mode. In that case, the agent gets a positive
reward based on the laxity rank of the job with an extra constant for picking a high-criticality
job and a zero reward for picking a low-criticality job. Suppose the processor operates in a
degraded mode. In that case, the agent is rewarded with a positive value of laxity rank plus
a larger constant for picking a high-criticality job and is penalized for picking a
low-criticality job. Now our whole environment is modeled according to our problem
characteristics; the next sections focus on the experiments done on this problem model and
explain our implementation choices and analytical results.
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Chapter 5

Experimental Results

5.1 Algorithm Implementation

There exist many different RL and DRL algorithms in the field, as mentioned in the literature
review in Chapter 2. For this study, we decided to test different algorithms and how they
behave in trying to solve a dynamic MC scheduling problem. To avoid overlapping
algorithms that use the same core concept, we decided to test four different algorithms. The
first three algorithms were used with default configurations from RLLIB as a benchmark for
our custom gym environment. The Ape-X DQN was built as a custom model with action
masking inherited from the RLLIB TFModelV2 model with the provided Ape-X Trainer
(Liang et al., 2017). The list of our choice of algorithms is as follows:

● Augmented Random Search (ARS), a random search method capable of training
policies for continuous control problems, is known for being fast and efficient
compared to model-free and model-based algorithms (Mania et al., 2018). This
algorithm was chosen as a benchmark for our model, considering its nature of
random search.

● Proximal Policy Optimization (PPO), a model-free on-policy technique that uses
multiple stochastic gradient descent passes over the same experiences and is suitable
for scalability (Schulman et al., 2017). According to Shyalika et al. (2020), PPO
showed great potential in dynamic scheduling problems; however, it might suffer
from high variance and slow convergence based on the context of the problem.

● Deep Q Networks (DQN), a model-free off-policy combination of RL Q-learning
variant with a convolutional neural network  (Mnih et al., 2013). DQN showed great
success in large-scale and high-dimensional MDP problems and is capable of
achieving fast, and stable training in dynamic sequential decision-making processes
(Shyalika et al., 2020; Sun and Tan, 2019).

● Ape-X DQN (APX), a distributed architecture that uses Deep Q Networks with a
combination of neural networks, that relies on a distributed architecture that
separates acting from learning asynchronously (Horgan et al., 2018). It follows the
same concept as DQN; however, Ape-X introduces more efficient training and
experience replay with its distributed nature and combination with neural networks.

DQNs effectively solve MDP models resembling dynamic decision-making problems in
dynamic, unpredictable environments and continuous observation spaces. This inspired us
to develop Ape-X DQN as our custom model and compare it to different algorithms. The
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details of the implementation6 of our algorithm and RL environments are mentioned in
Appendix B.

5.2 Training Stage

In the workload generation and filtration stages, we guarantee that all generated instances of
J are schedulable using non-preemptive EDF under normal speed v=1 (See Appendix A for
details). Our agent is initially trained with on-the-fly generated instances of J and
randomized input parameters. When the training process saturates, the agent becomes ready
for evaluation.

Figure 6: Reward mean for all algorithms during Training Phase

In particular, we generate MC instances, i.e., sets of jobs, each of size 50, using randomized
parameters, as detailed in Appendix A. The agent learns through a series of iterations, in
which each iteration trains on average 1000-2000 episodes. The mean reward of each
iteration is monitored to analyze if the agent is improving its performance or not. The mean
reward of iterations usually starts with a negative value since the agent begins with random
choices and starts to converge after a couple of hundred of episodes of learning. Once
training is finished, the model is loaded and used for testing. Figure 5 shows the
performance of each of our algorithms during the training phase, how they start and how
fast they learn over time. The figure shows that our custom Ape-X model is the fastest

6 Implementation was done on the following specifications: Processor Intel(R) Core i7-8750H @
2.20GHz with 6 cores and 12 threads, 16 GB of RAM, and an Nvidia GeForce RTX 1060 GPU. The
operating system used was Ubuntu 20.04.3 LTS and Python Version 3.8.
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learner, with DQN and PPO being a close second. The random search ARS shows that it is a
very slow learner and stabilizes at a very low reward.

We also test the speed of the algorithms during the evaluation because the execution speed
of making decisions can be critical to systems with safety requirements. Each algorithm was
tested on 50 job instances from 9 different datasets, and an average was taken. Figure 6 and
Table 1 show that ARS is indeed the fastest algorithm for evaluation, even though it is not
the best in terms of accuracy.

Table 1: Average Execution time per second for 100 runs and per single run. Calculated as an
average of 9 different sample datasets with 50 job instances each.

Algorithm Avg Total/s Avg per run/s

Ape-X 7.91 0.08

PPO 7.34 0.07

DQN 7.79 0.08

ARS 4.92 0.05

Figure 7: Average Execution time per dataset for all algorithms.

DQN, Ape-X, and PPO all have almost similar execution times, and they are only slightly
slower than ARS. Figure 6 also shows that execution time decreases in the datasets with the
highest total load. We can deduce that since datasets with higher loads are usually busy with
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long jobs, the algorithm takes less time to make decisions and generally waits for jobs to
finish. To assess the performance of our RL agent and, thus, the viability of our proposed
model, we build the evaluation framework described in the next section.

5.3 Evaluation Framework

To contrast the behavior of the agent under a variety of scenarios, we choose to build the
cross-combinations of the following values for our main input parameters: Total load μ ∈
(0.3, 0.6, and 0.9) to cover different scenarios of workloads with series of jobs with low
overall processing time for low μ and series of jobs with high overall processing time for
high μ. The parameter expected LO percentage γ ∈ (0.3, 0.5, and 0.8), which tries to cover
instances with the majority of jobs being low criticality, high criticality, or a balanced
combination of both. Finally, degradation chance ω ∈ (0.2, 0.4, 0.6, 0.8, 1) to assess the agent
under various degradation chances (assuming an environment could be chaotic and forces
lots of degradations while other environments could rarely expect degradations). Each
parameter combination builds a set of 2000 test instances. The variety of these combinations
allows us to evaluate the agent's performance under different algorithms while observing
their sensitivity to different input parameters. Appendix A outlines the impact of each
parameter variation on the instance characteristics. However, it is worth emphasizing that μ
and γ mainly affect the instance generation while ω only affects the run time environment
and is generated dynamically with the instances. In other words, the first parameter
combination would be when μ = 0.3 and γ =0.2. These parameters generate a set of 2000 test
instances with 50 jobs. Afterward, this set is tested five times, once for every value of ω.
Finally, the results are averaged across the different iterations first, then across different
values of ω for each algorithm. The rest of this section reports significant evaluation and
sensitivity analysis results.

For each test instance J, the agent schedules it according to its learned policy. The evaluation
is based on the percentage of total correctly scheduled jobs. Table 2 shows the percentage of
correctly scheduled jobs for every algorithm across all datasets with different parameters.
The agent is evaluated on a combination of values for μ ∈ (0.3, 0.6, and 0.9) and γ ∈ (0.3,
0.5, and 0.8). The best agent performance was seen in the Ape-X DQN model with an overall
average completion of 95.1%, followed by the default DQN model with an overall average
completion of 93%. The job completion percentage drastically falls with the increase in μ,
which is the total load of the dataset affecting the processing times in the job instance J. The
agent with the lowest performance was surprisingly the PPO agent with an overall average
completion of 79%.

Our custom Ape-X model proved to be the most accurate compared to the rest of the
benchmarks and is considered the second fastest algorithm in evaluation speed, which is
why it will be studied for further analysis of its performance.
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Table 2: Job Completion Percentage for each algorithm for every dataset. Average of 18000
experiments across varying ω per dataset with 50 jobs.

# μ γ Ape-X DQN ARS PPO

1 0.3 0.2 98.1 97.8 96.1 93.6

2 0.3 0.5 97.9 97.8 95.1 93.4

3 0.3 0.8 97.2 97.1 94.4 92.4

4 0.6 0.2 95.7 94 81.1 77.2

5 0.6 0.5 95.4 93.6 80.4 76.9

6 0.6 0.8 94 92.2 78.4 75.3

7 0.9 0.2 93.9 89.6 74.6 69.2

8 0.9 0.5 93.2 88.7 73.4 68.9

9 0.9 0.8 90.9 86.5 69.9 66.9

Figure 8: Performance of different agents in terms of total completion percentages for each
dataset
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5.4 Sensitivity analysis

Further analysis of Ape-X Model can be seen in Figures 8,9,10 and 11, which shows the
graphical results of HI and LO completion percentages against multiple different parameters
ω, μ, γ, and vmin. For the increasing degradation chance ω, the graph shows a slight drop in
performance as the completion percentage drops from an average of 96% to an average of
94%. This drop is logical because systems with a 100% degradation chance are more likely to
have scheduling failures. When it comes to the total load parameter μ, it shows the biggest
fall in performance with its increase. A low μ value of 0.3 had an average completion
percentage of around 98%, while a high μ value of 0.9 had significantly dropped to below
93%. This figure shows that in most instances, J with a high sum of processing times
degrades the agent's performance significantly, mostly because long processing times cause
jobs to overshadow others and thus starve many jobs in the instance. The parameter (γ) LO
percentage almost has a negligible effect on the completion percentage of the HI criticality
jobs and faces a very slight drop in LO criticality job completion. Finally, Figure 11 shows the
HI and LO completion percentages for each dataset, which confirms the findings.

Our sensitivity analysis shows that our model is susceptible to some parameter variations,
such as μ, while being unaffected by other parameters, such γ. The output shows that the
model was mildly sensitive to the changes in γ with a very slight drop in performance, while
μ and ω significantly impacted the agent's performance. In the following subsection, we
briefly introduce a preemptive version of our model using our best-performing algorithm
Ape-X. It was designed to test the capabilities of the RL agent in the preemptive model vs.
our focused non-preemptive model.

Figure 9: The performance of the agent in terms of HI and LO completion percentages vs.
Degradation Chance ω
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Figure 10: The performance of the agent in terms of HI and LO completion percentages vs.
Total Load μ.

Figure 11: The performance of the agent in terms of HI and LO completion percentages vs.
LO Percentage γ
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Figure 12: The performance of the agent in terms of HI and LO completion percentages for
each Dataset

5.5 Preemptive Model

In real-time embedded systems, some systems require preemption to exist as a way of
completely stopping any low-criticality jobs in favor of completing high-criticality jobs. This
is why we decided to study the performance of our algorithm on a preemptive version of the
problem. The custom environment of our RL agent is adjusted to handle preemption
following the simple assumption: Whenever the system is executing a low-criticality job, and
the processor falls into degradation mode, the agent preempts the execution and chooses a
new job. The choice of the new job is based on the reward function and is favored toward
high-criticality jobs. In contrast, the low-criticality job that was stopped is updated based on
its remaining time and added back to the buffer until it gets resumed or starved, depending
on the duration of high-criticality jobs taking its place. The purpose of introducing a
preemptive model is to encourage future work in this area and also to compare the
performance of a preemptive vs. non-preemptive model of our custom environment and RL
algorithm. The preemption model was only tested for the Ape-X algorithm as it showed its
performance and potential.

Figures 12, 13, 14, and 15 show the performance of our agent in terms of HI and LO
completion percentages for the preemptive model of the problem. Overall, the graphs show
a slightly higher average completion percentage than the non-preemptive model, increasing
from around 95% to 96%. The sensitivity analysis of the model is almost similar to the
performance of our agent in the non-preemptive version of the problem. Parameter variation
in μ, ω causes the biggest drop in performance, while variation in γ can be negligible for
high-criticality jobs with a faint drop for low-criticality jobs.
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Figure 13: The performance of the agent in terms of HI and LO completion percentages vs.
Degradation Chance ω

Figure 14: The performance of the agent in terms of HI and LO completion percentages vs.
Total Load μ.
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Figure 15: The performance of the agent in terms of HI and LO completion percentages vs.
LO Percentage γ

Figure 16: The performance of the agent in terms of HI and LO completion percentages for
each Dataset
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5.6 Comparison

To our knowledge, we are the first to use RL agents for scheduling MC systems
non-preemptively and online. Hence, no previous RL-based benchmarks or test datasets
were published. Moreover, the literature already confirms that standard scheduling policies,
such as EDF, do not apply to this problem and do not provide us with known
approximations or heuristics that can be used for the online problem. On the other hand,
many of the existing solutions for the offline versions of this problem are not concerned with
dynamic scheduling as they do not consider varying-speed processors. But even the offline
solutions for varying-speed systems, such as in the seminal work of (S. Baruah and Guo,
2013b) are not comparable to ours due to the multitude of differences in our model
assumptions, which we present in Section 3.1. We cannot guarantee how these differences
will impact the quality of any comparative study based on their work. It is also worth
emphasizing that our modeling approach also enabled us to model complex aspects, i.e.,
degradation, in a way that made our model converge closer to real-time systems behavior
when compared to the models in the existing literature. Last but not least, our objective
function is fundamentally different from those considered in the literature.

These reasons justify why it would be infeasible to compare the performance of our agent to
the performance of any previously published work without making considerable changes to
the model design and assumptions.
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Chapter 6

Conclusion

With the rapid development of technologies in unmanned vehicles and drones in
automotive and avionics industries with the enforcement of safety standards, we believe
the unconventional combination of reinforcement learning with mixed criticality
scheduling is prominent and shows great potential in the field. We believe in the inherent
online nature of real-time embedded systems even though it adds complexity to the
problem model and we also believe that some cases require the removal of preemption
cost and context switching overheads so our focus shifted towards the non-preemptive
version of the problem. Our work leverages different RL and DRL agents to correctly
schedule dual-criticality systems on a non-preemptive, varying-speed processor in an
online environment. We additionally adopt a more realistic model for the varying-speed
processor behavior and the nature of degradation in our problem.

To the best of our knowledge, we are the first to address the problem under
non-preemption and in an online context. Our results show the performance and speed of
different RL/DRL algorithms in tackling this complex problem, concluding that the Ape-X
DQN algorithm was the most suitable in comparison to the other benchmarks PPO, DQN
and ARS. Non-preemptive Ape-X agent was capable of correctly scheduling 95% of jobs
per instance on average and showed its flexibility and robustness. Our results also show
that this rather unconventional approach to a very critical dynamic scheduling problem is
promising and has potential for further research as explained in our future work, which
suggested different variants and extensions on the problem. Experimenting with more
complex preemption models, formulating a scalable mathematical model for reward
function, adding multi-processor models and finding other AI approaches are all different
perspectives that could give more insight to this approach. Moreover, according to the
sensitivity analysis results, the agent was able to endure high values for degradation
chance to an extent but is very sensitive to a total load of its instance, which means that
the higher the normalized sum of jobs per instance the more difficult for that agent to
schedule everything perfectly.

Additionally, we discuss a preemption model of our problem using Ape-X DQN, obtaining
an overall average completion percentage of 96% with robustness and flexible performance
against the environment parameters. The results show that the performance of the agent
shows great potential in tackling other preemption approaches as well. We also discuss
moving to an offline context and testing out RL techniques in that perspective.
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Chapter 7

Variations and Future Extensions

The results of the previous section confirm that our RL approach has great potential to
serve one of the most critical dynamic scheduling problems in real-time embedded
systems. This outcome motivates us to explore more aspects and extensions in future
work. In this section, we discuss how our work may be modified to suit other variations of
the problem that are out of the scope of our work, namely preemption and offline systems.
We also discuss limitations and future considerations of the work.

In order to modify our model to incorporate preemption, we showed an approach in
Section 5.5 that preempts the agent whenever it goes into degradation mode while
executing a low-criticality job. Other approaches for preemption can be considered as
follows: The agent can decide, at every time step, whether it first wants to preempt a
currently running job or not, then which job will be scheduled if the system was
preempted or just completed a job. We can add a hyperparameter similar to ω,
representing the preemption chance, i.e., the probability by which the agent might
preempt a running job at any given time. The implementation can then be modified to
include this hyperparameter. After that, if we want to revert back to non-preemption, we
would just set the preemption chance to zero.

Scheduling MC systems offline using RL agents can be tricky because the agent starts with
information about all (future)job arrivals and produces the schedule in one go. To model
the offline environment, we recommend the following changes to the model and
evaluation framework:

● Set Bt = J at all times because the agent now has visibility of the agent's overall
(future) arrivals.

● No a priori information exists about the degradation, so the RL agent will assume
that vt=1 is fixed at all times.

● The action space would be a list of all indices of released, non-expired, and
non-scheduled jobs. This ensures that the agent is not overwhelmed by the amount
of information in the buffer and is only using this information to make better
decisions, not to make more mistakes, such as scheduling jobs that have not been
released yet.

● One training episode for the offline model would let the agent schedule the entire
list of jobs at t=0 without considering any degradation or getting any feedback
from the reward system.

● The entire schedule is then played against a processor prone to degradation and is
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evaluated accordingly to specify the reward. The agent may then be allowed to
reschedule the same jobs, correct some decisions, produce a full schedule, and get
the next reward. This process may be repeated multiple times but is threatened by
overfitting, especially if the instance is not large enough.

With respect to the limitations of our problem, we next discuss the size of the data. While
scalability is very important in machine learning techniques, our model is currently
limited by various workload generation and filtration checks that limit the number of jobs
that can be generated and verified per instance. This makes sense because deciding the
schedulability of non-preemptive systems is NP-hard (S. Baruah et al., 2010), thereby
making our current filtration process very time-consuming. In future work, it is worth
investigating a remedy for this bottleneck and finding speed-up tricks that optimize both
the data generation process, as well as the efficiency of the training process. Increasing
instance sizes may unmask further modeling issues about our approach that may need to
be addressed when handling a large number of jobs. It also opens the door for more
elaborate discussions on scalability issues, which are essential in real-time systems.

Modeling this problem with multiple criticality levels similar to ISO26262 and DO178B
could also give more insight on the performance of RL on such systems instead of only
addressing a dual-criticality system with only two levels of criticalities. The multitude of
criticalities might perform better with real data instead of simulated data or with a more
complex data generation model.

Other future work may invest efforts in finding other benchmarks for this version of the
problem and good datasets to be used for testing purposes. Additionally, it is worth
investigating other objective functions and conducting a sensitivity analysis with respect
to different formulations of reward functions. Building a more concrete mathematical
model for the reward function that is more scalable and extensible is also a very good
concept to tackle. It would also be interesting to test and extend this approach to
multi-processor systems that allow resource sharing instead of relying on a single
processor.

Last but not least, we believe it would be helpful to run an error analysis on unsuccessful
schedules and use recurrent neural networks for partial observability. Using different
artificial intelligence approaches such as deep neural networks for scheduling or
combining RL with other classification techniques to improve the agent’s performance.
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Appendix A
Instance Generation
A.1 Instance Parameters

Each MC instance is a set of jobs J, generated according to four main parameters as outlined
in (S. Baruah and Guo, 2013):

● n: the total number of jobs in J,
● μ:  the total load for J, which is the normalized sum of all processing times of all jobs

in J.
● γ: the percentage of jobs that have χ = LO in the set J.
● ζ: the job density, which reflects the average number of active jobs at any instant.

The generator's output is a set of jobs in a matrix format, Jn x 4, s.t; each job has the tuple rj,
dj, pj, and χj. By randomizing these parameters during the training process, the generated
sets of jobs have a variety of different job structures based on the value of those parameters,
thus, helping the agent become flexible in various environments.

To improve the behavior of our RL model, additional status parameters are initialized and
regularly updated as follows:

● ⍴j,t: remaining processing time of job j at any given time t, initialized as ⍴’j,0 = ⍴j

● lt
j: the laxity of job j at any given time at, initialized as lt

j = dj - pj.

Three additional workload characteristics are used in evaluation and monitoring during
training and testing.

● RS
{j,t}: monitors the release status of any job j at any given time t. The binary status

flag is initialized to 0 and switches to 1 once rj ≤ t.
● ES

{j,t}: monitors the execution status of any job j at any given time t. The binary status
flag is initialized to 0 and switches to 1 once a job is executed.

● SS
{j,t}: monitors the starvation status of any job j at any given time t. The binary status

flag is set to 1 if dj ≥ t and ESj,t = 0. Initialized as SSj,0 = 0

A.2 Discretization and Filtration

In our problem, we model the time horizon in an integral manner, which better fits our
environment and degradation model. S. Baruah and Guo, however, operate on a continuous
time horizon. Therefore, discretization of the tuples defining a job j (rj, dj, and pj) is required
to fit the integral time horizon. This is achieved by choosing a time step (0.1 in our case) and
multiplying it by the aforementioned tuples across the entire set J.

45



Converting to an integral time horizon and constraining the problem with non-preemption
requires us to check that J is still schedulable after the new adjustments. Filtration starts by
using the non-preemptive EDF algorithm under normal speed (v=1) to ensure the
schedulability and correctness of the set J.

An empirical analysis follows the normal-speed EDF by decreasing the speed in steps
aiming to find the minimum speed(vJ

min <  1) capable of scheduling J. The vJ
min is used in

degradation modeling in Section 4.3.

Table A1 shows an example of a set of jobs J after the dataset generation, discretization, and
filtration processes. Table A2 shows the scheduling of the workload in normal mode and the
scheduling of the subset of HI jobs in a degraded mode with the empirically calculated
minimum speed of 0.75 for the set J.

Table A1: Example of an instance of generated jobs J.

Job j rj dj pj χj

1 0 30 6 0

2 1 22 7 0

3 6 27 1 0

4 10 38 2 1

5 14 75 10 1

6 19 34 4 1

Table A2: Scheduling example for the instance J in Table A1 with unique vmin = 0.75. The
second column shows scheduling the jobs with speed v = 1, and the third column shows

scheduling with speed v = 0.75.

Job j Speed1 : tstart - tend Speed0.75 : tstart - tend

1 0-6 -

2 6-13 -

3 13-14 -

4 14-16 10-13

5 16-26 13-27

6 26-30 27-33
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A.3 Training Data

Before training, the parameters for all algorithms had to be set: num_cpus_per_worker = 4,
numworkers = 1. Our RL agent is trained to be a well-rounded agent capable of dealing with
various sets of jobs J with different parameters. So the dataset for each training iteration is
generated dynamically, right before the training episode, using randomly drawn parameters:

● ω  : U(vJ
min,1).

● μ : U(0.2,1).
● γ : U(0,1).
● 𝛇 : U(0.25*n,0.5*n).

All these parameters were set according to the dataset generation appendix in (S. Baruah
and Guo, 2013b). All the data generated dynamically during training were collected and
later analyzed. We sampled some training data and found that the agent trained with the
following average values:

● vmin = 0.85
● ω = 0.5
● μ = 0.6
● γ = 0.465
● 𝛇 = 10.5
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Appendix B
Implementation
For the implementation of the environments, we used RLLIB  (Moritz et al., 2017), which is
an open-source, scalable RL library. We build our own custom environment using RL Gym
standards for the online model tailored to our problem's dynamic non-preemptive nature.
The main parts of custom environments are the initialization and reset functions, the step
function, which is the primary core of our model, and a few helper functions. The
initialization and reset functions both set the state of the environment back to default by
setting the time to zero, resetting all variables, generating data dynamically, and defining the
observation space and action space.

The initialization of the online environment can be seen in Algorithm 1. The first three
lines initiate the processor speed to v = 1, JobNum depending on the number of jobs n for
each experiment, and ω for the environment, which is randomly generated for each
workload instance J. The following three lines define the parameters for workload
generation mentioned in Appendix A. The GenerateData() function returns the workload for
the next training iteration and its minimum possible scheduling speed vJ

min. Lines 9-10
define the action space and observation space for the environment. The reset function
behaves similarly to the initialization, with minor differences related to how the RL library
operates.

During initialization, reset, and step, other functions are required that help with the flow
of the environment. These are some of the helper functions used in our environment:

● get_obs(): updates the observation space of the environment based on the updates in
the online buffer.

● update_available(): updates the action space of the environment
● UpdateBuffer(): updates all the jobs currently in the buffer by adding newly released

jobs and removing expired or starved jobs. It fills empty slots with dummy values -1.
● update_workload(): updates the original workload instance J, which is later mapped

to the online buffer. The updated values are the ρt
j, lt

j, RSj,t, ESj,t, SSj,t for any given
time t.

The step function, the core of our RL environment, is responsible for all the logic behind
training the agent. The agent enters the step function with a given action based on the
outcome of the RL algorithm and the observation space. Algorithm 2 shows the pseudo-code
for the step function. Lines 2-6 check if there aren't any jobs currently released in the buffer,
it moves to the next time step, updates the buffer, and moves on to the next action. Lines 8-11
punish the agent heavily for picking a dummy job if a real job exists in the buffer. For
example, if the buffer had [1 3 -1 -1 -1] and the agent picked one of the dummies values -1
instead of job 1 or job 3, it would be heavily punished. Lines 13-21 first punish the agent for
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picking a starved or an executed job, then check if a degradation happened when the agent
chose this current action, as it will affect the reward. Finally, it moves in the time horizon
towards rj if it is greater than t. Lines 22 - 29 resemble the execution of the job. At each time
step, the function adjusts the remaining processing time ρt

j based on the current processor
speed (v ≤ 1) and moves ahead in the time horizon to the end of the job if it has enough time
to finish or to the deadline if it will not have enough time. For the preemption model, the
agent does not move to the end of the job processing time but rather it could preempt if
degradation happens while executing a low-criticality job. If at any point, the job reaches its
deadline without finishing, the agent is punished. If the job completes successfully, we move
to the reward function to determine the reward based on Figure 4 and as seen in Lines 30-33.
Finally, lines 35-38 update the set of jobs J, the observation space, and the buffer of all
currently released jobs to prepare for the following action.

Algorithm 1: Initialization Pseudo Code
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Algorithm 2: Online Step Function
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